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Abstract

The B-Method (B) is a formal method for development of large software systems,

and is based on set theory and the predicate calculus. The semantics of B is given

by the Generalised Substitution Language (GSL) invented by Abrial, which gives

the method a capability of reasoning about the correctness of systems.

Abrial’s GSL can be modified to operate on arithmetic expressions, rather than

Boolean predicates, which allows it to be applied to probabilistic programs. A new

operator for probabilistic choice substitution has been added to GSL by Morgan,

and we get the probabilistic Generalised Substitution Language (pGSL): a smooth

extension of GSL that includes random algorithms and probabilistic systems within

its scope.

We want to examine the effect of pGSL on B’s larger-scale structures: its ma-

chines: for that we suggest a notion of probabilistic machine invariants. We show

how these invariants interact with pGSL at a fine-grained level; and at the other

extreme we investigate how they affect our general understanding “in the large” of

probabilistic machines and their behaviour.

Furthermore, we want to take these specifications and to refine them into im-

plementations. We present a method that can be used to develop systems with

probabilistic properties from specifications to implementations. We give the defi-

nition for the consistency of the implementation with respect to the specification,

based on the concept of refinement.

Overall, we aim to initiate the development of a probabilistic B-Method (pB),

complete with a suitable probabilistic Abstract Machine Notation (pAMN). We dis-

cuss the practical extension of the B-Toolkit to support pB, and we give examples to

show how pAMN can be used to express and reason about probabilistic properties

of systems.
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Chapter 1

Introduction

1.1 Motivation

Mathematics is important not only for computer-hardware engineering but also for

software engineering. While mathematics has been more closely connected with

the former, there has been significant recent improvements in the application of

mathematics to the latter. The application of mathematics is not only of theoreti-

cal interest, but has also proved to be successful in practical applications. Formal

notations, such as VDM [30], Z [63] and the B-Method (B) [4], move software engi-

neering into a new era of a rigorous approach to program developments, especially

to critical software where failure is not an option.

B contains a systematic method for development of large software systems

from reusable fragments, an essential requirement of software engineering. Based

on the Generalised Substitution Language (GSL) [4] invented by Abrial, B offers

the capability of specifying and reasoning about software systems using set theory

and the predicate calculus.

The B-Method is built around the concept of having abstract machines. A

machine contains the state of a construct (either specification, refinement or imple-

mentation), and also provides operations that change the state and possibly return

one or more results. The state of a machine is constrained by its invariant. The

consistency of a machine is concerned with the establishment of the invariant by

the initialisation and the maintenance of the invariant by the machine’s operations.

The syntax of B machines is given in the Abstract Machine Notation (AMN), and

1



2 CHAPTER 1. INTRODUCTION

the meaning of AMN operations is given by GSL semantics. The B-Method also

provides full reasoning about the process of refinement from specifications to im-

plementations. This guarantees that the code generated from the implementation is

consistent with the original specification.

Morgan [45] extends Abrial’s GSL with a new probabilistic choice operator

to create probabilistic Generalised Substitution Language (pGSL), a simple exten-

sion which can handle probability. Using pGSL, one can specify the behaviour of

systems with probabilistic properties.

Essentially, we need to have a method to reason formally about probabilistic

systems. We want to develop a probabilistic B-Method (pB) which includes de-

veloping a new syntax and semantics of a probabilistic Abstract Machine Notation

(pAMN); an extension of AMN accommodating probability. Then pB should be

able to operate in the same framework as B, i.e. having machine encapsulation and

a concept of refinement. Applications of pB could include distributed algorithms,

in which probability is used to break symmetry, or a system of sensors that can

have a certain probability of failure. With the introduction of pB, we can formally

specify, implement and also reason about the correctness of such systems.

Further, the success of formal methods depends largely on tool support. With-

out tools, formal methods cannot be applied successfully. For B, a number of tools

have been built in order to incorporate its ideas; we will use the B-Toolkit [37] as

our supporting tool. We will modify the B-Toolkit in order to support the extension

from B to pB.

This dissertation is concerned with the development of the pB method and its

associated supporting tool.

1.2 Aims and Contributions

The aim of this dissertation is to investigate the new syntax and semantics for

pB, which is the extension of B based on pGSL. The concept of an abstract ma-

chine has to be extended to incorporate probability, with new constructs of pAMN.

The meaning of each construct needs to be studied and developed. Moreover, the

question of how probabilistic properties of systems can be expressed in the new

framework needs to be answered. The rules for reasoning about the correctness of

systems based on the new constructs have to be developed and successfully applied
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to various systems with probabilistic properties. The process of refinement from

specifications to implementations has to be maintained since this is the backbone

of the B-Method. More importantly, practical issues need to be taken into account

when developing the new method. Whenever possible, we want to retain the origi-

nal predicate reasoning, while making the necessary extension required for the new

elements. The B-Toolkit needs to be changed accordingly, and these changes need

to be illustrated with examples. The specific contributions of this dissertation are:

• Supporting systems with almost-certain termination. In some systems, ter-

mination is not guaranteed (certainly), but the probability of these systems

terminating is indeed 1. Reasoning about these systems requires a special

treatment of probability. The application of this kind of work includes dis-

tributed systems, in which probability is used to break the symmetry of sys-

tem processes efficiently [41].

• Proposing the idea of a probabilistic invariant, which supports the idea of

having “probabilistic abstract machines”. The informal meaning of a such

invariant, i.e. what it guarantees, and the proof obligations for its mainte-

nance, are given [23].

• Introducing probabilistic specification substitutions and the fundamental the-

orem for refining those substitutions. This work helps to specify and produce

consistent code using the concept of refinement. We also discuss the practi-

cal issues when extending the B-Toolkit to support probabilistic specification

substitutions [25].

• Extending probabilistic specification substitutions to systems with multiple

probabilistic properties. This gives a more complete coverage of specifica-

tions, including some systems that cannot be captured by single probabilistic

specification substitutions on their own. Also, the fundamental theorem is

widened to cover the refinement of multiple probabilistic specification sub-

stitutions.

All the work above is demonstrated with supporting case studies. The publica-

tions produced with respect to the research work described in this dissertation can

be found in Appendix E.
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Development Version of Toolkit Related chapter
Root-Contention The qB-Toolkit Chap. 3
Rabin’s Choice-Coordination Algorithm The qB-Toolkit Chap. 3
Probabilistic Library The pB-Toolkit Chap. 4
Min-Cut algorithm The pB-Toolkit Chap. 5
Probabilistic primary testing The pB-Toolkit Chap. 5
Two Duelling Cowboys The pB-Toolkit Chap. 6
Three Duelling Cowboys The pB-Toolkit Chap. 6

Table 1.1: List of complete developments

In Tab. 1.1 are the list of developments that have been developed and proved

using the modified toolkits.

1.3 Dissertation Organisation

This dissertation addresses the issues in the development of pB and the pB-Toolkit,

the supporting toolkit. New constructs are introduced into pAMN and the pB-

Toolkit is extended to support their syntax and semantics. pB will allow developers

to reason about the correctness of probabilistic systems developed using the new

toolkit. A brief overview of the background and related work to this dissertation

are given in Chap. 2. Where necessary, issues relating to a specific area are given

in separate chapters.

In Chap. 2, we review the underlying theoretical work to support the develop-

ment of pB. We review the syntax and semantics of GSL and the original B-Method,

and also discuss the supporting B-Toolkit. Furthermore, we give an introduction to

pGSL, which is the basis of this dissertation.

In Chap. 3, we consider a small extension of the B-Method to support a set

of systems with probability-one, that is almost-certain termination. We explain

the concept of probability-one termination and its theoretical basis. We discuss

the extension to the B-Toolkit and, finally, develop some examples to show the

application of the new method.

In Chap. 4, we introduce the idea of having probabilistic invariant for prob-

abilistic machines. The informal meaning of the new construct is given using a

simple example. We also investigate some subtle issues that make a clear distinc-

tion between the probabilistic and non-probabilistic domain.
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In Chap. 5, we take probabilistic developments into a new level by introducing

probabilistic specification substitutions and the fundamental theorem for the refine-

ment of such specifications. We concentrate on practical issues when extending the

pB-Toolkit to support a well known example in the new framework. We show that

development via layers is still valid with the new substitution.

In Chap. 6, we extend probabilistic specification substitutions further to cover

systems with multiple expectations. An example is used to illustrate the new sub-

stitution and the corresponding fundamental theorem which supports the develop-

ment of implementations from specifications.

In Chap. 7, we give a summary of the work and discuss possible further re-

search relating to this dissertation.





Chapter 2

Background and Related Work

This chapter introduces the components of the B-Method (B): the Generalised Sub-

stitution Language (GSL) that provides a formal semantics and the Abstract Ma-

chine Notation (AMN) that provides the concept of an “abstract machine” — a ba-

sic construct within the method. This provides an understanding of the B-Method

and the supporting B-Toolkit. We also introduce the probabilistic Generalised Sub-

stitution Language (pGSL), which forms the basis of the research described in this

dissertation.

2.1 The Generalised Substitution Language

We first briefly review GSL; then we look at its syntax and semantics, together with

some examples.

2.1.1 Meaning of Programs

Programming languages usually have a formal syntax and an informal semantics.

This leads to difficulty or imprecision in verifying the correctness of programs

written in these languages. Giving programs a precise meaning requires a formal

semantics of the language constructs.

Starting with Hoare triples in the late 1960’s [26], the meaning of a program is

defined in terms of a precondition and post-condition pair as follows:

{P} S {Q} .

7
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In the above formula, P and Q are predicates of the state of program S . The

meaning of the triple is that the program S starts from initial state satisfying P and

guarantees to establish Q in the final state.

