Research group

BiOmics

Bar coded DNA sample

Technological advances have allowed scientists to gather large amounts of data about a vast array of species, organisms and single cells. Our researchers are using mathematical modelling, machine learning and other algorithms to extract information and patterns from large data sets to further our understanding of disease.

About

Contemporary scientific research benefits from rapid technological developments that enable the characterisation and quantification of biological molecules at unprecedented scale. Scientists can generate vast data that provide insight into the complex interplay of molecules within organisms. Interrogation and interpretation of these data inform the structure, function and interaction of molecules over time. 

We use ‘Omic technologies comprehensively to evaluate DNA (genomics), RNA (transcriptomics) and proteins (proteomics). We study small molecules using metabolomics. Microorganisms are investigated in a targeted manner using microbiomics or more broadly to characterise mixed samples using metagenomics.

At the University of Southampton, we generate vast datasets using these approaches across a wide range of environments and species. We work closely with NHS partners to use these capabilities to understand human disease and inform its clinical management. We bring together medical and biological scientists with mathematicians, computer and data scientists to develop and apply methods that exploit these data to their fullest potential.

From analysing patient genomes, to carrying out metagenomic analysis of water samples to using mass spectrometry metabolic profiling techniques, our scientists are studying the unique processes that take place within cells that can lead to disease or poor health outcomes in humans and help track changes in the environment.   

We are using data to answer clinical questions in areas such as cancer, autoimmune and respiratory diseases with the help of clinical colleagues we are translating our findings into novel techniques for clinicians to treat their patients, make predictions about prognosis and drug responsiveness.

Our researchers collaborate with partners at:

People, projects and publications

People

Dr Rafael Mestre PhD, MSc, BSc

Lecturer

Research interests

  • Responsible Research and Innovation of emergent technologies
  • Multimodal machine learning and Natural Language Processing
  • Computational social science

Accepting applications from PhD students

Connect with Rafael

Dr Rahman Attar SMIEEE, MIET, FHEA, PhD, MPhil, BEng

Lecturer

Accepting applications from PhD students

Connect with Rahman

Dr Rahul Tare

Lecturer

Research interests

  • Human stem cells
  • Skeletal development
  • Tissue engineering primarily, cartilage tissue engineering

Accepting applications from PhD students

Connect with Rahul

Professor Raimund Ober

Prof of Imaging & Biomedical Engineering
Connect with Raimund

Dr Ralph Gordon BSc, MSc, PhD, FHEA

Postdoctoral Research Fellow

Research interests

  • Thermal and Exercise Physiology
  • Heat Acclimation/Acclimatization
  • Skin Cooling

Accepting applications from PhD students

Connect with Ralph

Professor Ratko Djukanovic

Professor of Medicine

Research interests

  • Professor Djukanovic has a lifelong interest in asthma, especially its severe forms. where his focus is on: 1) underlying pathobiological mechanisms of asthma, 2) stratification of asthma into clinical phenotypes and mechanism-based endotypes, 3) unmet needs of severe asthma management. He also has an interest in the mechanisms and treatments of severe viral infections of the lung.
  • Underlying mechanisms of asthma: Professor Djukanovic has conducted pioneer studies into the pathology of asthma, applying research bronchoscopy  (with endobronchial biopsy and bronchoalveolar lavage) and sputum induction. He led the initial task forces which defined the use of these two techniques, thereby paving the way for standardised research approches that enabled in-depth descriptions of the roles of various inflammatory cells and their mediators. He developed an explant model, consisting of bronchial biopsies placed into tissue culture, that could be stimulated ex vivo with relevant triggers, applying as needed, novel agents not yet approved for in vivo use in humans volunteers. 
  • Stratification of asthma into clinical phenotypes and mechanism-based endotypes: Professor Djukanovic led the discovery of biomarkers using omics technology (transcriptomics, proteomics, lipidomics, breathomics). After the first ever study of transcriptomics biomarkers in the epithelium of patients with Chronic Obstructive Pulmonary Disease (COPD), together with a colleague from Amsterdam and two colleagues from Imperial College, London, he created a large (€27 milllion) programme for severe asthma (U-BIOPRED), funded by the EU Innovative Medicines Initiative. This has resulted in more than 100 publications, providing insight into novel phenotypes and endotypes of asthma.
Connect with Ratko

Professor Rebecca Hoyle

Assoc Vice-President Interdisc Research

Research interests

  • Multimorbidity across the lifecourse
  • Cooperation in social networks and evolution of cooperation
  • Quantitative genetics of transgenerational effects

Accepting applications from PhD students

Connect with Rebecca

Dr Reuben Pengelly PhD, SFHEA

Principal Teaching Fellow

Research interests

  • Student attitudes towards academic integrity
  • Splicing regulation of metal binding proteins

Accepting applications from PhD students

Connect with Reuben

Dr Richard Cook

Associate Professor

Research interests

  • Mechanical and tribological testing of hydrogels for orthopaedic and tissue engineering
  • The tribology of tooth brushing.
  • Efficacy testing of products for dental hypersensitivity management.
Connect with Richard

Dr Richard Meek

Senior Research Fellow

Research interests

  • Eukaryotic Glycobiology
  • Carbohydrate-active Enzymes
  • Post-translational Modifications

Accepting applications from PhD students

Connect with Richard
We are at a very exciting time in Life Science Research. The potential for novel discovery using ‘omics technologies combined with the computer science methodologies is immense.
Professor of Genomics

Related research institutes, centres and groups

Related research institutes, centres and groups

Contact us

Contact us

Contact the Institute for Life Sciences team by emailing: