About this course
Learn about some of the world’s biggest challenges, from renewable energy to improving the study of disease, with our MSc Chemistry degree. Study in depth traditional areas including analytical, inorganic, organic and physical chemistry. You’ll choose from a wide range of specialist modules to match your interests.
Combine theory, practical and research work to develop skills in demand by industry, or prepare for further research study.
On this chemistry master's you’ll take part in sessions to develop your practical, scientific writing, communication and presentation skills. You'll work in state of the art laboratories and gain master's level knowledge of the core areas of chemistry, along with your chosen area of specialisation.
We regularly review our courses to ensure and improve quality. This course may be revised as a result of this. Any revision will be balanced against the requirement that the student should receive the educational service expected. Find out why, when, and how we might make changes.
Our courses are regulated in England by the Office for Students (OfS).
Course lead
Dr. Giuseppe Pileio, Associate Professor in Physical Chemistry leads this course. Giuseppe is the Chemistry MSc Director of Programmes and the Director of the Interfaculty Centre for Magnetic Resonance. His group develops theory, methodology and hardware to enhance capabilities in magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI), applied to porous media and biological tissues. Read Dr. Giuseppe Pileio staff profile to find out more about his work.
Related pathways
General chemistry
Further your knowledge in a combination of organic, inorganic and physical chemistry. Choose this option if you’re interested in developing your expertise across the different disciplines within chemistry.
Organic chemistry
This covers synthetic reaction and mechanisms. It’s suitable if you already have an undergraduate grounding in nomenclature, stereochemistry and reaction mechanisms. You can specialise in:
- organic synthesis
- medicinal chemistry
- bio-organic chemistry
Inorganic chemistry and materials
The focus here is on functional inorganic, solid-state and supramolecular materials. It’s ideal if you have BSc level knowledge of fundamentals and applications of inorganic chemistry. It addresses challenges in:
- energy
- sustainability
- healthcare and diagnostics
- the deposition of nanostructured materials
Physical chemistry
This is suitable if you have an undergraduate level grounding in physical chemistry, especially quantum chemistry, spectroscopy, thermodynamics and kinetics. You’ll be able to specialise in:
- computational chemistry
- spectroscopy
- electrochemistry
- surface science
- magnetic resonance
Learn more about this subject area
Course location
This course is based at Highfield.
Awarding body
This qualification is awarded by the University of Southampton.
Download the Course Description Document
The Course Description Document details your course overview, your course structure and how your course is taught and assessed.
Entry requirements
You’ll need a 2:1 degree in chemistry, or a 2:1 degree with at least 50% chemistry content and an average of a 2:1 across your chemistry modules.
Find the equivalent international qualifications for your country.
Information for students who have studied in China
This programme only accepts applicants who have studied at an X1, X2, X3 or X4 institution.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 6.0
- writing
- 6.0
- speaking
- 6.0
- listening
- 6.0
We accept other English language tests. Find out which English language tests we accept.
If you don’t meet the English language requirements, you can achieve the level you need by completing a pre-sessional English programme before you start your course.
Pre-masters
If you don’t meet the academic requirements, you can complete a pre-master's programme through our partnership with ONCAMPUS. Learn more about the programmes available.
Recognition of professional experience
If you don't have the exact entry requirements, but you have significant work experience in this sector we’ll assess your relevant professional experience, your subject knowledge and your aptitude for learning.
Your application will be considered on individual merit and you may be asked to attend an interview.
Got a question?
Please contact us if you're not sure you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Course structure
The taught part of the course takes place over the first 2 semesters.
Each semester includes 12 weeks of study followed by 2 or 3 weeks of exams. You'll carry out the research element of the course in semester 3 during the summer.
A highlight of the course is the choice of a specialist pathway. Choose from:
- organic chemistry
- inorganic and materials chemistry
- physical chemistry
- general chemistry
In the final weeks of August you’ll focus on your dissertation preparation and you'll carry out a limited amount of laboratory work.
Want more detail? See all the modules in the course.
Modules
The modules outlined provide examples of what you can expect to learn on this degree course based on recent academic teaching. As a research-led University, we undertake a continuous review of our course to ensure quality enhancement and to manage our resources. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Find out why, when and how we might make changes.
