Automated Analysis of Non-interference Security by Refinement

Thai Son Hoang ¹ Annabelle McIver ² Larissa Meinicke² Anthony Sloane ² Enrico Susatyo²

¹Swiss Federal Institute of Technology Zürich (ETH Zürich), Switzerland

²Macquarie University, Sydney, Australia

21st June 2011, CryptoForma Workshop (adapted from slides by Annabelle McIver)

		ETTH Kigasakuba tashuda Kulan Saka Falani katinte di tashudagi Zulah
Hoong Melvor Mainicko Sloono Sucatvo ()	Non-interference Security by Refinement	CryptoEormo 21/06/11 1 / 21

Secure Refinement-oriented Approach A short history (1/2)

• Traditional refinement reduces non-determinism, preserving all "relevant properties".

 $P \sqcap Q \sqsubseteq P$

- Traditional formal approaches to security model a "secret" as a non-deterministic choice over its "type".
- Refinement paradox:

$h :\in \{0, 1\}$		h := 0
$h :\in \{0, 1\}$	⊈secure	h := 0

- Traditional refinement is defined relative to a flat state space.
- Secure refinement uses a structured state space.

Secure Refinement

- Specialisation of classical refinement;
- Preserves non-interference security properties;
- It is compositional;
- It supports hierarchical program development;
- Its semantics provides a link between "source code" and the "mathematics underlying secrecy".
- Morgan. *The Shadow Knows: Refinement of Ignorance in Sequential Programs.* In Math. Prog. Construction, Springer 2006.

Secure Refinement-oriented Approach A short history (2/2)

- A secret is an undisclosed choice over a set of possibilities.
- A non-deterministic choice is a disclosed choice, with the selection made as a program is developed.
- The two choices should be distinguished in the semantics.
 - Undisclosed choice cannot (accidentally) be "refined away",

Non-interference Security by Refinemer

so that refinements preserve secrecy.

Refinement with Viewpoints

- Equality between programs: There are no differences between programs, from any agent's viewpoint.
- A secret maintained by program P is also kept by Q if P = Q.

The Attack Model

- During program execution, after each "atomic step":
 - can "look" at the visible variables
 - cannot "look" at the hidden variables
- ② Can observe any branching.
- (1) and (2) imply compositionality of refinement.
- A qualitative approach: "run the program only once".

		ESTER Biggerstnichte Trichnichte Richtschulz Zürich Swiss Federali Institute of Hechnelegy Zurich
Hoang, McIver, Meinicke, Sloane, Susatyo ()	Non-interference Security by Refinement	CryptoForma, 21/06/11 5 / 21

Hidden/Visibles in the Programming Language

- v (of type V) is visible, h (of type H) is hidden.
- *H* (of type $\mathbb{P}(\mathcal{H})$) the shadow the set of possible values of *h*.
- Program: $\llbracket P \rrbracket \in \mathcal{V} \times \mathcal{H} \times \mathbb{P}(\mathcal{H}) \to \mathbb{P}(\mathcal{V} \times \mathcal{H} \times \mathbb{P}(\mathcal{H}))$
- Assume: $v, h \in \{0, 1\}$, initially *H* is $\{0, 1\}$.

	Program P	[[<i>P</i>]] (<i>v</i> , <i>h</i> , <i>H</i>)
Set hidden	<i>h</i> := 0	$\{(v, 0, \{0\})\}$
	$h:\in\{0,1\}$	$\{(v,0,\{0,1\}),(v,1,\{0,1\})\}$
Set visible	<i>v</i> := 0	$\{(0, h, \{0, 1\})\}$
	$v:\in\{0,1\}$	$\{(0,h,\{0,1\}),(1,h,\{0,1\})\}$
Swap hidden	$h:\in\{0,1\};h:=1-h$	$\{(v,0,\{0,1\}),(v,1,\{0,1\})\}$
Swap hidden	$h:\in\{0,1\}; h:=1-h$	$\{(v, 0, \{0, 1\}), (v, 1, \{0, 1\})\}$

MACQUARE WWYRRSTT WY Honore Status (1997) Warden waard wa And waard waar

Secure Refinement Preserves Secrecy

• Refinement: $P_1 \sqsubseteq P_2$, if for all v, h, H, we have

 $\begin{array}{l} \forall (v',h',H_2') \in \llbracket P_2 \rrbracket (v,h,H) \Rightarrow \\ (\exists H_1' \subseteq H_2' \cdot (v',h',H_1') \in \llbracket P_1 \rrbracket (v,h,H)) \end{array}$

• Undisclosed choice cannot be refined away:

 $h:\in\{0,1\} \not\sqsubseteq h:=0$

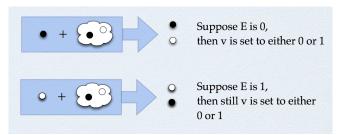
• *Disclosed* choice can be refined away

 $\textit{\textit{v}}:\in\{0,1\}\ \sqsubseteq\ \textit{\textit{v}}:=0$

Non-interference Security by Refinement

MACQUARIE

Secure Development


In secure refinement-oriented framework:

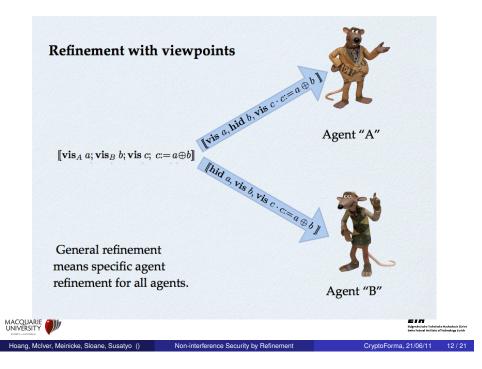
- we do not say that "a program is secure",
- we write a specification which "obviously" captures our requirements (both functional and security),
- specification summarises the intentions of the designer: inefficient or unimplementable "programs".
- we use refinement to add detail.
- Result: avoid building insecurities into the system.