Later, Dijkstra shifted the focus to total correctness and made the process more

“goal directed” [16]. He introduced the definition of a “weakest precondition”,

denoted by wp(S ,Q), where S is a program and Q is a predicate of the pro-

gram state. The meaning of the weakest precondition is that it characterises the

state under which the program S guarantees to establish the post-condition Q . An

equivalent form of the Hoare triples

{P} S {Q}

would be expressed in wp notation as

P ⇒ wp(S ,Q) .

Based on weakest preconditions, Dijkstra defined the semantics of the Guarded

Command Language (GCL) which assigns a meaning to different commands in-

cluding assignment, guarded commands, precondition commands, conditional com-

mands and loops [16].

Abrial’s GSL [4] is another notation for assigning meaning to programs, and

is close to Dijkstra’s GCL. In GSL, a program is understood as a “predicate trans-

former”, which relates the before and after states. Consider the simple program:

x : = y − 1 , (2.1)

that assigns the value y − 1 to x . We want to know under which precondition the

state, after executing Prog. (2.1), satisfies the post-condition x ∈ 
. It turns out

that the answer is just this predicate in which we “substitute” 1 y − 1 for x , i.e.

y − 1 ∈ 
. We begin with the definition of GSL for simple substitutions using the

notation [], which is equivalent to wp(, ) notation, as follows:

[x : = E ]P =̂ “P with every free occurrence of x replaced by E” .

Moreover, GSL allows elements of the language to be composed, i.e. the mean-

ing of a substitution is defined by the meaning of its individual smaller components
1This is the reason why the meanings of programs in GSL are defined in terms of substitutions.



2.1. THE GENERALISED SUBSTITUTION LANGUAGE 9

and the way that they composed. In order to be suitable as a specification language,

GSL provides non-deterministic substitutions and leaves the implementation issues

to later stages of the development. Consider the following program:

x : = y − 1 [] x : = z − 1 , (2.2)

which assigns x to either y − 1 or z − 1. In this case, the choice of which branch

to run is up to the implementor of the system to decide. This non-deterministic

substitution shows the capability of abstraction within the language. Users of the

program should be happy with either one of the branches, and that leaves the im-

plementor with a choice of which branch to implement. It means that no matter

which branch is chosen, the corresponding substitution must establish the desired

post-condition. Hence, the semantics for the non-deterministic choice substitution

is as follows:

[S [] T ]P =̂ [S ]P ∧ [T ]P .

For example, again, we consider the post-condition x ∈ 
, i.e. we want to know

under which precondition the state, after executing Prog. (2.2), satisfies this con-

dition. Since both branches of the program need to satisfy this post-condition, we

have that the precondition is

[x : = y − 1 [] x : = z − 1] (x ∈ 
)

≡ non-deterministic substitution

[x : = y − 1] (x ∈ 
) ∧ [x : = z − 1] (x ∈ 
)

≡ y − 1 ∈ 
 ∧ z − 1 ∈ 
 simple substitution

This result is consistent with what we expect from the meaning of the above sub-

stitution. Since the user must be happy with either of the branches, we must make

sure that the substitution is correct for both of them.

2.1.2 GSL Syntax

A summary of GSL syntax is given in Fig. 2.1 on the following page. As in other

common programming languages, GSL has assignment (simple substitution) and
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x : = E x is assigned value E.

P | S With precondition P , substitution S is executed.

S [] T Non-deterministic choice between substitutions S and

T .

S || T Parallel substitution: S and T are executed concur-

rently.

S ;T Sequential substitution: S is executed first, and then T .

P =⇒ S Substitution S is executed only if the guard P holds.

skip skip substitution (do nothing).

@ x · S Unbounded-choice substitution.

• P is a predicate over state variables;

• S ,T are generalised substitutions;

• x is a variable (or a vector of variables);

• E is an expression (or a vector of expressions).

Figure 2.1: GSL syntax

sequential substitution. But we also have substitutions with preconditions, non-

deterministic choice, unbounded choice and parallel substitutions within GSL.

As an example for a program written in GSL, we have the following program:

(x ∈ 
 ∧ x 6= 0) | x : = x − 1 , (2.3)

that decreases x by 1 under the precondition that x is a non-zero natural number.

The precondition is just the assumption under which the substitution is carried out.

We can also have guarded substitutions as in the following example:

(x ∈ 
 ∧ x 6= 0) =⇒ x : = x − 1 , (2.4)

which decreases x by 1 only if x is a non-zero natural number.
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There is a clear difference between a preconditioned substitution and a guarded

substitution. Consider the following substitutions

P | S (2.5)

and

G =⇒ S . (2.6)

In (2.6), the substitution S is executed only if the condition G is satisfied. On the

other hand, in (2.5), the substitution S is always carried out; but in the case where

P does not hold, the preconditioned substitution does not guarantee anything on

the outcome.

2.1.3 GSL Semantics

A summary of the semantics of GSL substitutions is given in Fig. 2.2 on the next

page. The semantics of GSL is expressed in terms of the weakest precondition with

respect to an arbitrary predicate Q .