For entry in academic year 2025 to 2026
Year 1 modules
You must study the following modules :
Chemistry MSc Advanced Research Project
The project involves approximately 600 hours of commitment including 14 weeks of full-time practical-based research work (ca. 450 hours). It commences with literature research and project planning, some of which has been performed in other modules previou...
Scientific writing and presentation skills for Chemistry MSc
This module involves the completion of a literature review in preparation for the student’s MSc dissertation project. The results of the literature review are presented in a written report and in a short oral presentation. To support the preparation of th...
You must also choose from the following modules :
Advanced Chemical Biology
Advanced NMR Spectroscopy and MRI
This module provides advanced Magnetic Resonance spectroscopy and imaging background to students who would like to work professionally in quantum technologies based on spin.
Advanced Organic Chemistry (Bioorganic)
Advanced Physical Chemistry
The course deals with the nature of surfaces, both real and ideal, the energetics of adsorption at surfaces and adsorption isotherms, and the charge distribution at the liquid/solid interface. The kinetics of reactions at interfaces, including the role of...
Advanced Spectroscopy and Applications
Modern spectroscopic techniques underpin a wide range of chemical and biological research as well as serving as a valuable analytical tool. This module will introduce some of the key principles, tools and techniques that govern spectroscopic measurements ...
Artificial Intelligence and Machine Learning in Chemistry
The aim of the module is to expose the students to modern chemical informatics, machine learning (ML) and artificial intelligence (AI) driven approaches for computational modelling and prediction, illustrated with applications to research in to the discov...
Atoms, Molecules and Spins: Quantum Mechanics in Chemistry and Spectroscopy
This module aims to develop an intermediate-level understanding of quantum mechanics, including familiarity with its mathematical formulation. It is intended to bridge the gap between the qualitative, pictorial approach used in the core modules of the fir...
Battery Materials and Characterisation
This module examines key features of cell design and of materials used in batteries. It links this to a range of techniques that are commonly used to study cell architecture and structure, composition and surface chemistry of battery materials. Emphasis i...
Battery Technologies and their Applications
The development of energy storage technologies plays a critical role in the transition to an environmentally sustainable society and improving people's quality of living. Energy storage technologies are necessary in a variety of very important application...
Chemistry through the Computational Microscope
This module builds on the student’s core understanding of the structure of atoms and molecules to predict their behaviour using state-of-the art computational chemistry methods. This will involve learning how quantum chemistry methods can be used to st...
Ethics in Science, Engineering and Technology: Jekyll and Hyde
Starting from the underlying themes in Jekyll and Hyde, wherein a scientific discovery can be seen as having both beneficial (Dr. Jekyll) and detrimental aspects (Mr. Hyde), this module delves into the general area of the ethics and social responsibility ...
Inorganic Materials Chemistry
Introduction to Electrochemistry I
Electrochemistry is a foundation stone for many exciting developments in, for example, chemistry, biology and materials, and it is also central to many technologies essential to modern living. In this course, you will learn about the key fundamental proce...
Introduction to Electrochemistry II
Electrochemistry is an important area of physical science covering many interesting and important topics of current scientific research. For example, it is key to the development of new power sources (batteries, fuel cells and supercapacitors) as well as...
Macrocyclic and Bio-inorganic Chemistry
This module explores some of the distinguishing features of metal ion complexes bearing macrocyclic ligands and some of the key structural and functional roles of metal ions in biology and medicine. The module serves as an introduction to these important ...
Mass Spectrometry: Theory and Application
Mass spectrometry is the key enabling technology for the 21st century. It delivers practical and sustainable innovations to enable significant advancements in areas such as healthcare delivery, life sciences, environmental management, energy, food safety,...
Medicinal Chemistry
Medicinal Chemistry is pivotal in the design, synthesis and evaluation of new medicines, and involves multidisciplinary research at the interface of Chemistry, Biology and Medicine. This module will introduce key molecular concepts and methods in Medicina...
Modelling in Electrochemistry
Electrode reactions are inherently complex as they involve interfacial charge transfer, mass transport, many species, different timescales, thermodynamics and kinetics, as well as chemical, material and electrical properties. Furthermore the electron tran...
