

Development of Rabin's Choice Coordination
Algorithm in Event-B
Algorithm in Event-B

Emre Yilmaz and Thai Son Hoang
Department of Computer Science
Swiss Federal Institute of Technology Zürich (ETH Zürich)
AVoCS'10, 21st-23rd September, 2010 Düsseldorf, Germany
(part of the work is supported by DEPLOY, an FP7 European Project)

(ETH-Zuirich) Rabin Choice Coordination in Event-B

- Introduced in [HH07] ${ }^{2}$.
- Introduction of probabilistic events.
- Behave (almost) the same as standard non-deterministic events, e.g. invariant preservation proof obligations.
- Behave differently for convergence proof obligations.

Contribution

- An approach for developing almost-certain termination systems.
- Extended Rodin Platform for tool support.
- Formalised Rabin's Choice Coordination algorithm.
- Consider tossing a fair coin c until it comes up head (H).

$$
\begin{aligned}
& \text { while } c=T \text { do } \\
& c: \in\{H, T\} \\
& \text { end }
\end{aligned}
$$

Demonic non-termination

$$
\begin{aligned}
& \text { while } c=T \text { do } \\
& \quad c:=H \oplus_{1 / 2} T \\
& \text { end }
\end{aligned}
$$

Probabilistic termination

- Technique: loop variant on some well-founded order.
- Certain termination: Every iteration must decrease the loop variant.
- Almost-certain termination ([MM05]) ${ }^{1}$:
- Every iteration might decrease the loop variant.
- The variant is bounded above.
- The probability needs to be proper (bounded away from 0 and 1).

Questions

- Probabilistic events and Event-B's developments with refinement?
- How to construct an probabilistic lexicographic variant?
${ }^{2}$ [HH07] S. Hallerstede, T. Hoang.
Qualitative Probabilistic Modelling in Event-B. In iFM 2007

- A modelling notation for discrete transition systems.
- Models (machines) contain variables, invariants and events
- Events contain parameters, guards and actions

```
E
status ordinary/convergent/anticipated
any \(t\) where
    \(G(t, v)\)
    then
    \(v: \mid S\left(t, v, v^{\prime}\right)\)
    end
```



```
E
status probabilistic
any t where
    G(t,v)
    then
    v:| S(t,v, v')
    end
```

- The variant $V(v)$ is bounded above by a constant B.
- The event might decrease the variant $V(v)$.

- A variant $V(v)$ is proposed.
- The variant must be a finite set or a natural number.
- Every convergent event must decrease the variant.
- Every anticipated event must not increase the variant.
- Combination with refinement: lexicographic variant.
- Model $M_{0}: E_{1}$ is convergent and E_{2} is anticipated with variant V_{1}.
- Model M_{1} refines $M_{0}: E_{2}$ is convergent with variant V_{2}.
- $\left(V_{1}, V_{2}\right)$ is a lexicographic variant with V_{1} has higher precedence.

$$
\left(V_{1}, V_{2}\right)<\left(V_{1}^{\prime}, V_{2}^{\prime}\right) \Leftrightarrow\left(V_{1}<V_{1}^{\prime}\right) \vee\left(V_{1}=V_{1}^{\prime} \wedge V_{2}<V_{2}^{\prime}\right)
$$

Constructing lexicographic variant, e.g. $\left(V_{1}, V_{2}\right)$:

- Requires refinement.
- Standard refinement does not preserve almost-certain termination.


```
ce
    refines ae
    status probabilistic
    any ... where
    then
    v:= bad
    end
```

- To restrict refinement
- $\left(V_{1}, V_{2}\right)$ needs to be bounded above.
- All sub-variants need to be bounded above.
(including the variant for proving standard convergence) ETH

Our Approach
Choice Coordination Problem and Rabin's Algorithm

Goal

To prove that condition P holds eventually with probability 1 at the end of a program.

The Approach

(1) Establish the model of the program contains:

- an observer event ${ }^{\text {a }}$
obs $\widehat{=}$ when P then skip end
- several anticipated events E_{1}, \ldots, E_{n}
(2) Prove that eventually only obs is enabled:
- $E_{1}, \ldots E_{n}$ are convergent (either probabilistic or standard).
- The system is deadlock-free
${ }^{a}$ [HKBA09] T.S. Hoang, H. Kuruma, D. Basin and J-R. Abrial Developing Topology Discovery in Event-B. 2009

Algorithm Context

Inside

Outside

Choice Coordination Problem

- Given n processes P_{1}, \ldots, P_{n}
- Given k alternatives A_{1}, \ldots, A_{k}.
- Aim: Processes reach a common choice out of the alternatives.
- Constraints: Processes must not communicate directly.

Rabin's Algorithm

- The protocol uses k shared variables, one for each alternative.
- A process assume to access and modify a shared variable atomically.
- A simplified version of the algorithm by Mclver/Morgan with $k=2$.
(ETH-Z:̈rich) Rabin Choice Coordination in Event-B


```
variables: lin,rin,
        lout, rout,
        L,R,np
```

```
invariants
    inv0_3: lin = \varnothing\vee rin = \varnothing
    inv1_1: partition(T, lin, rin, lout, rout)
    inv2_1: L \in\mathbb{N}
    inv2 2: R\in\mathbb{N}
    inv2-3: np\inT->\mathbb{N}
```

```
init
    begin
        lin:=\varnothing
        rin :=\varnothing
        lout, rout : lout' = T \rout'
            L:=0
            R:=0
            np:=T\times{0}
    end
```

E. Yilmaz
(ETH-Zürich) Rabin Choice Coordination in Event-B

- Initial model: introduce the set of tourists inside: lin and rin.

- 2nd Ref.: introduce Rabin's algorithm

Inside ${ }_{\text {including }}$ the noticeboards (L, R) and tourists' notepads ($n p$)

- 3rd-6th Refs.: prove convergence property.
- -A lexicographic variant with 2 layers [MM05] - -
- We used both finite set హnd hatgral number iants.
- Split and merge of events: Simpler proofs..

Outsidegth Ref.: prove0ct ock-freeness.

Conclusion

- An approach for developing almost-certain termination programs.
- probabilistic lexicographic variant.
- Practical tool support.

Future work

- Improve tool support.
- Verify other examples, e.g. IEEE1394 protocol.
- Elaborate refinement while preserving probabilistic convergence.

