
Tank monitoring: a pAMN case study
Steve Schneider1, Thai Son Hoang2, Ken Robinson2, and Helen Treharne1

Abstract. The introduction of probabilistic behaviour into the B-Method is a recent development. In ad-
dition to allowing probabilistic behaviour to be modelled, the relationship between expected values of the
machine state can be expressed and verified. This paper explores the application of probabilistic B to a sim-
ple case study: tracking the volume of liquid held in a tank by measuring the flow of liquid into it. The flow
can change as time progresses, and sensors are used to measure the flow with some degree of accuracy and
reliability, modelled as non-deterministic and probabilistic behaviour respectively. At the specification level,
the analysis is concerned with the expectation clause in the probabilistic B machine and its consistency
with machine operations. At the refinement level, refinement and equivalence laws on probabilistic GSL are
used to establish that a particular design of sensors delivers the required level of reliability.

Keywords: Probabilistic B, refinement, formal methods, probabilistic predicate transformers.

1. Introduction

The B-Method [Abr96a] provides a framework for the development of provably correct systems, based on
the weakest precondition semantics of the Generalised Substitution Language (GSL), and structured around
the concept of Abstract Machines.

The introduction of probabilistic behaviour into the B-Method has recently been proposed [HJR+03],
called probabilistic B. This approach builds on previous work which introduces probabilistic choice into
program statements, and extends the notion of weakest precondition semantics to deal with expectations
[MMS96]. An expectation can be considered as the expected value of a formula or expression. Thus programs
can be viewed as expectation transformers rather than predicate transformers, and their semantics gives the
expectation of an expression after the program has been executed in terms of expectations prior to execution.

In addition to allowing such probabilistic behaviour into programs, probabilistic B introduces expectations
on aspects of the state, in addition to the existing parts of a B machine. Thus the relationship between the
expected values of several components of the machine state can be expressed and formally verified.

This paper explores the application of probabilistic B to a simple case study: tracking the volume of
liquid held in a tank by measuring the liquid flow into it. The flow can change as time progresses. Sensors
with a given reliability are used to measure the flow and provide information to the system, so there is
a small probability that the sensors will fail, giving an incorrect reading. The behaviour of the sensors is

1 University of Surrey, UK
2 University of New South Wales, Australia
Correspondence and offprint requests to: Schneider et al.

2 Schneider et al.

The probabilistic generalised substitution language pGSL acts over expectations rather than predicates. Expectations are
bounded non-negative real-valued functions of the state space, with the exception that when dealing with miracles they can
take a formal value ∞.

[x := E]exp exp[E/x]
[x , y := E ,F]exp exp[E ,F/x , y]
[pre | prog]exp 〈pre〉 × [prog]exp, where 0 ×∞ =̂ 0
prog1[]prog2 [prog1]exp min[prog2]exp
[pre =⇒ prog]exp 1/〈pre〉 × [prog]exp, where ∞× 0 =̂ ∞
[skip]exp exp
[prog1 p⊕ prog2]exp p × [prog1]exp + (1 − p) × [prog2]exp
[@y .pred =⇒ prog]exp (min y | pred .[prog]exp)
prog1 (prog2 [prog1]exp ! [prog2]exp for all exp.

• exp is an expectation

• pre is a predicate (not an expectation)

• 〈pre〉 denotes predicate pre converted to an expectation, here restricted to the unit interval: 〈false〉 is 0 and 〈true〉 is 1.

• × is multiplication.

• prog , prog1, prog2 are probabilistic generalised substitutions.

• p is an expression over the program variables (possibly but not necessarily constant), taking a value in [0, 1].

• x is a variable.

• y is a variable or a vector of variables.

• E is an expression.

• F is an expression, or a vector of expressions.

• exp1 ! exp2 means that exp1 is everywhere no more than exp2.

Fig. 1. pGSL—the probabilistic Generalised Substitution Language [Mor98]

described using probabilistic B. We include the tank explicitly in our model so that we can describe the
relationship between the actual volume of liquid it contains and our system’s measurement for it. As well as
probabilistic behaviour, our system exhibits nondeterministic behaviour in the reading that a failed sensor
will give, and (after the first scenario we consider) in the reading that a correctly working sensor will give:
any value from a particular range. Thus the case study also explores the interaction between probabilistic
and nondeterministic behaviour.

The case study is concerned with two stages of the development process: specification, and refinement. At
the specification level we are concerned with obtaining bounds on the accuracy of the system’s value for the
volume of liquid in the tank, given a particular level of reliability for the combination of sensors providing
the readings. This analysis will be concerned with the expectation clause in the probabilistic B machine.
At the refinement level, we are concerned with establishing that a particular combination of sensors does
indeed deliver the required level of reliability. This analysis will make use of refinement and equivalence laws
on probabilistic GSL.