NMR Spectroscopy: Theory and Application
NMR spectroscopy is a powerful analytical tool: by combining a wide range of 1D and 2D NMR experiments, the assignment of functional groups, atom connectivity and 3D molecular structure can be undertaken. This module will be delivered with a focus on pra...
Principles, Techniques and Energy Applications of Electrochemistry
Electrochemistry is an important area of science covering many interesting and important topics of current scientific research. For example, it is key to the development of new power sources (for example new batteries, fuel cells and supercapacitors) as ...
Stereoselective Reactions
Supramolecular Chemistry of Functional Molecules and Materials
This module will explore the fundamental basis of intermolecular interactions and illustrate how these can be exploited to form diverse supramolecular assemblies ranging from small molecules, soft gels and hard extended inorganic solids. The course will p...
Sustainable Chemistry
Synthetic Methods in Organic Chemistry
Carbon-carbon bond forming reactions lie at the heart of organic synthesis. In this course we will cover methods for carbon-carbon bond formation using carbanions and radicals, and through thermally and photochemically induced pericyclic processes. The si...
X-Ray Crystallographic Techniques, Advanced Main Group Chemistry and Applications
X-Ray Diffraction as a Characterisation Method
Students will become familiar with the types of information that x-ray diffraction can provide on the structure of a wide variety of samples. They will gain an understanding of the underlying principles and learn how to apply these to conduct the most app...
Learning and assessment
Learning
On this master’s in chemistry your learning includes:
- staff-led lectures, tutorials, workshops, seminars and demonstrations
- student-led seminars and presentations
- workshops and tutorials based around instruments in the laboratory
You’ll carry out self-directed learning:
- reading summary texts and scientific literature
- exposure to technical reports
- individual practical work on instruments
- engagement with written assignments and coursework
- revision for written exams
Practical classes give you the opportunity to show your increasing independence. You'll also have meetings about research work with the supervisory team.
Assessment
You'll be assessed on the taught elements of the course with exams and coursework.
Your research is assessed on the practical outcomes of your project work. As well as on your ability to communicate your research outcomes and through your dissertation. This will be assessed by your supervisor and another academic from within the University by what is called a viva voce, a verbal examination.
You’ll also need to keep a laboratory notebook and create an archive of your research results. These primary sources of information will be reviewed throughout your research project and will be part of the final assessment.
You’ll also write short reports describing your progress throughout the summer. We’ll review these regularly to support your development in preparation for the dissertation.
Dissertation
The research project will explore in depth, one or more of the chemistry topics you covered in the taught part of the course.
You’ll agree your project topic with your supervisor and you'll complete the project preparation in consultation with them.
The project involves around 600 hours of time including 14 weeks of practical research work.
You'll submit your dissertation in mid-September.
Academic Support
We'll assign you a personal academic tutor, and you'll have access to a senior tutor.
Careers
On this chemistry degree you’ll gain valuable postgraduate research skills. You'll develop transferrable skills including time management, and the ability to effectively communicate and present.
This will prepare you for career success in a wide range of areas such as industry, analysis, policymaking and scientific communication. Recent graduates have gone on to pursue careers in:
- electrochemistry
- material science
- energy storage
- analytical chemistry
- environmental chemistry
- computational chemistry
- biotechnical and pharmaceutics
- science communication
Completing a master’s qualification will help you take on the challenges of an advanced research degree at PhD level, ready for an academic career.
Careers services at Southampton
We're a top 20 UK university for employability (QS Graduate Employability Rankings 2022). Our Careers, Employability and Student Enterprise team will support you throughout your time as a student and for up to 5 years after graduation. This support includes:
- work experience schemes
- CV/resume and interview skills workshops
- networking events
- careers fairs attended by top employers
- a wealth of volunteering opportunities
- study abroad and summer school opportunities
We have a thriving entrepreneurship culture. You'll be able to take advantage of:
- our dedicated start-up incubator, Futureworlds
- a wide variety of enterprise events run throughout the year
- our partnership in the world’s number 1 business incubator, SETsquared
Fees, costs and funding
Tuition fees
Fees for a year's study:
- UK students pay £9,250.