As an example, we consider Prog. (2.3) with the post-condition that x ∈ 
:

[(x ∈ 
 ∧ x 6= 0) | x : = x − 1] (x ∈ 
)

≡ x ∈ 
 ∧ x 6= 0 ∧ [x : = x − 1] (x ∈ 
) preconditioned substitution

≡ x ∈ 
 ∧ x 6= 0 ∧ x − 1 ∈ 
 simple substitution

≡ x ∈ 
 ∧ x 6= 0 . logic

And if we consider Prog. (2.4) with the same post condition, we have:

[(x ∈ 
 ∧ x 6= 0) =⇒ x : = x − 1] (x ∈ 
)

≡ x ∈ 
 ∧ x 6= 0 ⇒ [x : = x − 1] (x ∈ 
) guarded substitution

≡ x ∈ 
 ∧ x 6= 0 ⇒ x − 1 ∈ 
 . simple substitution
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[x : = E ]Q The predicate obtained by replacing all free occur-

rences of x by E in Q .

[P | S ]Q P ∧ [S ]Q .

[S [] T ]Q [S ]Q ∧ [T ]Q .

[S ;T ]Q [S ] ([T ]Q) .

[P =⇒ S ]Q P ⇒ ([S ]Q).

[skip]Q Q .

[@ x · S ]Q ∀ x · [S ]Q .

• P ,Q are predicates;

• S ,T are generalised substitutions;

• x is a variable (or a vector of variables).

• E is an expression (or a vector of expressions).

Figure 2.2: GSL semantics

≡ true . logic

A more complex example, where the program comprises guarded substitutions and

a non-deterministic choice, is as follows:

y ≥ 1 =⇒ x : = y − 1
[] y < 1 =⇒ x : = y .

(2.7)

This is in fact a conditional substitution: if y ≥ 1, x is assigned the value y − 1,

else (if y < 1), x is assigned the value y . Again, considering the post-condition

x ∈ 
, we have:[
y ≥ 1 =⇒ x : = y − 1

[] y < 1 =⇒ x : = y

]
(x ∈ 
)

≡ [y ≥ 1 =⇒ x : = y − 1] (x ∈ 
)
∧ [y < 1 =⇒ x : = y ] (x ∈ 
)

non-deterministic choice
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≡ y ≥ 1⇒ [x : = y − 1] (x ∈ 
)
∧ y < 1⇒ [x : = y ] (x ∈ 
)

guarded substitution

≡ y ≥ 1⇒ y − 1 ∈ 

∧ y < 1⇒ y ∈ 
 .

simple substitution

The meaning of Prog. (2.7) is shown by decomposing it into simpler substitutions.

This is common in GSL to get the meaning of a complex substitution according to

its components and the way they are composed.

2.2 The Abstract Machine Notation

The B notation is based on the the concept of abstract machines which keep the

states of programs and provides operations for changing the states. The meaning

of abstract machines’ operations is given by GSL semantics, which is introduced

in the previous section.

We start by looking at a simple abstract machine, and add more details to it.

A simple abstract machine can be seen in Fig. 2.3 on the following page. The

MACHINE clause introduces the name of the specification (machine). A spec-

ification can also have parameters declared with the MACHINE clause. The

VARIABLES clause introduces the state of the machine, which is a set of vari-

ables. The INVARIANT clause sets some constraints on the variables, which

must be preserved by every operation in the machine (and established by the ini-

tialisation). The INITIALISATION clause is the initial setup for the machine,

i.e. giving the starting values for all variables. The last clause in the example,

the OPERATIONS clause, contains a list of various operations, which are used to

change the state of the machine.

In a machine, the body of the operation can be specified using substitutions. For

example, the Increase operation in Fig. 2.3 on the next page could be specified as

follows:

num : = num + 1 .

The operation needs to maintain the invariant of the machine, under the assumption

that the invariant holds, i.e.

num ∈ 
 ⇒ [num : = num + 1] (num ∈ 
) ,
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MACHINE Number

VARIABLES num

INVARIANT num ∈ 

INITIALISATION num : = 0

OPERATIONS
Increase =̂ · · · ;
Decrease =̂ · · ·

END

Figure 2.3: A simple machine

or equivalently

num ∈ 
 ⇒ num + 1 ∈ 
 ,

which is obviously true.

For the Decrease operation, we intend to decrease the value of num by 1, i.e.

by having the substitution:

num : = num − 1 .

Of course, this substitution does not guarantee to preserve the invariant of the ma-

chine. More precisely, when num = 0, the operation Decrease will break the

invariant. The substitution needs to have a precondition (assumption), under which

the operation can be guaranteed to be consistent. With this informal reasoning, we

see that the precondition that we need to add is:

num 6= 0 .