2. Introducing Probability

2.1. Probabilistic GSL

pGSL is an extension of GSL to include a probabilistic choice statement:

prog1 p⊕ prog2

An execution of this choice will execute prog1 with probability p, and will execute prog2 with probability
1 − p. See [Mor98, MM04, MMH03] for a full introduction to pGSL

To give a semantics to pGSL programs, we make use of expectations: bounded non-negative real-valued
functions of the state space. These are generally expressed as formulas over the state variables. The weakest
pre-expectation semantics for a program prog maps an expectation exp to another expectation [prog]exp,
analogous to weakest precondition semantics. It gives the expected value for exp after prog in terms of
expectations on the state before. The language and its semantics from [Mor98] is given in Figure 1.

In this paper we will use a derived operator (also given in [Abr96a]) for assigning to a variable some

Tank monitoring: a pAMN case study 3

element from a set S chosen nondeterministically. We define

x :∈ S =̂ @y.(y ∈ S =⇒ x := y)

Thus

[x :∈ S]exp = (min x | x ∈ S .exp)

We will also use a derived operator (also given in [MM04]) for expressing a minimum probability on a
choice. We define

prog1 "p⊕ prog2 =̂ @q.(p ! q ! 1) =⇒ prog1 q⊕ prog2

This program chooses prog1 with a probability of at least p.
The operator is useful for describing systems with a minimum required reliability. If a component is

required to behave correctly at least 90% of the time, then this may be described as correct "0.9⊕ incorrect .
This would be refined by a component that behaves correctly at least 95% of the time, for example.

2.2. Some pGSL laws

The semantics supports a collection of algebraic laws concerning the various operators. An extended collection
of laws is given in Appendix A.3 of [MM04]. The following laws from that Appendix will be used in this
paper:

Law 13:

(prog1 "p⊕ prog2); prog3 = (prog1; prog3) "p⊕ (prog2; prog3)

Law 24:

(prog1 "pq⊕ prog2) = prog1 "p⊕ (prog1 "q⊕ prog2)

We also make use of the following law, which we will call Law A:

prog2 % prog1 ⇒ prog1 "p⊕ prog2 = prog1 p⊕ prog2

2.3. Probabilistic B

There are two aspects to the introduction of probabilistic behaviour into a B machine as proposed in
[HJR+03]. The first is to allow operations to be constructed using probabilistic GSL, so probabilistic choices
can be made within operations. The second is to introduce an expectation clause into a B machine in
order to express requirements on various expectations on the state. An expectation clause will in general
contain a collection of expectation expressions. This clause plays a role for expectations analogous to the
invariant clause on predicates on the state. The associated proof obligations are that every operation, from
any legitimate state (i.e. any state that meets the invariant), must not decrease any of the expectations.

Each expectation is of the form e " V , meaning that the expected value of V is always at least the
value of e initially. The new proof obligations associated with each such expectation are the following:

P1 Initialisation must establish the lower bound of the invariant:

e " [Init]V

P2 Each operation must not decrease the expected value of V :

V " [Op]V

In this paper we will use expectations of the form V . This is an abbreviation for 0 " V . Observe that
this still gives rise to a non-trivial proof obligation P1, that V is non-negative on initialisation.

3. The Tank

The system we aim to model is a tank being filled with a liquid. The liquid flows into the tank through a
pipe. We wish to track the volume of liquid in the tank. This is illustrated in Figure 2

4 Schneider et al.

flow

volume

Fig. 2. The tank system

MACHINE Tank
CONSTANTS minflow, maxflow
PROPERTIES minflow : REAL & maxflow : REAL

& minflow > 0
& maxflow >= minflow

VARIABLES flow, volume
INVARIANT flow : REAL & volume : REAL
INITIALISATION volume := 0 || flow :: [minflow,maxflow]
OPERATIONS
tock = flow :: [minflow,maxflow] || volume := volume + flow

END

Fig. 3. The AMN description of the tank system

The tank can be modelled using the machine given in Figure 3 3. This describes a model of the real
tank, and will therefore be included in the specifications we will give, so that we can relate the state of the
monitoring system to the real state of the tank.

Here we assume that in one time unit (as represented by tock), the volume of liquid increases by the
value of flow . The value of flow can itself be any value between minflow and maxflow , and can change on
every time step.

An interval of real numbers between l and h is denoted [l , h]. The interval [x + l , x + h] is abbreviated
x + [l , h].

4. A monitoring system

4.1. The first simple system

4.1.1. Specification

We wish to produce a software system that tracks the volume of liquid in the tank to some level of accuracy.
The system we require can be specified using the probabilistic B machine VolumeTracker1 of Figure 4. (The
expectation makes use of values of A and B that will be given later.) For this first example, we take a simple
approach where a single poll operation updates both the tank and the monitoring system state at the same
time. Later in the paper we will consider the separation of system updates from tank updates.

