Development of Rabin's Choice Coordination Algorithm in Event-B

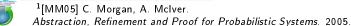
Emre Yilmaz and Thai Son Hoang

Department of Computer Science Swiss Federal Institute of Technology Zürich (ETH Zürich)

AVoCS'10, 21st-23rd September, 2010
Düsseldorf, Germany
(part of the work is supported by DEPLOY, an FP7 European Project)

Certain v.s. Almost-Certain Termination

• Consider tossing a fair coin c until it comes up head (H).


while
$$c = T$$
 do $c :\in \{H, T\}$ end

while
$$c = T$$
 do $c := H \oplus_{1/2} T$ end

Demonic non-termination

Probabilistic termination

- Technique: loop variant on some well-founded order.
- Certain termination: Every iteration must decrease the loop variant.
- Almost-certain termination ([MM05])¹:
 - Every iteration might decrease the loop variant.
 - The variant is bounded above.
 - The probability needs to be proper (bounded away from 0 and 1).

Qualitative Reasoning in Event-B

- Introduced in [HH07]²
- Introduction of probabilistic events.
- Behave (almost) the same as standard non-deterministic events,
 e.g. invariant preservation proof obligations.
- Behave differently for convergence proof obligations.

Our Contribution

Questions

- Probabilistic events and Event-B's developments with refinement?
- How to construct an probabilistic lexicographic variant?

Contribution

- An approach for developing almost-certain termination systems.
 - Extended Rodin Platform for tool support.
 - Formalised Rabin's Choice Coordination algorithm.

Background. Event-B

- A modelling notation for discrete transition systems.
- Models (machines) contain variables, invariants and events
- Events contain parameters, guards and actions

```
E status ordinary/convergent/anticipated any t where G(t,v) then v:|S(t,v,v') end
```


Convergence in Event-B

- A variant V(v) is proposed.
- The variant must be a finite set or a natural number.
- Every convergent event must decrease the variant.
- Every anticipated event must not increase the variant.
- Combination with refinement: lexicographic variant.
 - Model M_0 : E_1 is convergent and E_2 is anticipated with variant V_1 .
 - Model M_1 refines M_0 : E_2 is convergent with variant V_2 .
 - (V_1, V_2) is a lexicographic variant with V_1 has higher precedence.

$$(V_1, V_2) < (V_1', V_2') \Leftrightarrow (V_1 < V_1') \lor (V_1 = V_1' \land V_2 < V_2')$$

Probabilistic Events in Event-B

```
Ε
          probabilistic
  status
          where
  any t
    G(t, v)
  then
    v:|S(t,v,v')
  end
```

- The variant V(v) is bounded above by a constant B.
- The event might decrease the variant V(v).

E. Yilmaz, T.S. Hoang

Probabilistic Lexicographic Variant

Constructing lexicographic variant, e.g. (V_1, V_2) :

- Requires refinement.
 - Standard refinement does not preserve almost-certain termination.

```
ae
status probabilistic
any ... where
...
then
v:∈ {good, bad}
end
```

```
refines ae
status probabilistic
any ... where
...
then
v:= bad
end
```

- To restrict refinement.
- (V_1, V_2) needs to be bounded above.
 - All sub-variants need to be bounded above.

 (including the variant for proving standard convergence)

Our Approach

Goal

To prove that condition *P* holds eventually with probability 1 at the end of a program.

The Approach

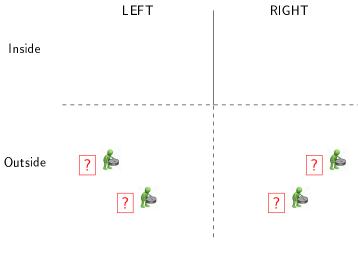
- Establish the model of the program contains:
 - an observer event^a

```
obs \widehat{=} when P then skip end
```

- several anticipated events E_1, \ldots, E_n .
- Prove that eventually only obs is enabled:
 - $E_1, \ldots E_n$ are convergent (either probabilistic or standard).
 - The system is deadlock-free.

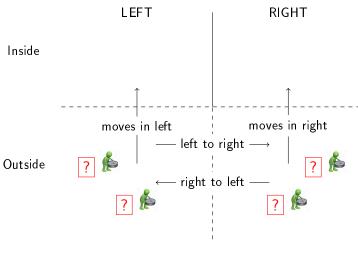
^a[HKBA09] T.S. Hoang, H. Kuruma, D. Basin and J-R. Abrial. Developing Topology Discovery in Event-B. 2009

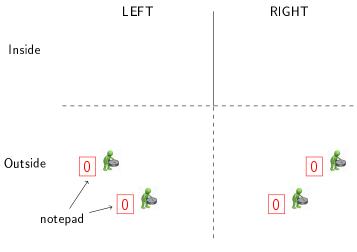
Choice Coordination Problem and Rabin's Algorithm

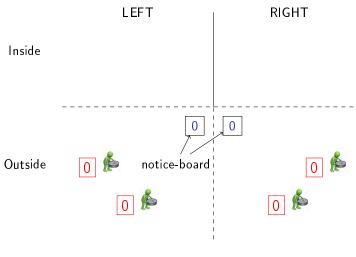

Choice Coordination Problem

- Given *n* processes P_1, \ldots, P_n
- Given k alternatives A_1, \ldots, A_k
- Aim: Processes reach a common choice out of the alternatives.
- Constraints: Processes must not communicate directly.

Rabin's Algorithm


- The protocol uses k shared variables, one for each alternative.
- A process assume to access and modify a shared variable atomically.
- A simplified version of the algorithm by McIver/Morgan with k=2.