In AMN, we would therefore write the specification of the Decrease operation

as follows:

Decrease =̂

PRE num 6= 0

THEN num : = num − 1

END

We now need to adjust the proof obligation slightly, because the operation is as-

sumed to be executed under a non-trivial precondition. We say that the operation
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guarantees to re-establish the invariant of the machine under the assumption that

the invariant and the precondition of the operation both hold. For the Decrease

operation, we have to prove that:

num ∈ 
 ∧ num 6= 0 ⇒ [num : = num − 1] (num ∈ 
) ,

or equivalently,

num ∈ 
 ∧ num 6= 0 ⇒ num − 1 ∈ 
 ,

which is obviously true.

Table 2.1: Abstract Machine syntax

Term Definition

Machine

MACHINE MachineDeclaration
CONSTRAINTS Predicate
USES MachineList
SEES MachineList
INCLUDES InstantiatedMachineList
PROMOTES OperationNameList
EXTENDS InstantiatedMachineList
SETS SetList
CONSTANTS ConstantList
PROPERTIES Predicate
VARIABLES VariableList
INVARIANT Predicate
ASSERTIONS Predicate
DEFINITIONS DefinitionList
INITIALISATION Substitution
OPERATIONS OperationList
END

MachineDeclaration Machine
Machine(ParameterList)

MachineList Machine
MachineList ,Machine

InstantiatedMachineList InstantiatedMachine
InstantiatedMachineList , InstantiatedMachine

InstantiatedMachine Machine
Machine(ActualParameterList)

ActualParameterList ActualParameter
ActualParameterList ,ActualParameter

Continued on next page
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Table 2.1 — continued from previous page
Term Definition
SetList Set

SetList ;Set
Set SetName

SetName = {EnumerationList}
DefinitionList Definition =̂ Expr

DefinitionList ;Definition =̂ Expr

The abstract syntax of abstract machines is defined in Tab. 2.1. Notice that,

with the exception of the MACHINE clause at the beginning and the END clause

at the end, all other clauses are optional.

An “abstract machine” starts with the MACHINE clause which gives the name

and possible parameters of the specification. The CONSTRAINTS clause states

the assumption of the parameters.

Machines can be composed in order to produce larger systems. In B, there

are four different ways to compose machines: SEES, USES, INCLUDES and

EXTENDS clauses.

• SEES clause: gives read-only access to other machines. This is restricted to

the sets, constants and definitions of the seen machine.

• USES clause: gives read-only access to other machines. This allows the

using machine to refer to the variables of the used machine in the invariant

and precondition of its operations. The condition for this clause is that both

used and using machines need to be “included” in another machine.

• INCLUDES clause: the included machine becomes part of the including

machine. The including machine can modify the state of the included ma-

chine, but only by calling the operations of the included machine. The

PROMOTES clause indicates the list of operations in the included machine

that are “promoted” to become operations of the including machine.

• EXTENDS clause: a machine “extends” another machine by including the

machine and promoting all operations of the extended machine.

When including (extending) another machine, the parameters of the included (ex-

tended) machine must be instantiated.
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To declare sets in B, there is the SETS clause. There are two types of sets

in B: deferred sets and enumerated sets. The former are declared by giving only

their names in the SETS clause, whereas the latter are declared by also giving the

elements of those sets.

Constants are declared using the CONSTANTS clause and the properties of

constants are given using the PROPERTIES clause. The PROPERTIES clause

can also give constraints on the sets.

The state of the machine is kept by a set of variables which are declared in

the VARIABLES clause. The INVARIANT clause imposes constraint on the

state of the machine, and it must be true at anytime during the execution of the

system, i.e. after the initialisation and every operation. The proof obligations of

operations are concerned with maintaining such an invariant. The ASSERTIONS

clause also constrains the variables of the machine, but it can be derived from the

INVARIANT. The purpose of having the ASSERTIONS clause is only to help

with proving the obligations.

The INITIALISATION clause is a substitution that gives initial values for

variables of the system. These values also need to satisfy the invariant of the sys-

tem.

The OPERATIONS clause lists all the operations of the system that can be

invoked in order to change the state. The syntax of an operation in B is as follows:

outputs ←− Op(inputs) =̂
PRE Predicate THEN

Substitution
END

An operation can have some inputs and/or some outputs. The precondition of an

operation not only constrains the state of the machine, but also gives the condition

on the inputs of the operation. The substitution is defined to change the state of the

machine and provide output. In B’s operations, the inputs, outputs and precondition

are optional. Further details of the syntax of B machines can be found in [4, 68, 60,

33, 32].

A summary of AMN substitutions, together with their definitions in GSL, is

shown in Tab. 2.2. In the last construct in the table (called choice from a set), we

need to have a side condition y \ E that says y is not free in E .
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Table 2.2: From AMN substitutions to GSL

AMN substitution GSL equivalent

BEGIN S END S

PRE P THEN S END P | S
x : = E || y : = F x , y : = E ,F

CHOICE
S

OR
T

END

S [] T

IF P THEN
S

ELSE
T

END

(P =⇒ S ) [] (¬P =⇒ T )

IF P THEN
S

END

(P =⇒ S ) [] (¬P =⇒ skip)

ANY x WHERE
P

THEN
S

END

@ x · (P =⇒ S )

x :∈ E @ y · (y ∈ E =⇒ x : = y)

More syntactical extensions of AMN can be defined accordingly, such as ELSIF,

CASE and SELECT clauses. These extensions can be found in [4, 68].