Our first specification, VolumeTracker1, requires that a state update is perfectly accurate at least 99%
of the time. Otherwise (i.e. up to 1% of the time) it can be completely arbitrary over the range of possible
readings [minflow ,maxflow].

The system maintains a single state variable rvolume, which contains the value the system has for the
volume of liquid in the tank. Thus our specification will be concerned with the relationship between rvolume
and the actual volume volume.

It is natural to have two expectations to provide a range on what the expected value for volume can be,
given a particular value for the expected value of rvolume. Because rvolume and volume are increased on each

3 An explanation of the ascii form of pGSL used in Figure 3 and elsewhere in this paper is given in Appendix A

Tank monitoring: a pAMN case study 5

MACHINE VolumeTracker1
INCLUDES Tank
VARIABLES rvolume
INVARIANT rvolume : REAL

& rvolume * (minflow/maxflow) <= volume
& volume <= rvolume * (maxflow / minflow)

EXPECTATION E1: rvolume - A * volume,
E2: B * volume - rvolume

INITIALISATION rvolume := 0
OPERATIONS
poll = T: tock

|| V1a: (rvolume := rvolume+flow
0.99 (+)

V1b: rvolume :: rvolume+[minflow,maxflow])
END

Fig. 4. The VolumeTracker1 machine

step with some value from a fixed range of possible values, we consider expectations as linear combinations
of rvolume and volume. Thus they would be of the form:

E1: rvolume − A × volume
E2: B × volume − rvolume

These must both be non-negative, so we can deduce for the expected values that

rvolume/B ! volume ! rvolume/A

Thus given an expected value for rvolume we have a range for the expected value of volume. The required
degree of accuracy as given by A and B will naturally emerge as part of the specification.

Since both E1 and E2 must be greater than 0, and non-decreasing on every occurrence of poll , we obtain
some constraints on the possibilities for A and B .

Observe that any absolute restrictions on the relationship between volume and rvolume will appear in
the invariant. In particular, the lower and upper bounds on volume for any given value of rvolume are given
by the following inequalities:

rvolume × (minflow/maxflow) ! volume ! rvolume × (maxflow/minflow)

This will always be true, so it is included in the invariant. However, it does not provide a very tight rela-
tionship between volume and rvolume.

4.1.2. Deriving A and B

For VolumeTracker1 to meet its proof obligations, we require that the expectations will never decrease on
any call of the operation poll , from any state.

We can carry out some calculations to derive conditions for A and B to achieve this. We require that
E1 " [poll]E1 and E2 " [poll]E2. Thus we require that for any flow , volume, and rvolume, we must have
that ([poll]E1) − E1 # 0 and ([poll]E2) − E2 # 0.

We calculate the requirement on A from the requirement on E1:

([poll]E1) − E1 = ([T || (V 1a 0.99⊕ V 1b)]E1) − E1
= ([(T || V 1a) 0.99⊕ (T || V 1b))]E1) − E1
= (0.99 × [T || V 1a]E1 + 0.01 × [T || V 1b]E1) − E1

(∗) = (0.99 × (rvolume + flow − A(volume + flow))
+0.01 × (rvolume + minflow − A(volume + flow)))

−(rvolume − A.volume)

6 Schneider et al.

= 0.99 × (flow − A × flow) + 0.01(minflow − A × flow)
= (0.99 − A) × flow + 0.01 × minflow

Since this must be non-negative everywhere (i.e. for all possible values of flow), we obtain that

A ! 0.99 + 0.01(minflow/flow)

for any value of flow . The bound takes its minimal value when flow is maxflow , so we obtain that

A ! 0.99 + 0.01(minflow/maxflow)

Thus the closer to 1 the ratio between minflow and maxflow , the closer A can be to 1 and the more
accurate the upper bound on the expected value for volume for any given expectation on rvolume. However,
note that A can always be at least 0.99.

For B we perform the following calculation:

([poll]E2) − E2 = ([T || (V 1a 0.99⊕ V 1b)]E2) − E2
= ([(T || V 1a) 0.99⊕ (T || V 1b))]E2) − E2
= (0.99 × [T || V 1a]E2 + 0.01 × [T || V 1b]E2) − E2

(∗∗) = (0.99 × (B(volume + flow) − (rvolume + flow))
+0.01 × (B(volume + flow) − (rvolume + maxflow)))

−(B .volume − rvolume)
= 0.99 × (B .flow − flow) + 0.01(B .flow − maxflow)
= B × flow − 0.99 × flow − 0.01 × maxflow

We require that this is non-negative for any value of flow . Thus B # 0.99+0.01(maxflow/flow) for any value
of flow . The largest value for the expression (i.e. the largest lower bound for B) is given when flow = minflow ,
and we obtain

B # 0.99 + 0.01(maxflow/minflow)

Observe lines (*) and (**) concerning the evaluation of [T || V 1b] with respect to an expectation. Since
V 1b is nondeterministic in the assignment to rvolume, the minimum expectation over all possible assignments
to rvolume must be taken. In E1, rvolume is positive, so the smallest possible value of rvolume is used in the
calculation of the pre-expectation of E1. In E2 rvolume is negative so the largest possible value of rvolume
is used in the calculation of the pre-expectation of E2. This means that however the nondeterminism is later
resolved, the expectation will be at least the value calculated. Expectations should always be non-decreasing,
so demonic nondeterminism always considers the worst case with respect to increases.