- EU and international students pay £31,500.
Deposit
If you're an international student on a full-time course, we'll ask you to pay £2,000 of your tuition fees in advance, as a deposit.
Your offer letter will tell you when this should be paid and provide full terms and conditions.
Find out about exemptions, refunds and how to pay your deposit on our tuition fees for overseas students page.
What your fees pay for
Your tuition fee covers the full cost of tuition and any exams. The fee you pay will remain the same each year from when you start studying this course. This includes if you suspend and return.
Find out how to pay your tuition fees.
Accommodation and living costs, such as travel and food, are not included in your tuition fees. There may also be extra costs for retake and professional exams.
Explore:
10% alumni discount
If you’re a graduate of the University of Southampton, you could be eligible for a 10% discount on your postgraduate tuition fees.
Postgraduate Master’s Loans (UK nationals only)
This can help with course fees and living costs while you study a postgraduate master's course. Find out if you're eligible.
Southampton Chemistry Postgraduate International Scholarship
A scholarship of £3,000 is available to international students studying for a postgraduate master’s in Chemistry.
Find out more about the Southampton Chemistry Postgraduate International Scholarship, including eligibility and conditions.
Southampton Chemistry Deans International Scholarship
Four scholarships offer international students £5,000 off their first year of study of chemistry and chemical engineering at either undergraduate or postgraduate level.
Find out more about the Southampton Chemistry Deans International Scholarship, including eligibility, deadlines and how to apply.
Other postgraduate funding options
A variety of additional funding options may be available to help you pay for your master’s study. Both from the University and other organisations.
Funding for { funding_heading }}
Find out about funding you could get as an international student.
How to apply
- Use the 'apply for this course' button on this page to take you to our online application form.
- Search for the course you want to apply for.
- Complete the application form and upload any supporting documents.
- Submit your application.
For further details, read our step by step guide to postgraduate taught applications.
Application deadlines
UK students
The deadline to apply for this course is Tuesday 9 September 2025, midday UK time.
We advise applying early as applications may close before the expected deadline if places are filled.
International students
The deadline to apply for this course is Tuesday 26 August 2025, midday UK time.
We advise applying early as applications may close before the expected deadline if places are filled.
Application assessment fee
We’ll ask you to pay a £50 application assessment fee if you’re applying for a postgraduate taught course.
This is an extra one-off charge which is separate to your tuition fees and is payable per application. It covers the work and time it takes us to assess your application. You’ll be prompted to pay when you submit your application which won’t progress until you've paid.
If you're a current or former University of Southampton student, or if you’re applying for certain scholarships, you will not need to pay the fee. PGCE applications through GOV.UK and Master of Research (MRes) degree applications are also exempt. Find out if you’re exempt on our terms and conditions page.
Supporting information
When you apply you’ll need to submit a personal statement explaining why you want to take the course.
You’ll need to include information about:
- your knowledge of the subject area
- why you want to study a postgraduate qualification in this course
- how you intend to use your qualification
References are not required for this programme.
Please include the required paperwork showing your first degree and your IELTS English language test score (if you are a non-native English speaker) with your application. Without these, your application may be delayed.
What happens after you apply
You'll be able to track your application through our online Applicant Record System.
We will aim to send you a decision 6 weeks after you have submitted your application.
If we offer you a place, you will need to accept the offer within 30 working days. If you do not meet this deadline, we will offer your place to another applicant.
Unfortunately, due to number of applications we receive, we may not be able to give you specific feedback on your application if you are unsuccessful.
Equality and diversity
We treat and select everyone in line with our Equality and Diversity Statement.
Got a question?
Please contact us if you're not sure you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Related courses
-
Study
- View all courses
- Taught postgraduate study
- Pre-sessional English courses
-
Subjects
- Acoustical engineering
- Audiology
- Biomedical and medical engineering
- Civil engineering
- Every day I’m completely immersed in an environment that’s creative in all aspects
- Everything I learn feels so relevant, even If it’s a subject rooted in the past
- Maritime engineering
- Photonics and optoelectronics
- Social statistics and demography
-
PhDs and research degrees
- Create your own research project
-
Find a PhD project
- A missing link between continental shelves and the deep sea: Have we underestimated the importance of land-detached canyons?