Notice that the parallel substitution does not have any precise semantics; in-

stead, it is syntactically de-sugared and ultimately becomes a multiple substitution.

For example, a parallel substitution that involves two simple substitutions

x : = 1 || y : = 1 , (2.8)

is de-sugared to

x , y : = 1, 1 . (2.9)

Some of the rules for de-sugaring parallel substitutions are shown in Tab. 2.3.
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Table 2.3: De-sugaring parallel substitution

Left Right (de-sugared

(S [] T ) || U (S || U ) [] (T || U )

U || (S [] T ) (U || S ) [] (U || T )

S || (T || U ) S || T || U
S || T || skip S || T
S || skip || U S || U
skip || T || U T || U

For a complete formal definition of AMN, the reader is referred to [4].

2.3 Software Development Using the B-Method

The B-Method is a method for formal developments of large software systems,

which is an essential technique in software engineering. By using the idea of

abstract machines for describing the explicit model of the states of systems, the

abstraction captures the essential properties of the data, but not necessarily the im-

plementation details. Formal developments enable the developers with a power that

is not available to those who are using informal methods: the power to prove the

correctness of systems. As described in Sec. 2.2, the abstract machines are entirely

based on set theory and predicate calculus, and proof obligations are generated ac-

cordingly to guarantee their consistencies, which will be crucial for some software

systems, such as defence or safety-critical systems.

In B, the abstract machine has three forms: specification, refinement and im-

plementation, that are used at different stages of the development process. This

process can be seen in Fig. 2.4 on the following page.

The development process starts with a specification, in which the operations

can be written using abstract constructs, including parallel substitutions and non-

deterministic substitutions. The invariant of the specification gives the relation-

ships between those variables that make up the state of the system. Together with

the initialisation and operations, they are part of the state-machine model of soft-

ware systems.

In the next step, the developer needs to “refine” the specification because of its
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Figure 2.4: Software development using the B-Method

abstraction. There are no executable code equivalents to parallel or non-deterministic

substitutions. This step can be repeated so that the structures of data and operations

become more concrete and closer to executable code. More details can be added

to the development and non-translatable constructs can be resolved during this se-

quence of refinements.

At the end of this process, an implementation is created. It is a special refine-

ment, in which only limited constructs can be used. This is because we want to be

able to translate from the implementation into executable code directly. It means

that constructs such as parallel substitutions and non-deterministic substitutions

cannot be present in the implementation.

During the development, proof obligations are generated and discharged in or-

der to maintain the correctness of the refinement. The obligations will provide

the consistency of transforming from a simple abstract specification to a complete

implementation of a system. This is the main advantage of using formal methods

and in particular of using B where the correctness for a whole development can be

assured.
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MACHINE Set

SEES Bool TYPE

VARIABLES set

INVARIANT set ⊆ 

INITIALISATION set := {}

OPERATIONS

Operation: AddSet

Requirements: Add an element elem to the set.

Precondition: The element is new.

AddSet ( elem ) =̂

PRE elem ∈ 
 ∧ elem 6∈ set THEN

set := set ∪ { elem }

END ;

Operation: InSet

Requirements: Check whether an element elem is in the set

or not and return TRUE or FALSE accordingly.

Precondition: Trivial precondition about type of the input.

in←− InSet ( elem ) =̂

PRE elem ∈ 
 THEN

IF elem ∈ set THEN in := TRUE

ELSE in := FALSE

END

END
END

Figure 2.5: Specification of a simple set

As a first example of a development using the B-Method, we consider a speci-

fication of a simple set of natural numbers, with two operations. The first operation

is to add an element to the set. The second one is a query operation to check

whether an element is in the set or not. The specification is shown in Fig. 2.5.
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REFINEMENT SetR

REFINES Set

SEES Bool TYPE

VARIABLES sequence

INVARIANT
sequence ∈ iseq ( 
 ) ∧

Retrieval relation

ran ( sequence ) = set

INITIALISATION
sequence := [ ]

OPERATIONS

Operation: AddSet

Requirements: Append the element to the end of the se-

quence.

AddSet ( elem ) =̂ sequence := sequence← elem ;

Operation: InSet

Requirements: Check whether the element is in the range of

the sequence or not and return TRUE or FALSE accordingly.

in←− InSet ( elem ) =̂

IF elem ∈ ran ( sequence ) THEN in := TRUE

ELSE in := FALSE

END
END

Figure 2.6: Refinement of a simple set by a sequence

We refine the set to an injective sequence which contains all the elements of

the set. A refinement construct starts with the REFINEMENT clause which gives

the name of the construct (with no parameter), and is followed by the REFINES

clause which states the name of the construct that it refines. The rest of a refine-

ment construct’s syntax is the same as a machine’s syntax. The invariant now also
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states a retrieval relationship which relates the variables of the refined and refining

machines. The proof obligations of refinement constructs are not only concerned

with maintaining the invariant but also the refinement relationship between the

operations of the refining and refined constructs. Because of changes in data repre-

sentation, the operations are now modelled in terms of the sequence. The syntax of

the refinement’s operations is nearly the same as syntax specification’s operations

(as described in Sec. 2.2), with a small extension because sequential composition

is now allowed. The refinement is shown in Fig. 2.6 on the preceding page.