4.1.3. Example

As an illustration, we shall consider some concrete numbers: if minflow = 100 and maxflow = 400, then we
obtain A ! 0.9925 and B # 10.03. Thus we know that

(100/103)× rvolume ! volume ! rvolume × (400/397)

This implies for example that

0.97 × rvolume ! volume ! 10.03× rvolume

so if we have a requirement for 97% accuracy, this will be met.
However, if our requirement is for 99% accuracy, this will not be met. The description cannot ensure that

0.99× rvolume ! volume. This is because an incorrect reading, that could occur with probability 0.01, could
be wrong by a factor of 4, leading to a large increase of rvolume over the real value of volume. The level of
accuracy is concerned not only with the probability of correct readings, but also with the amount by which
a flawed reading could be out.

To ensure 99% accuracy we would either have to reduce the ratio between minflow and maxflow (so bad
readings cannot be so wildly out), or decrease the probability of a bad reading. Observe that these alterations
are concerned only with the specification machine. This machine gives the probability of an accurate reading
that is required for ensuring the expectations.

Tank monitoring: a pAMN case study 7

MACHINE Sensor1b
SEES Tank
OPERATIONS
sf, st <-- poll1b =
S1bl: sf := flow || st := ok

>=0.9 (+)
S1br: sf :: [minflow,maxflow] || st := broken

END

Fig. 5. A Sensor machine

IMPLEMENTATION VolumeTracker1I
REFINES VolumeTracker1
IMPORTS Tank, Sensor1a, Sensor1b, Context
VARIABLES rvolume
INVARIANT rvolume : REAL
INITIALISATION rvolume := 0
OPERATIONS
poll = VAR v1, v2, st1, st2, rflow

IN
P1a: v1,st1 <-- poll1a;
P1b: v2,st2 <-- poll1b;
F: rflow <-- flow(v1,st1,v2,st2);
R: rvolume := rvolume + rflow;
T: tock

END
END

Fig. 6. The implementation VolumeTracker1I

4.1.4. Implementation

Our first implementation of VolumeTracker1 will make use of two sensors, which provide readings for the
flow, and also give diagnostic information stating whether they are broken or not. We will firstly consider
sensors which can fail on any particular reading independently of any other reading. We will consider sensors
which have a reliability of at least 90%. We will need to make use of two of these, Sensor1a and Sensor1b
to give readings to 99% accuracy. Sensor1b is given in Figure 5, and Sensora1 is entirely similar.

We propose an implementation VolumeTracker1I of VolumeTracker1 which uses two sensors in order to
obtain a more reliable reading of the flow. This is given in Figure 6, and makes use of the Context machine
of Figure 7.

Observe that the implementation contains its own variable rvolume. To avoid complicating this example
with imported state, we relax the normal restriction that implementation machines cannot have their own
state.

We need to prove that the poll operation in the implementation is a refinement of the poll operation in
the specification. This can be done by manipulating the probabilistic choices using the laws of [MM04] given
in Section 2.2.

The poll operation in VolumeTracker1I of Figure 6 is of the form P1a; P1b; F ; R; T , where the
vazriables v1, v2, st1, st2, rflow are all local. We show that this operation is equivalent to poll given in the
specification machine VolumeTracker1, as follows:

P1a; P1b; F ; R; T
= {expanding P1a and P1b}

(S1al "0.9⊕ S1ar);
(S1bl "0.9⊕ S1br); F ; R; T

8 Schneider et al.

MACHINE Context
OPERATIONS
ff <-- flow(v1,st1,v2,st2) =
PRE v1 : REAL & v2 : REAL

& st1 : STATUS & st2 : STATUS
THEN

F: IF st1 = broken & st2 = broken THEN ff :: [minflow,maxflow]
ELSIF st1 = broken & st2 = ok THEN ff := v2
ELSIF st1 = ok & st2 = broken THEN ff := v1
ELSIF st1 = ok & st2 = ok THEN ff := (v1+v2)/2

END
END

Fig. 7. The AMN description of flow calculation

= {Law 13}
S1al ; (S1bl "0.9⊕ S1br); F ; R; T
"0.9⊕
S1ar ; (S1bl "0.9⊕ S1br); F ; R; T

