Module overview
Modern mechanical and acoustic systems contain numerous electronic and control components. For example, an electric vehicle may have speed, traction and active noise control systems. Practicing Mechanical and Acoustical Engineers therefore require a working knowledge of electronics and control systems. This module provides students with the necessary understanding of the design and analysis of these systems in the time and frequency domain. The skills and mathematical techniques developed in this module are applicable across a wide range of engineering domains including mechatronics, automotive, system dynamics and biomedical engineering.
Linked modules
Pre-requisite: FEEG1004
Aims and Objectives
Learning Outcomes
Partial CEng Programme Level Learning Outcomes
Having successfully completed this module you will be able to:
- Control systems are inherently integrated systems and are analysed throughout the module with modelling in the electrical, mechanical and electroacoustic domains. This is assessed by assignment and examination.
- Appropriate analytical and computational methods are applied to problems in amplifiers, filters and closed-loop systems and assessed through assignments and examination. This includes time and frequency domain methods, stability, error, root locus and Bode.
- System models are developed and analysed from first principles in various domains (e.g., electrical, mechanical, electroacoustic). Assignments are used to assess student understanding in topics such as amplifiers, filters, dynamical modelling and analysis in the time and frequency domains. Written examination further tests understanding.
Knowledge and Understanding
Having successfully completed this module, you will be able to demonstrate knowledge and understanding of:
- derive a model, making justifiable assumptions, from a description of a physical system
- understand electronic circuits, such as filters, amplifiers and power supplies, and their design
- understand, interpret and draw plots of system responses, including root locus and Bode
- apply standard design techniques to achieve satisfactory closed-loop performance
- analyse time and frequency domain response characteristics of simple systems, determine stability and predict responses
- apply these skills in specific domains, e.g. mechatronics, vehicle dynamics and automotive systems.
- demonstrate knowledge and understanding of fundamental mathematical tools used in system analysis and design
- show understanding of how negative feedback affects dynamic response and its characterization by primary analysis and performance measures
- appreciate some of the technical issues associated with control system design and the relationship with other areas of engineering and allied disciplines
Learning Outcomes
Having successfully completed this module you will be able to:
- C1/M1 Knowledge of mathematics, science and engineering principles is applied to problems in the design and analysis of electronic circuits and classical control systems. This includes circuit and feedback theory, filter design, use of Laplace and Fourier, dynamical system models and classical control theory. This is assessed by assignment and examination. C2 System models are developed and analysed from first principles in various domains (e.g., electrical, mechanical, electroacoustic). Assignments are used to assess student understanding in topics such as amplifiers, filters, dynamical modelling and analysis in the time and frequency domains. Written examination further tests understanding. C3 Appropriate analytical and computational methods are applied to problems in amplifiers, filters and closed-loop systems and assessed through assignments and examination. This includes time and frequency domain methods, stability, error, root locus and Bode. C6 Control systems are inherently integrated systems and are analysed throughout the module with modelling in the electrical, mechanical and electroacoustic domains. This is assessed by assignment and examination. C12/M12 Practical laboratory skills are used in the measurement of analogue and digital signals in amplifiers, active filters and PID controllers using electronic workshop equipment. They are formatively assessed through written and verbal feedback.
Syllabus
Electronics
1. Basic AC circuit theory: introduction of frequency response (magnitude and phase) of passive circuits. Introduction of Laplace notation (s=d⁄dt=jω) for system transfer functions.
2. Feedback amplifiers, detailed operational amplifier characteristics (e.g. GBP, phase shift, slew rate). Op Amp circuit designs: amplifiers, integrators, differentiators, simple first order filters (low, high and band pass). Comparison of time and frequency domain analysis of signals and circuits.
3. Review of power supply design. Voltage regulation and protection diodes.
4. Active filter circuit analysis and design, effects of damping, comparison of transfer functions with mechanical system analogies.
Control
1. Introduction to control: open-loop and closed-loop system definitions. Test input functions and their attributes (step, ramp etc.). Design criteria (steady-state error, disturbance rejection, sensitivity, transient response).
2. Modelling of dynamic systems: differential equation.
3. Transfer functions & block diagrams: Laplace transforms/inverse Laplace transforms. Response to initial conditions. Block diagram reduction and manipulation.
4. Transient response: first & second order systems. Simple lags and quadratic lag characteristics (effect of n and ). Pole location and transient response. Partial fractions/graphical solution. Performance criteria .
5. State-space: transformation of transfer functions to state-space form and vice-versa. Draw state-variable diagrams from state equations. Two-input, two-output state-space equations from transfer function block diagrams.
6. Stability: stability criteria, Routh-Hurwitz criterion & gain at crossing of imaginary axis.
7. Controllers: proportional/integral/derivative control action. Steady-state error, system type number, transient response vs. steady-state error. PID controller tuning & velocity feedback.
8. Root locus method: rules for sketching root loci, determination of K for a particular (closed-loop pole locations), additional zeros and poles (compensation) effect on breakaway points and loci angles.
9. Frequency domain response: magnitude and phase contributions for gain, integrator (differentiator) simple lag and quadratic lag. Plotting of simple systems and gain and phase margin determination, plots for compensators, e.g. lead-lag, lag-lead, PI, choice of K for gain/phase margin.
Learning and Teaching
Teaching and learning methods
The teaching methods employed in the delivery of this module include:
- Lectures, tutorial problems, question sheets, worked examples.
- Supervision for problem solving classes supporting lecture materials.
- Laboratory exercises and reporting
The learning activities include:
- Individual reading of background material and course texts, problem solving and worked examples, supported by material in lectures.
- In-class tests and other formative assessments covering core techniques and principles.
- Problem solving supervision in lectures.
Type | Hours |
---|---|
Preparation for scheduled sessions | 2 |
Tutorial | 4 |
Revision | 22 |
Wider reading or practice | 72 |
Completion of assessment task | 8 |
Lecture | 36 |
Practical classes and workshops | 6 |
Total study time | 150 |
Assessment
Assessment strategy
Verbal feedback in lectures on tests/examples.
Courseworks covering key topics.
Discussions in tutorials and lab classes.
Formative
This is how we’ll give you feedback as you are learning. It is not a formal test or exam.
Laboratory Report
- Assessment Type: Formative
- Feedback:
- Final Assessment: No
- Group Work: No
Laboratory Report
- Assessment Type: Formative
- Feedback:
- Final Assessment: No
- Group Work: No
Summative
This is how we’ll formally assess what you have learned in this module.
Method | Percentage contribution |
---|---|
Final Assessment | 80% |
Coursework | 5% |
Coursework | 5% |
Coursework | 5% |
Coursework | 5% |
Referral
This is how we’ll assess you if you don’t meet the criteria to pass this module.
Method | Percentage contribution |
---|---|
Set Task | 100% |
Repeat
An internal repeat is where you take all of your modules again, including any you passed. An external repeat is where you only re-take the modules you failed.
Method | Percentage contribution |
---|---|
Set Task | 100% |
Repeat Information
Repeat type: Internal & External