- A study of rolling contact fatigue in electric vehicles (EVs)
- Acoustic monitoring of forest exploitation to establish community perspectives of sustainable hunting
- Acoustic sensing and characterisation of soil organic matter
- Advancing intersectional geographies of diaspora-led development in times of multiple crises
- Aero engine fan wake turbulence – Simulation and wind tunnel experiments
- Against Climate Change (DACC): improving the estimates of forest fire smoke emissions
- All-in-one Mars in-situ resource utilisation (ISRU) system and life-supporting using non-thermal plasma
- An electromagnetic study of the continent-ocean transition southwest of the UK
- An investigation of the relationship between health, home and law in the context of poor and precarious housing, and complex and advanced illness
- Antibiotic resistance genes in chalk streams
- Being autistic in care: Understanding differences in care experiences including breakdowns in placements for autistic and non-autistic children
- Biogeochemical cycling in the critical coastal zone: Developing novel methods to make reliable measurements of geochemical fluxes in permeable sediments
- Bloom and bust: seasonal cycles of phytoplankton and carbon flux
- British Black Lives Matter: The emergence of a modern civil rights movement
- Building physics for low carbon comfort using artificial intelligence
- Building-resolved large-eddy simulations of wind and dispersion over a city scale urban area
- Business studies and management: accounting
- Business studies and management: banking and finance
- Business studies and management: decision analytics and risk
- Business studies and management: digital and data driven marketing
- Business studies and management: human resources (HR) management and organisational behaviour
- Business studies and management: strategy, innovation and entrepreneurship
- Carbon storage in reactive rock systems: determining the coupling of geo-chemo-mechanical processes in reactive transport
- Cascading hazards from the largest volcanic eruption in over a century: What happened when Hunga Tonga-Hunga Ha’apai erupted in January 2022?
- Characterisation of cast austenitic stainless steels using ultrasonic backscatter and artificial intelligence
- Climate Change effects on the developmental physiology of the small-spotted catshark
- Climate at the time of the Human settlement of the Eastern Pacific
- Collaborative privacy in data marketplaces
- Compatibility of climate and biodiversity targets under future land use change
- Cost of living in modern and fossil animals
- Creative clusters in rural, coastal and post-industrial towns
- Deep oceanic convection: the outsized role of small-scale processes
- Defect categories and their realisation in supersymmetric gauge theory
- Defining the Marine Fisheries-Energy-Environment Nexus: Learning from shocks to enhance natural resource resilience
- Design and fabrication of next generation optical fibres
- Developing a practical application of unmanned aerial vehicle technologies for conservation research and monitoring of endangered wildlife
- Development and evolution of animal biomineral skeletons
- Development of all-in-one in-situ resource utilisation system for crewed Mars exploration missions
- Ecological role of offshore artificial structures
- Effect of embankment and subgrade weathering on railway track performance
- Efficient ‘whole-life’ anchoring systems for offshore floating renewables
- Electrochemical sensing of the sea surface microlayer
- Engagement with nature among children from minority ethnic backgrounds
- Enhancing UAV manoeuvres and control using distributed sensor arrays
- Ensuring the Safety and Security of Autonomous Cyber-Physical Systems
- Environmental and genetic determinants of Brassica crop damage by the agricultural pest Diamondback moth
- Estimating marine mammal abundance and distribution from passive acoustic and biotelemetry data
- Evolution of symbiosis in a warmer world
- Examining evolutionary loss of calcification in coccolithophores
- Explainable AI (XAI) for health
- Explaining process, pattern and dynamics of marine predator hotspots in the Southern Ocean
- Exploring dynamics of natural capital in coastal barrier systems
- Exploring the mechanisms of microplastics incorporation and their influence on the functioning of coral holobionts
- Exploring the potential electrical activity of gut for healthcare and wellbeing
- Exploring the trans-local nature of cultural scene
- Facilitating forest restoration sustainability of tropical swidden agriculture
- Faulting, fluids and geohazards within subduction zone forearcs
- Faulting, magmatism and fluid flow during volcanic rifting in East Africa
- Fingerprinting environmental releases from nuclear facilities
- Flexible hybrid thermoelectric materials for wearable energy harvesting
- Floating hydrokinetic power converter
- Glacial sedimentology associated subglacial hydrology
- Green and sustainable Internet of Things
- How do antimicrobial peptides alter T cell cytokine production?