= {Law 13}
(S1al ; S1bl ; F ; R; T "0.9⊕ S1al ; S1br ; F ; R; T)
"0.9⊕
(S1ar ; S1bl ; F ; R; T "0.9⊕ S1ar ; S1br ; F ; R; T)

= {standard program algebra in each branch; removal of local variables}
(V 1a ‖ T "0.9⊕ V 1a ‖ T) "0.9⊕ (V 1a ‖ T "0.9⊕ V 1b ‖ T)

= {idempotence of "p⊕ on left-hand argument}
V 1a ‖ T "0.9⊕ (V 1a ‖ T "0.9⊕ V 1b ‖ T)

= {Law 24}
(V 1a ‖ T "0.99⊕ V 1b ‖ T)

= {Law A, since V 1b % V 1a}
(V 1a ‖ T 0.99⊕ V 1b ‖ T)

Thus we arrive at the operation poll given in the specification machine VolumeTracker1. This demonstrates
that VolumeTracker1I indeed provides an implementation of VolumeTracker1.

4.1.5. Summary

This first example has illustrated several points:

• The expected value of the machine expectation expression should be non-decreasing on every occurrence
of the operation.

• However, the actual value of the machine expectation expression can decrease on some operation calls
(provided its expected value does not).

• Expectations can be used to express a relationship between the expected values of state variables, in our
case providing a range for the expected value of volume in terms of the expected value of rvolume. This
is checked as part of machine consistency, and is independent of any particular implementation.

• The accuracy of the approximation rvolume to the tank value volume depends not only on the proba-
bility of an incorrect reading, but also on the ratio between minflow and maxflow , since this affects the
maximum possible error in rvolume.

• Probabilistic operations can be implemented using combinations of probabilistic components (sensors) in
the way we would expect. Such implementations need only be checked for refinement against the machine

Tank monitoring: a pAMN case study 9

MACHINE VolumeTracker2
INCLUDES Tank
CONSTANTS lowerror, higherror
PROPERTIES lowerror : REAL & lowerror <= 0

& higherror : REAL & higherror >= 0
VARIABLES rvolume
INVARIANT rvolume : REAL
EXPECTATION E1: rvolume - A * volume,

E2: B * volume - rvolume
INITIALISATION rvolume := 0
OPERATIONS
poll = T: tock

|| V2a: (rvolume :: rvolume+flow+[lowerror,higherror]
0.99 (+)

V2b: rvolume :: rvolume+[minflow+lowerror,maxflow+higherror])
END

Fig. 8. The AMN description of the second monitoring system

descriptions of the operations. The machine consistency checks ensure that the machine operations provide
the overall requirements on the expectations.

4.2. Introducing error margins

4.2.1. Specification

In the previous example, correct readings of flow were exactly accurate. We now allow for a margin of error
in readings of flow . Specifically, the error can be any value in the range [lowerror , higherror]. Typically the
possibility of no error at all should be within the range, so lowerror will be negative and higherror will be
positive. The revised machine is given in Figure 8.

The calculation of appropriate A and B follows the same pattern as shown previously in Section 4.1.2.
Now two sources of nondeterminism must be taken into account: the reading of the sensors in V 2a (which
can be most pessimistic with regard to E1 when flow is low) and the arbitrary reading in V 2b (which can be
most pessimistic for E1 when flow is high). This combination of considerations (recall lowerror is negative,
so A ! 1) means that A is bounded above by both of the following values:

1 + (lowerror/minflow)

and

0.99 + (lowerror/maxflow) + 0.01(minflow/maxflow)

For example, if minflow = 100, maxflow = 400, and lowerror = −10, then the first value is lower, and
we obtain A = 0.9. On the other hand, if lowerror = −0.1, then the second value is lower and we obtain
A = 0.9915. In the first case the possible error in any reading of the flow is 10% of minflow , so the worst
case occurs when the flow is minflow and minflow + lowerror is added to rvolume: the resulting rvolume
could be 10% out. On the other hand, in the second case the error in the flow can be at most 0.1%, so the
error that can be introduced by V 2b (1% of the time) dominates, and the worst case occurs when the flow
is maxflow and rvolume is only incremented by lowerror + minflow .

Similar considerations for the expectation E2 yield that the value obtained for B is the maximum of the
following two values, the first for the case where flow = maxflow and the second when flow = minflow .

1 + (higherror/maxflow)

and

0.99 + (higherror/minflow) + 0.01(maxflow/minflow)

In this case, the second value will always be higher, and hence will give the appropriate value for B , since

10 Schneider et al.

MACHINE Sensor2b
SEES Tank
CONSTANTS le2b, he2b
PROPERTIES le2b : REAL & le2b <= 0

& he2b : REAL & re2b >= 0
OPERATIONS
sf, st <-- poll2b =
S2bl: sf :: flow+[le2b,he2b] || st := ok

>=0.9 (+)
S2br: sf :: [minflow+le2b,maxflow+he2b] || st := broken

END

Fig. 9. The machine Sensor2b

maxflow/minflow # 1, and higherror/minflow # higherror/maxflow . This informs us that the worst case
always occurs with a flow of minflow , and an incorrect reading of maxflow + higherror . This is worse than
the worst outcome that can be obtained with a flow of maxflow , as far as ensuring that E2 does not decrease
is concerned.