An implementation is a special refinement. In B, an implementation starts with

the IMPLEMENTATION clause which gives the name of the construct and the

REFINES clause which gives the name of the construct that it implements. The

implementation does not have a state of its own. Instead, it “imports” other spec-

ifications to model the state of the refined construct. In our case, a “modified” 2

copy of the system library for modelling a sequence of natural numbers (namely

nat Nseq) is used for implementing the system. The operations are now imple-

mented by calling operations from the imported machine accordingly. The imple-

mentation is shown in Fig. 2.7 on the following page. A part of the supporting ma-

chine nat Nseq related to the implementation can be seen in Fig. 2.8 on page 25.

Certainly, a specification can be refined and implemented in many levels and

developers can reuse specifications of their own for the purpose of implementing

other specifications.

The software development through refinement and implementation guarantees

that the final executable code is proved to be consistent with the specification.

2.4 The B-Toolkit

The B-Method is supported by the B-Toolkit [37]. Other toolkits are also supporting

the B-Method are Atelier B [14], B4free [15], jBTools [12] and StudioB [13]. We

have chosen to use the B-Toolkit as our main toolkit to illustrate the extension of

the method to a probabilistic context.

The B-Toolkit is developed by B-Core (UK) Ltd. [37]. It is responsible for

2 The actual system library does not support unbounded natural numbers and unbounded se-

quences. In our case, in order to use the actual system library, the development would have to

introduce bounds from the specification level.
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IMPLEMENTATION SetRI

REFINES SetR

SEES Bool TYPE

IMPORTS nat Nseq

INVARIANT

Retrieval relation

nat Nseq = sequence

OPERATIONS

Operation: AddSet

Requirements: Implementation of the operation by calling

the PSH NSEQ operation of the imported machine.

AddSet ( elem ) =̂ nat PSH NSEQ ( elem ) ;

Operation: InSet

Requirements: Using the SCH LO EQL NSEQ operation

of the imported machine to find if the element is in the se-

quence or not.

in←− InSet ( elem ) =̂

VAR jj , kk , ii IN

jj := 1 ;
kk←− nat LEN NSEQ ;
in , ii←− nat SCH LO EQL NSEQ ( jj , kk , elem )

END
END

Figure 2.7: Implementation using a system library

maintaining the configuration of a development, in which programs are put through

different phases: analysis, proof-obligation generation, proof of obligations, doc-

umentation, etc. The internals of the Toolkit are built on top of a theorem prover

called the “B-Platform” (or sometimes, the “B-Tool”). The Toolkit is controlled

by a set of “Toolkit binaries” which is the set of rules to drive all of the B-Toolkit’s
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MACHINE nat Nseq

· · ·
VARIABLES nat Nseq

INVARIANT
nat Nseq ∈ seq ( 
 )

INITIALISATION
nat Nseq := [ ]

OPERATIONS
· · ·
nat PSH NSEQ ( vv ) =̂

PRE

vv ∈ 


THEN

nat Nseq := nat Nseq← vv

END ;
· · ·
bb , ii←− nat SCH LO EQL NSEQ ( jj , kk , vv ) =̂

PRE

vv ∈ 
 ∧

jj ∈ 
 ∧

kk ∈ 


THEN

LET ss BE

ss = jj . . kk ∩ nat Nseq −1 [ { vv } ]

IN

bb := bool ( ss 6= {} ) ‖

ii := min ( ss ∪ { size (nat Nseq) } )

END

END ;
· · ·
END

Figure 2.8: System library nat Nseq
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Figure 2.9: The B-Toolkit’s architecture [9]

processes from parsing, type-checking to documenting all constructs. In order to

maintain the state of a development, the toolkit has a “Construct manager” to act

between its “Motif interface” and the B-Platform. The developers input via menus

and buttons in the Motif interface, these are passed to the Construct manager where

they are translated into series of goals for the B-Platform. In order to “discharge”

these goals, the B-Platform invokes the appropriate rules in the Toolkit binaries.

Any messages (such as, warning messages or error messages) will be passed in

the opposite direction, through the B-Platform and the Construct manager to the

Motif interface for the developers. These processes can be seen in Fig. 2.9. We

will concentrate on how to write the rules to create the Toolkit binaries, which will

help us to integrate probabilistic features into the B-Method.