- How do calcifying marine organisms grow? Determining the role of non-classical precipitation processes in biogenic marine calcite formation
- How do neutrophils alter T cell metabolism?
- How well can we predict future changes in biodiversity using machine learning?
- Hydrant dynamics for acoustic leak detection in water pipes
- If ‘Black Lives Matter’, do ‘Asian Lives Matter’ too? Impact trajectories of organisation activism on wellbeing of ethnic minority communities
- Illuminating luciferin bioluminescence in dinoflagellates
- Imaging quantum materials with an XFEL
- Impact of neuromodulating drugs on gut microbiome homeostasis
- Impact of pharmaceuticals in the marine environment in a changing world
- Improving subsea navigation using environment observations for long term autonomy
- Information theoretic methods for sensor management
- Installation effect on the noise of small high speed fans
- Integrated earth observation mapping change land sea
- Interconnections of past greenhouse climates
- Investigating IgG cell depletion mechanisms
- Is ocean mixing upside down? How mixing processes drive upwelling in a deep-ocean basin
- Landing gear aerodynamics and aeroacoustics
- Lightweight gas storage: real-world strategies for the hydrogen economy
- Machine learning for multi-robot perception
- Machine learning for multi-robot perception
- Marine ecosystem responses to past climate change and its oceanographic impacts
- Mechanical effects in the surf zone - in situ electrochemical sensing
- Microfluidic cell isolation systems for sepsis
- Migrant entrepreneurship, gender and generation: context and family dynamics in small town Britain
- Miniaturisation in fishes: evolutionary and ecological perspectives
- Modelling high-power fibre laser and amplifier stability
- Modelling soil dewatering and recharge for cost-effective and climate resilient infrastructure
- Modelling the evolution of adaptive responses to climate change across spatial landscapes
- Nanomaterials sensors for biomedicine and/or the environment
- New high-resolution observations of ocean surface current and winds from innovative airborne and satellite measurements
- New perspectives on ocean photosynthesis
- Novel methods of detecting carbon cycling pathways in lakes and their impact on ecosystem change
- Novel technologies for cyber-physical security
- Novel transparent conducting films with unusual optoelectronic properties
- Novel wavelength fibre lasers for industrial applications
- Ocean circulation and the Southern Ocean carbon sink
- Ocean influence on recent climate extremes
- Ocean methane sensing using novel surface plasmon resonance technology
- Ocean physics and ecology: can robots disentangle the mix?
- Ocean-based Carbon Dioxide Removal: Assessing the utility of coastal enhanced weathering
- Offshore renewable energy (ORE) foundations on rock seabeds: advancing design through analogue testing and modelling
- Optical fibre sensing for acoustic leak detection in buried pipelines
- Optimal energy transfer in nonlinear systems
- Optimal energy transfer in nonlinear systems
- Optimizing machine learning for embedded systems
- Oxidation of fossil organic matter as a source of atmospheric CO2
- Partnership dissolution and re-formation in later life among individuals from minority ethnic communities in the UK
- Personalized multimodal human-robot interactions
- Preventing disease by enhancing the cleaning power of domestic water taps using sound
- Quantifying riparian vegetation dynamics and flow interactions for Nature Based Solutions using novel environmental sensing techniques
- Quantifying the response and sensitivity of tropical forest carbon sinks to various drivers
- Quantifying variability in phytoplankton electron requirements for carbon fixation
- Resilient and sustainable steel-framed building structures
- Resolving Antarctic meltwater events in Southern Ocean marine sediments and exploring their significance using climate models
- Robust acoustic leak detection in water pipes using contact sound guides
- Silicon synapses for artificial intelligence hardware
- Smart photon delivery via reconfigurable optical fibres
- The Gulf Stream control of the North Atlantic carbon sink