4.2.2. Implementation: sensors

The error is likely to have been included in the specification because the sensors introduce some error. We
can include these errors within the sensor descriptions, resulting in a new version of sensor description. For
example, in Sensor2b we will take the error range to be [le2b, he2b]. The resulting sensor is given in Figure 9.

The implementation VolumeTracker2I will be the same as VolumeTracker1I , except that it now import-
ing Sensor2a (with error range [le2a, he2a]) and Sensor2b, instead of the original sensors. It is given for
reference in Figure 13 of Appendix B.

Observe that in this scenario two sensors working correctly might not agree on their readings. In this
case the context machine specifies that the average of the two readings should be taken.

The machine VolumeTracker2I provides an implementation of poll , provided the following hold: that
[le2a, he2a] ⊆ [lowerror , higherror] and [le2b, he2b] ⊆ [lowerror , higherror]. In other words, that the error
ranges for each sensor are within those given in VolumeTracker2 for the overall combination. The proof of
this is given in Appendix B.

4.2.3. Summary

This second example illustrates several points:

• We can specify error ranges for readings of flow .
• Such ranges have an impact on the expectations that will be non-decreasing on operations: the nonde-

terminism in the state updates means that the relationship between rvolume and volume will be weaker.
• The particular relationships that can be guaranteed between volume and rvolume depend on the error

ranges of readings and also on the the ratio of maxflow to minflow . Each of these dominates in some
cases.

• The flow readings can be implemented by sensors whose errors are within the specified range.

4.3. Removing sensor diagnostics

We now consider the situation where the sensors do not provide explicit status information. In this case the
only way faulty readings can be identified is by comparison with other readings.

In this example we will work from the sensors to the specification: we will derive the specification that
the combination of sensors delivers.

Tank monitoring: a pAMN case study 11

MACHINE Sensor3c
SEES Tank
CONSTANTS le3c, he3c
PROPERTIES le3c : REAL & le3c <= 0

& he3c : REAL & re3c >= 0
OPERATIONS
sc <-- poll3c =

sc :: flow+[le3c,he3c]
>=0.9 (+)

sc :: [minflow+le3c,maxflow+he3c]

END

Fig. 10. A sensor without diagnostics

IMPLEMENTATION VolumeTrackerI3
REFINES VolumeTracker3
IMPORTS Tank, Sensora3, Sensor3b, Sensor3c
VARIABLES rvolume
INVARIANT rvolume : REAL
INITIALISATION rvolume := 0
OPERATIONS
poll = VAR v1, v2, v3

IN
v1 <-- poll3a;
v2 <-- poll3b;
v3 <-- poll3c;
rflow := median(v1,v2,v3);
rvolume := rvolume + rflow;
tock

END
END

Fig. 11. The implementation VolumeTrackerI3

4.3.1. Implementation: sensor

A sensor without diagnostic information about its status is given in Figure 10. It provides only a flow reading,
without any information about its state.

To be tolerant to one faulty reading, we need three sensors: Sensor3a, Sensor3b, and Sensor3c. By taking
the median value of the three readings we obtain an accurate reading, provided no more than one of them
goes wrong. This suggests the implementation given in Figure 11. We still assume a 90% reliability on the
reading of any individual sensor.

4.3.2. Specification

In fact here VolumeTracker3I is a refinement of the specification VolumeTracker3 given in Figure 12, provided
all of the sensor errors are within the error given in VolumeTracker3, e.g. [le3, he3] ⊆ [lowerror , higherror].

For VolumeTracker3, carrying out the standard calculations on preservation of E1, we find that the best
(highest) value we can obtain for A, which enables the expectation E1 to be preserved, is the minimum of

1 + (lowerror/minflow)

and

0.972 + 0.028(minflow/maxflow) + lowerror/maxflow

12 Schneider et al.

MACHINE VolumeTracker3
INCLUDES Tank
PROPERTIES lowerror : REAL & lowerror <= 0

& higherror : REAL & higherror >= 0
VARIABLES rvolume
INVARIANT rvolume : REAL
EXPECTATION E1: rvolume - A * volume,

E2: B * volume - rvolume
INITIALISATION rvolume := 0
OPERATIONS
poll = tock

|| S3a: (rvolume := rvolume+flow+[lowerror,higherror]
0.972 (+)

S3b: rvolume :: rvolume+[minflow+lowerror,maxflow+higherror])
END

Fig. 12. The third monitoring system specification

Similarly, the best (lowest) value we can obtain for B is the maximum of

1 + (higherror/maxflow)

and

0.972 + 0.028(maxflow/minflow) + (higherror/minflow)

The second of these will always be the maximum, since maxflow # minflow . The situation is similar to the
previous example considered in Section 4.2.2, but with a probability of an incorrect reading now at 0.028
rather than 0.01. Thus the expectations on the relationship between rvolume and volume are correspondingly
weaker, since more weighting is given to the ratio between maxflow and minflow .

