Module overview
The aim of this course is to communicate knowledge of physical techniques which exploit nuclear particles, and to develop an understanding of the underlying physics. Important themes are nuclear processes and the interaction of nuclear radiation with the surroundings.
Linked modules
Pre-requisites: PHYS2001 AND PHYS2003 AND PHYS2006 AND PHYS2023 AND PHYS2024
Aims and Objectives
Learning Outcomes
Knowledge and Understanding
Having successfully completed this module, you will be able to demonstrate knowledge and understanding of:
- interactions of ionising radiation with matter
- the Mossbauer effect and its applications in modern nuclear spectroscopy
- the key techniques for detection of radiation
- the processes which explain the abundances of the elements around us. the principles of radiocarbon and geological dating, and be able to perform the related calculations for age determination
- the physical processes involved in nuclear power generation and appreciate the safety aspects of current nuclear power systems
- the nuclear techniques of materials analysis and their application within industry. the medical applications of nuclear phenomena
Syllabus
The interaction of radiation with matter - Reviews the many ways in which radiation can interact with matter, this introduction provides the basis for the detection techniques and the practical applications of radiation discussed later.
The detection of radioactivity - Surveys the various detection techniques which are used in the practical application of radiation. Detailed descriptions are given as appropriate during the course.
Radioactive dating - Discusses the various methods of dating materials using the naturally generated radioactive isotopes found within them.
Trace element identification - The detection and identification of small quantities of contaminants is of vital importance in many areas - materials analysis, forensic science, security (e.g. airline baggage scanning and industrial quality control. The possibility of transmutation of nuclear waste products into harmless nuclides is also discussed.
Medical applications of nuclear phenomena - Radiation is used in medicine for both diagnostic and therapeutic purposes. The underlying physics and the relative merits of the basic techniques are reviewed. Nuclear magnetic resonance imaging will be introduced.
The Mossbauer Effect - An extremely high resolution spectroscopic technique which makes possible a very precise measurement of the energy of gamma-rays, and therefore provides a very sensitive energy-probe of the nuclear region of atoms.
Nucleosynthesis - Discusses the cosmological, stellar and other processes which create the elements around us.
Present and Future Nuclear energy - Nuclear fission is an established energy source, while research into the harnessing of fusion power continues. This course discusses the physics behind nuclear power, its safety issues, and future prospects.
Learning and Teaching
Type | Hours |
---|---|
Completion of assessment task | 2 |
Lecture | 36 |
Wider reading or practice | 66 |
Revision | 10 |
Preparation for scheduled sessions | 18 |
Follow-up work | 18 |
Total study time | 150 |
Resources & Reading list
Textbooks
J.Lilley. Nuclear Physics (Principles and Applications).
R.L.Murray. Nuclear Energy.
K.S.Krane. Introductory Nuclear Physics.
Assessment
Assessment strategy
Formal assessment is 100% by exam. Problem sheets are optional, and are provided to allow students to assess their progress through the course modules.
Formative
This is how we’ll give you feedback as you are learning. It is not a formal test or exam.
Problem Sheets
- Assessment Type: Formative
- Feedback: Model answers will be provided 2 weeks after problem sheets are available.
- Final Assessment: No
- Group Work: No
- Percentage contribution: 100%
Summative
This is how we’ll formally assess what you have learned in this module.
Method | Percentage contribution |
---|---|
Final Assessment | 100% |
Referral
This is how we’ll assess you if you don’t meet the criteria to pass this module.
Method | Percentage contribution |
---|---|
Set Task | 100% |
Repeat
An internal repeat is where you take all of your modules again, including any you passed. An external repeat is where you only re-take the modules you failed.
Method | Percentage contribution |
---|---|
Set Task | 100% |
Repeat Information
Repeat type: Internal & External