- The Mayflower Studentship: a prestigious fully funded PhD studentship in bioscience
- The calming effect of group living in social fishes
- The duration of ridge flank hydrothermal exchange and its role in global biogeochemical cycles
- The evolution of symmetry in echinoderms
- The impact of early life stress on neuronal enhancer function
- The oceanic fingerprints on changing monsoons over South and Southeast Asia
- The role of iron in nitrogen fixation and photosynthesis in changing polar oceans
- The role of singlet oxygen signaling in plant responses to heat and drought stress
- Time variability on turbulent mixing of heat around melting ice in the West Antarctic
- Triggers and Feedbacks of Climate Tipping Points
- Uncovering the drivers of non-alcoholic fatty liver disease progression using patient derived organoids
- Understanding recent land-use change in Snowdonia to plan a sustainable future for uplands: integrating palaeoecology and conservation practice
- Understanding the role of cell motility in resource acquisition by marine phytoplankton
- Understanding the structure and engagement of personal networks that support older people with complex care needs in marginalised communities and their ability to adapt to increasingly ‘digitalised’ health and social care
- Unpicking the Anthropocene in the Hawaiian Archipelago
- Unraveling oceanic multi-element cycles using single cell ionomics
- Unravelling southwest Indian Ocean biological productivity and physics: a machine learning approach
- Using acoustics to monitor how small cracks develop into bursts in pipelines
- Using machine learning to improve predictions of ocean carbon storage by marine life
- Vulnerability of low-lying coastal transportation networks to natural hazards
- X-ray imaging and property characterisation of porous materials
- Funding your research degree
- How to apply for a PhD or research degree
- How to make a PhD enquiry
- Support while studying your PhD or research degree
- Exchanges and studying abroad
- Undergraduate study
-
Tuition fees and funding
-
Scholarships
-
Postgraduate scholarships for UK students
- Black Futures scholarship
- GREAT Scholarships 2025 – Egypt
- GREAT Scholarships 2025 – France
- GREAT Scholarships 2025 – Ghana
- Postgraduate Taught Diversity Scholarship (Environmental and Life Sciences)
- Southampton Business School Postgraduate UK Scholarship
- Southampton Genomics Talent Scholarship
- Southampton History Patricia Mather and Helen Patterson Scholarship
- Southampton MA Holocaust scholarships
- Southampton Philosophy David Humphris-Norman Scholarship
- Southampton Photonics Impact Scholarship
- Southampton UK Alumni Music Scholarship
- The National Institute for Health and care Research South Central INSIGHT Programme
- The South Coast Doctoral Training Partnership Social Science PhD Studentships
- Undergraduate scholarships for UK students
- Competitive scholarships for international postgraduates
- Competitive scholarships for international undergraduates
- Merit scholarships for international postgraduates
- Merit scholarships for international undergraduates
-
Partnership scholarships for international students
- Scholarships, awards and funding opportunities
- Becas Chile Scholarship
- Chevening Scholarships
- China Scholarship Council Scholarships
- COLFUTURO Scholarships
- Commonwealth Master's Scholarships
- Commonwealth PhD Scholarships
- Commonwealth PhD Scholarships for high income countries
- Commonwealth Shared Scholarships
- Commonwealth Split-Site Scholarships
- FIDERH Scholarships
- Fulbright Awards
- FUNED Scholarships
- Great Scholarships 2024 – Mexico
- Great Scholarships 2024 – Nigeria
- Marshall Scholarship
- Saïd Foundation Scholarships
- British Council Scholarships for Women in STEM
- Southampton Canadian Prestige Scholarship for Law
- Xiamen University PhD Scholarships
- Scholarship terms and conditions
-
Postgraduate scholarships for UK students
-
Scholarships
- Short courses
- Lunchtime evening and weekend courses
- Clearing
- Summer schools
- Get a prospectus
- Student life
-
Research
- Our impact
- Research projects
- Research areas
- Research facilities
- Collaborate with us
-
Institutes, centres and groups
- Active Living
- Advanced Fibre Applications