For example, consider the situation where we have maxflow = 400, minflow = 100, higherror = 1,
lowerror = −1.

Since the expectation E1 = rvolume − A × volume must not decrease, whatever the value of flow , we
have two extremes to consider:

• If flow = minflow , then volume is incremented by minflow , and the least that rvolume can be incremented
by is minflow + lowerror . Thus in this case we obtain a possible value of A = 0.99.

• If flow = maxflow , then volume is increased by maxflow , and the least that rvolume can be incremented
by is minflow + lowerror if at least two sensors go wrong (which can happen with probability 0.028),
otherwise maxflow+lowerror . Thus the most pessimistic expectation gives a possible value of A = 0.9765.
Here the ratio between maxflow and minflow is more significant than the ratio between minflow and
lowerror in contributing to the amount by which rvolume can be down, and we obtain a value of 0.9765
for A.

We also require that the expectation E2 = volume − B × rvolume must not decrease. Here we are
concerned with the proportion by which volume can exceed rvolume, and the worst case always occurs when
flow = minflow . In this case, the reading might at worst be maxflow + higherror (with probability 0.028)
and minflow + higherror otherwise. This yields a value for B of at least 10.085 if the expectation of E2 is
not to decrease. This is a margin of error of 8.5%.

4.3.3. Summary

This version of the tank monitoring system has considered a version of sensor which does not provide feedback
on its status. Thus a sensor’s incorrect reading can only be discovered by comparing it with other sensors. We
considered an implementation which uses three sensors in such a way that if at most one has failed then an
accurate reading is obtained. We found that if each sensor has at least 90% reliability, then the combination
has at least 97.2% reliability in terms of providing an accurate reading. This allowed us to construct the
specification that was guaranteed by the implementation. This in turn enables the relationship between the
expected values of volume and rvolume to be established.

Tank monitoring: a pAMN case study 13

5. Discussion

The case study in this paper has shown how probabilistic B can be applied to specify and refine a system
which naturally includes both probabilistic and nondeterministic behaviour, and has highlighted a number
of issues that can arise in this process.

We considered a progression of scenarios. In the first scenario, we considered the simple case where sensor
readings are either perfectly accurate, or completely arbitrary, with the sensors indicating whether they are
working correctly or not. This enabled a value for the accuracy of the system’s value rvolume to be given,
given in terms of the range of possible flows. Essentially the accuracy is calculated by allowing for the
worst case of nondeterminism, in accordance with the demonic approach to nondeterminism reflected in the
semantics of the language. We obtained the expected result that the larger the ratio between the maximum
and minimum flow, the less accurate the value we could expect.

In the second scenario, we allowed some error range on the values read even when the sensors were
working correctly. This additional nondeterminism also entered into the calculation to determine the level
of accuracy of rvolume, and again we saw that the wider the range of possibilities, for flow readings, and for
the possible flows, the lower the level of accuracy for the system’s record of the volume of liquid.

In the third scenario, the sensors no longer provided a direct indication of whether they were giving
a correct reading or not, so it was necessary to use three sensors and compare readings to deduce which
values are most likely correct. In this example we worked from the implementation to the specification, firstly
obtaining the reliability provided by the combination of sensors, and then calculating the level of accuracy
that the system could deliver.

All three of these scenarios were modelled using a machine which had only a single operation, which
synchronised updates of the real tank and updates of the monitoring system.

Although the case study was of a simple system, this paper has only explored some of the interesting
kinds of behaviour that can arise in such systems, and many other scenarios remain ready to be explored.
For example, we might wish to model sensors that take some time to be repaired once they break. Such
modelling would most likely require some auxiliary variable to track the time left until the sensor is working
correctly again, and the best way of modelling such a system in probabilistic B is far from clear.

5.1. Acknowledgements

We are grateful to Neil Evans, Carroll Morgan, and Annabelle McIver for comments and discussions on this
work.

This research was initiated during Ken Robinson’s and Thai Son Hoang’s visit to Royal Holloway, Uni-
versity of London, in July 2003, and thanks are due to EPSRC for providing funds under grant GR96859/01
to support this visit.