E. Yilmaz, T.S. Hoang

Formal Model. The State

```
variables:
              lin, rin,
              lout, rout,
              L, R, np
```

```
in variants:
   inv0 3 · lin = \emptyset \lor rin = \emptyset
   inv1 1: partition(T, lin, rin, lout, rout)
   \operatorname{inv2}^{-1}: L \in \mathbb{N}
   inv2^-2: R \in \mathbb{N}
   \mathsf{inv2}^{-3}: np \in T \to \mathbb{N}
```

```
init
   begin
      lin := \emptyset
      rin := \emptyset
      lout, rout : | lout' = T \setminus rout'
      I := 0
      R := 0
      np := T \times \{0\}
   end
```


Algorithm. A Tourist Moves In (First Case)

Algorithm. A Tourist Moves In (Second Case)

Algorithm. A Tourist Alternates (First Case)

Algorithm. A Tourist Alternates (Second Case)

Animation with Two Tourists

Round 3	7
	6
Round 2	5
Round 2	4
Round 1	3
Round 1	2
Round 0	1
Round U	0

- Conjugate of an even number n is n+1.
- Conjugate of an odd number n is n-1.
- The algorithm contains several rounds.
- In each round, each notice board is chosen probabilistically in the next pair.
- The algorithm terminates when the values of the notice boards are different in the same round.

Rabin Choice Coordination in Event-B

•••	
Round 3	7
Nound 3	6
Round 2	5
Round 2	4
Round 1	3
Nouna 1	2
Round 0	1
Kouna 0	0

- Conjugate of an even number n is n+1.
- Conjugate of an odd number n is n-1.
- The algorithm contains several rounds.
- In each round, each notice board is
- The algorithm terminates when the

Round 3		7	
Round 3		6	_
Round 2		5	
Roulla 2		4	
Round 1		3	
Round 1		2	_
Round 0		1	
Round 0	L	0	R

- Conjugate of an even number n is n+1.
- Conjugate of an odd number n is n-1.
- The algorithm contains several rounds.
- In each round, each notice board is chosen probabilistically in the next pair.
- The algorithm terminates when the values of the notice boards are different in the same round.

Rabin Choice Coordination in Event-B

•••			
Round 3		7	-
Rouna 3		6	_
Round 2		5	
Nouna 2		4	
Round 1		3	
ixound 1	L	2	R
Round 0		1	
ixound 0		0	

- Conjugate of an even number n is n+1.
- Conjugate of an odd number n is n-1.
- The algorithm contains several rounds.
- In each round, each notice board is chosen probabilistically in the next pair.
- The algorithm terminates when the values of the notice boards are different in the same round.

		• • •	
Round 3		7	
Rouna 3		6	
D J O		5	F
Round 2	L	4	
Round 1		3	
Rouna 1		2	
D J O		1	
Round 0		0	

- Conjugate of an even number n is n+1.
- Conjugate of an odd number n is n-1.
- The algorithm contains several rounds.
- In each round, each notice board is chosen probabilistically in the next pair.
- The algorithm terminates when the values of the notice boards are different in the same round.

E. Yilmaz, T.S. Hoang

Refinement Strategy

- Initial model: introduce the set of tourists inside: lin and rin.
- 1st Ref.: introduce the set of tourists outside: lout and prout.
- 2nd Ref.: introduce Rabin's algorithm including the noticeboards (L, R) and tourists' notepads (np).
- 3rd-6th Refs.: prove convergence property.
 - A lexicographic variant with 2 layers [MM05].
 - We used both finite set and natural number variants.
 - Split and merge of events: Simpler proofs...
- 7th Ref.: prove deadlock-freeness.

Refinement Strategy

- Initial model: introduce the set of tourists inside: lin and rin.
- 1st Ref.: introduce the set of tourists outside: lout and prout.
- 2nd Ref.: introduce Rabin's algorithm including the noticeboards (L, R) and tourists' notepads (np).
- 3rd-6th Refs.: prove convergence property.
 - A lexicographic variant with 2 layers [MM05].
 - We used both finite set and natural number variants.
 - Split and merge of events: Simpler proofs...
- 7th Ref.: prove deadlock-freeness.

Proof Statistics

Model	Total	Auto.(%)	Man.(%)
Initial model	6	6(100%)	0(N/A)
1st Refinement	8	7(88%)	1(12%)
2nd Refinement	63	49(78%)	14(23%)
Outer variant	54	29(54%)	25(46%)
Inner variant	11	8(73%)	3(27%)
Deadlock freedom	4	0(0%)	4(100%)
Total	146	99(68%)	47(32%)

Conclusion

- An approach for developing almost-certain termination programs.
 - probabilistic lexicographic variant.
 - Practical tool support.

Future work

- Improve tool support.
- Verify other examples, e.g. IEEE1394 protocol.
- Elaborate refinement while preserving probabilistic convergence.

Rabin Choice Coordination in Event-B

For Further Reading 1

Modeling in Event-B: System and Software Engineering. Cambridge University Press, May 2010.

- C. Morgan, A. McIver. Abstraction, Refinement and Proof for Probabilistic Systems. Springer Verlag, 2005.
- S. Hallerstede, T. Hoang. Qualitative Probabilistic Modelling in Event-B. In David and Gibbons (eds.), IFM 2007: Integrated Formal Methods. LNCS 4591, pp. 293-312. Springer Verlag, Oxford, U.K., July 2007.
- T. Hoang, H. Kuruma, D. Basin, J.-R. Abrial. Developing topology discovery in Event-B. Sci. Comput. Program. 74(11-12):879-899, 2009.