- Advanced Laser Laboratory
- Advanced Project Management Research Centre
- Antibody and Vaccine Group
- Astronomy Group
- Autism Community Research Network @ Southampton (ACoRNS)
- Bioarchaeology and Osteoarchaeology at Southampton (BOS)
- Bladder and Bowel Management
- Cell and Developmental Biology
- Centre for Defence and Security Research
- Centre for Developmental Origins of Health and Disease
- Centre for Digital Finance
- Centre for Eastern European and Eurasian Studies (CEEES)
- Centre for Empirical Research in Finance and Banking (CERFIB)
- Centre for Geometry, Topology, and Applications
- Centre for Global Englishes
- Centre for Global Health and Policy (GHaP)
- Centre for Green Maritime Innovation (cGMI)
- Centre for Health Technologies
- Centre for Healthcare Analytics
- Centre for Human Development, Stem Cells and Regeneration
- Centre for Imperial and Postcolonial Studies
- Centre for Inclusive and Sustainable Entrepreneurship and Innovation (CISEI)
- Centre for International Film Research (CIFR)
- Centre for International Law and Globalisation
- Centre for Internet of Things and Pervasive Systems
- Centre for Justice Studies
- Centre for Linguistics, Language Education and Acquisition Research
- Centre for Machine Intelligence
- Centre for Maritime Archaeology
- Centre for Medieval and Renaissance Culture (CMRC)
- Centre for Modern and Contemporary Writing (CMCW)
- Centre for Political Ethnography (CPE)
- Centre for Research in Accounting, Accountability and Governance
- Centre for Research on Work and Organisations
- Centre for Resilient Socio-Technical Systems
- Centre for Transnational Studies
- Child and Adolescent Research Group
- Clinical Ethics, Law and Society (CELS)
- Computational Nonlinear Optics
- Cyber Security Academy
- Data Science Group
- Digital Oceans
- EPSRC and MOD Centre for Doctoral Training in Complex Integrated Systems for Defence and Security
- Economic Theory and Experimental Economics
- Economy, Society and Governance
- Electrical Power Engineering
- Environmental Hydraulics
- Gas Photonics in Hollow Core Fibres
- Geochemistry
- Global Health (Demography)
- Global Health Community of Practice
- Gravity group
- Healthy Oceans
- High Power Fibre Lasers
- Hollow Core Fibre
- Human Genetics and Genomic Medicine
- Infection
- Infrastructure Group
- Institute of Developmental Sciences
- Institute of Maritime Law (IML)
- Integrated Photonic Devices
- Integrative Molecular Phenotyping Centre
- Interdisciplinary Musculoskeletal Health
- International Centre for Ecohydraulics Research (ICER)
- Language Assessment and Testing Unit (LATU)
- Laser-Direct-Write (LDW) Technologies for Biomedical Applications
- Law and Technology Centre
- Long Term Conditions
- Magnetic Resonance
- Mathematical Modelling
- Medicines Management
- Molecular and Precision Biosciences
- Multiwavelength Accretion and Astronomical Transients
- National Biofilms Innovation Centre (NBIC)
- National Centre for Research Methods
- National Infrastructure Laboratory
- Nature-Based Ocean Solutions
- Nonlinear Semiconductor Photonics
- Ocean Perception Group
- Operational Research
- Optical Engineering and Quantum Photonics Group
- Paediatrics and Child Health - Clinical and Experimental Sciences
- People, Property, Community
- Photonic Systems, Circuits and Sensors Group
- Physical Optics
- Primary Care Research Centre
- Quantum, Light and Matter Group
- Silica Fibre Fabrication
- Silicon Photonics
- Skin Sensing Research Group
- Southampton Centre for Nineteenth-Century Research
- Southampton Ethics Centre
- Southampton Health Technology Assessments Centre (SHTAC)
- Southampton High Energy Physics group
- Southampton Imaging
- Southampton Theory Astrophysics and Gravity (STAG) Research Centre
- Stefan Cross Centre for Women, Equality and Law
- String theory and holography
- The India Centre for Inclusive Growth and Sustainable Development
- The Parkes Institute
- Tony Davies High Voltage Laboratory
- Ultrafast X-ray Group
- Vision Science
- WSA Exchange
- Work Futures Research Centre (WFRC)
- Support for researchers
- Faculties, schools and departments
- Research jobs
- Find people and expertise
- Business
- Global
- About
- Visit
- Alumni
- Departments
- News
- Events
- Contact