Modelling Encryption

- Encryption is the most fundamental secure program.
- Publishing the exclusive-or of a "randomly" chosen, hidden bit, reveals nothing about the secret *E*.

vis *v*; **hid** $h \cdot h :\in \{0, 1\}$; $v := E \oplus h$

• Encryption is secure: having the same semantics as SKIP (*v*, *h* are "local variables").

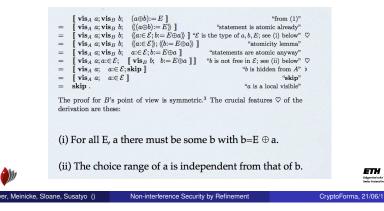

			EEFFH Biggenissische Technische Hischschule Zürich Swiss Federal Institute of Technology Zurich	
Hoang, McIver, Meinicke, Sloane, Susatyo ()	Non-interference Security by Refinement	CryptoForma, 21/06/11	10/21	

		Edgendenticeles Techeroleus Radiochouis Zarich Seeins Teoierail Institute of Techendrage Zarich
Hoang, McIver, Meinicke, Sloane, Susatyo ()	Non-interference Security by Refinement	CryptoForma, 21/06/11 9 / 21

Refinement with Viewpoints

- vis means the associated variable is visible to all agents.
- hid means the associated variable is hidden from all agents.
- **vis**_{list} means the associated variable is visible to all agents in the (non-empty) list, and is hidden from all others (including third parties).
- **hid**_{*list*} means the associated variable is hidden from all agents in the list, and is visible to all others (including third parties).

Encryption with Viewpoints


 $vis_A a; vis_B b; (a \oplus b) := E$

where

MACQUARIE UNIVERSITY

- $(a \oplus b) := E$: a, b become such that to $a' \oplus b' = E$,
- it is the (atomic) choice over all possibilities of splitting E

The full formal proof of the encryption lemma looks like this

Possible Improvement

- Can we automate these proofs?
 - Event-B/Rodin Platform
- Can we strengthen the attack model to something which is closer to the assumptions used in the creation of cryptographic primitives?
 - McIver, Meinicke, Morgan. Compositional Closure for Bayes Risk in Probabilistic Interference. ICALP 2010.

Can We Automate These Proofs? (1/4)

- Event-B: modelling discrete transition systems using refinement.
- Event-B is supported by the Rodin Platform.
- A specialised refinement is implemented for the Rodin platform.
- An extra variable H (the "Shadow") is generated to keep track of the possible values of hidden variables h.
- Extra refinement relations for shadow refinement.
- Rodin generates and discharges many of the obligations related to shadow refinement.
- Interactively prove the remaining obligations within Rodin.

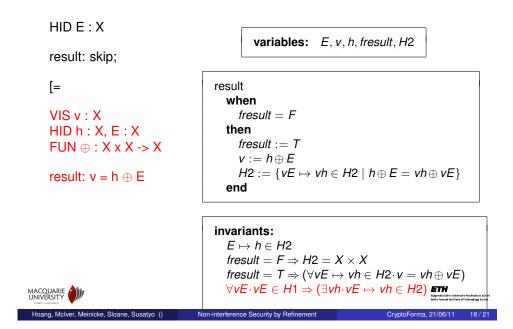
Can We Automate These Proofs? (2/4)

- Difficulty: it was awkward to generate and supply the invariants for the shadow H.
- Solution: Implemented a "front-end" for inputting program directly, using Rodin as a "back-end" for verification.

Non-interference Security by Refinement

The shadow invariants are generated in Rodin.

ETH


ETH

Can We Automate These Proofs? (3/4)

HIDE:X variables: E, fresult, H1 result: skip; [= result when VIS v : X fresult = FHID h : X then fresult := T $FUN \oplus : X \times X \rightarrow X$ end result: $v = h \oplus E$ invariants: $E \in H1$ *fresult* = $F \Rightarrow H1 = X$ *fresult* = $T \Rightarrow (\forall vb \cdot vb \in H1 \Rightarrow vb \in X)$ MACQUARIE ETH McIver, Meinicke, Sloane, Susatvo Non-interference Security by Refinemen CryptoForma, 21/06/1

Can We Automate These Proofs? (4/4)

Strengthen the Attack Model? (1/2)

- McIver, Meinicke, Morgan. Compositional Closure for Bayes Risk in Probabilistic Interference, ICALP 2010.
- A generalisation of the Shadow Know to deal with probability.
- v (of type V) is visible, h (of type H) is hidden.
- δ (of type $\mathcal{D}(\mathcal{H})$) a distribution of *h*.
- Non-deterministic choices, e.g., h :∈ E(v, h), are interpreted as uniform choice over the value of E(v, h).

Strengthen the Attack Model? (1/2)

We specialise that work

- to determine when Rodin certified proofs maybe lifted to the more general probabilistic model,
- to identify a subset of language constructs which preserve uniform choices in all contexts.

Sketch ideas:

- Restrict our programs to those preserving total uniformity of hidden distribution.
- Assuming uniformity of the initial hidden distribution, we can reason about distributions the same way as sets.

ETH

Conclusions and Future Work

- We shown how to automate Shadow refinement proofs using Event-B/Rodin.
- The proofs are valid for a restricted sub-sets of language of probabilistic model.
- Future work:
 - Better integration tool support.
 - Applications to other protocols.