References

[Abr96a] J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
[Abr96b] J-R. Abrial. Extending B without changing it (for developing distributed systems). In 1st Conference on the

B-Method, 1996.
[DT97] J. Draper and H. Treharne. The refinement of embedded software with the B-Method. In Northern Formal Methods

Workshop. Springer, 1997.
[HJR+03] T.S. Hoang, Z. Jin, K. Robinson, A. McIver, and C. Morgan. Probabilistic invariants for probabilistic machines.

In ZB2003: Third International Conference of B and Z Users, number 2651 in LNCS. Springer, 2003.
[MM04] A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic Systems. Springer, 2004.
[MMH03] A. McIver, C. Morgan, and T.S. Hoang. Probabilistic termination in B. In ZB2003: Third International Conference

of B and Z Users, number 2651 in LNCS. Springer, 2003.
[MMS96] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM Transactions on Programming

Languages and Systems, 18(3):325–353, 1996.
[Mor98] C. Morgan. The generalised substitution language extended to probabilistic programs. In B’98: the 2nd Interna-

tional B Conference, number 1393 in LNCS. Springer, 1998.
[Sch01] S. Schneider. The B-Method: an Introduction. Palgrave, 2001.
[TS00] H. Treharne and S. Schneider. How to drive a B machine. In ZB2000: International conference of Z and B Users,

number 1878 in LNCS. Springer, 2000.
[TSB03] H. Treharne, S. Schneider, and M. Bramble. Combining specification with composition. In ZB2003: 3rd Interna-

tional Conference of Z and B users, number 2651 in LNCS. Springer, 2003.

14 Schneider et al.

IMPLEMENTATION VolumeTracker2I
REFINES VolumeTracker2
IMPORTS Tank, Sensor2a, Sensor2b, Context
VARIABLES rvolume
INVARIANT rvolume : REAL
INITIALISATION rvolume := 0
OPERATIONS
poll = VAR v1, v2, st1, st2, rflow

IN
P2a: v1,st1 <-- poll2a;
P2b: v2,st2 <-- poll2b;
F: rflow <-- flow(v1,st1,v2,st2);
R: rvolume := rvolume + rflow;
T: tock

END
END

Fig. 13. The implementation VolumeTracker2I

A. Machine Readable pGSL

This table gives the ascii form of statements in pGSL, used in the AMN descriptions presented in this paper.
For a fuller account of machine-readable AMN, see [Abr96a, Sch01].
x := E x:=E
x :∈ S x :: S
x , y := E ,F x,y := E,F
pre | prog pre | prog
prog1[]prog2 prog1 [] prog2
pre =⇒ prog pre ==> prog
skip skip
prog1 p⊕ prog2 prog1 p (+) prog2
prog1 "p⊕ prog2 prog1 >=p (+) prog2
@y.pred =⇒ prog @ y . pred ==> prog

B. Verifying the implementation of poll in VolumeTracker2I

The poll operation in VolumeTracker2I is of the form P2a; P2b; F ; R; T , where v1, v2, st1, st2, rflow
are all local variables. We show that this operation is equivalent to poll given in the specification machine
VolumeTracker2, as follows:

P2a; P2b; F ; R; T
= {expanding P2a and P2b}

(S2al "0.9⊕ S2ar); (S2bl "0.9⊕ S2br); F ; R; T
= {Law 13, twice }

(S2al ; S2bl ; F ; R; T "0.9⊕ S2al ; S2br ; F ; R; T)
"0.9⊕
(S2ar ; S2bl ; F ; R; T "0.9⊕ S2ar ; S2br ; F ; R; T)

= {standard program algebra in each branch; removal of local variables}
(rvolume :: rvolume + flow + [(le2a + le2b)/2, (he2a + he2b)/2]; T

"0.9⊕ rvolume :: rvolume + flow + [le2a, he2a]; T)
"0.9⊕
(rvolume :: rvolume + flow + [le2b, he2b]; T

Tank monitoring: a pAMN case study 15

"0.9⊕ rvolume :: rvolume + flow + [minflow ,maxflow]; T)
$ {expanding the ranges of the nondeterministic choices,

provided lowerror ! le2a, lowerror ! le2b, he2a ! higherror , he2b ! higherror}
(rvolume :: rvolume + flow + [lowerror , higherror]; T

"0.9⊕ rvolume :: rvolume + flow + [lowerror , higherror]; T)
"0.9⊕

(rvolume :: rvolume + flow + [lowerror , higherror]; T
"0.9⊕ rvolume :: rvolume + flow + [minflow + lowerror ,maxflow + higherror]; T)

= {Laws 13 and 24}
V 2a; T "0.99⊕ V 2b; T

= {Laws 13 and A, since V 2b % V 2a; T independent of V 2a and V 2b }
(V 2a ‖ T 0.99⊕ V 2b ‖ T)

Thus we arrive at the operation poll given in the specification machine VolumeTracker2. This demonstrates
that VolumeTracker2I indeed provides an implementation of VolumeTracker2.