For a construct (specification, refinement or implementation), its life-cycle is

as follows:

Analysis. The analysing process involves normalising, syntax checking and type

checking. In the normalising phase, the definitions are expanded; the construct is

de-sugared from AMN to GSL. All processes are driven by proof rules. A proof

rule is formed by constructing a goal and list of antecedents. The current goal is

discharged by solving all these antecedents. Each antecedent becomes the sub-goal

and the process is repeated.

For example, in order to de-sugar a CHOICE clause, the following proof rules

can be used:
Desugar(S ) ∧
MergeAndPush /*Merge the result with the top of the stack

and push the after-merged result to the stack*/
Desugar(CHOICE S END)

(2.10)

Desugar(T ) ∧
Push ∧ /* Push the result on the stack */
Desugar(CHOICE S END)
Desugar(CHOICE S OR T END)

(2.11)
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The order of these proof rules is also very important. The rules are chosen from

bottom up. Starting with the original goal to de-sugaring a CHOICE clause (which

matches with the goal of the second rule), the theorem prover (which is used to

discharge the goal) has to discharge a sub-goal (which is the first antecedent of

(2.11)), in order to de-sugar T . Then the theorem prover pushes the result onto the

stack (the second antecedent). It discharges the last sub-goal which is to de-sugar

the clause “CHOICE S END” using the first proof rule (2.10). Every process in the

B-Toolkit is driven by similar sets of rules.

After normalisation, the construct undergoes the syntax checking stage. The B-

Toolkit checks that the clauses used in the construct are consistent with the rules of

Abstract Machine. After this stage, the construct needs to be type-checked. Every

variable or constant in B needs to be type-consistent. Types in B are defined by

set-inclusion properties, e.g. var ∈ 
 or const ∈ 
1. At the end of this analysing

process, a concise version of the construct is generated and, from this point onward,

other processes will work with this concise form of the construct. This means that

the construct no longer needs to be parsed or type-checked again (unless the source

code is changed).

Details about the proof rules’ syntax and semantics can be found in [1, 2].

Proof-obligation generation. After the analysis phase, proof obligations can be

generated for the analysed constructs. Depending on the type of the construct

(specification, refinement or implementation), proof obligations can be generated

accordingly. For example, the following specification

MACHINE MachineName(x)
CONSTRAINTS P
CONSTANTS c
PROPERTIES Q
VARIABLES v
INVARIANT R
INITIALISATION T
OPERATIONS

z←− OpName =̂ PRE L THEN S END;
· · ·

END
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yields the following proof obligations:

1. ∃ x · P
2. P ⇒ ∃ c ·Q
3. P ∧Q ⇒ ∃ v · R
4. P ∧Q ⇒ [T ]R

5. P ∧Q ∧ R ∧ L ⇒ [S ]R

The first three obligations are for the existence of the machine parameters, con-

stants and variables, respectively. This is purely for the consistency of the context

information (this is the reason why they are called context proof-obligations). If

the context information is inconsistent, the specification will not be implementable.

The last two obligations are for the initial establishment of the invariant and main-

tenance of such an invariant.

We consider the most general case of refinement (both data and algorithmic)

for the above machine as follows:

REFINEMENT RefinementName
REFINES MachineName
VARIABLES w
INVARIANT N
INITIALISATION U
OPERATIONS

z←− OpName =̂ PRE M THEN V END;
· · ·

END

which yields the following proof obligations:

1. ∃(v ,w) · (R ∧N )

2. [U ]¬([T ]¬N )

3. ∀(v ,w) · (R ∧N ∧ L⇒ M )

4. ∀(v ,w) · (R ∧N ∧ L⇒ [V ′]¬([T ]¬(N ∧ z = z ′))

In the fourth proof obligation, V ′ is the substitution in which all of the occur-

rences of output z have been replaced by z ′. The first obligation deals with the

consistency of the variables and invariant. The second obligation deals with the

establishment of the invariant by the initialisation. The third obligation states that

whenever the specification’s operation can be invoked, the corresponding operation
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in the refinement can also be invoked. The fourth obligation says that the refine-

ment’s operation establishes the states where the specification’s operation cannot

fail to establish the invariant N , while also preserving the value of the output z .

The complete set of rules for proof obligation generation can be found in [4,

38].

Loops. A special construct in B is the loop. The B-Method supports

loops but only within implementation constructs. If the developers

want to have loops in the specification or refinement constructs, loops

will be written in their abstractions and later refined to the actual loops,

which will require a proof that they do in fact refine their abstractions.

The semantics of loops can be given by a least-fixed point formula

[4], but here we only consider the proof obligations for loops which

are based on the Invariant/Variant Theorem [19, 4]. The idea is to

denote loops with an invariant predicate I and a variant V (which is a

natural number valued expression of the state). We have the following

theorem that provides sufficient conditions for proving the correctness

of loops.

Theorem 1 Assume we have the following WHILE loop (which we

denote “loop”)
WHILE G DO

S
INVARIANT I
VARIANT V
END ,

and we want to prove [loop]Q where Q is an arbitrary post-condition.

If we have the following conditions:

• the invariant I is maintained by the execution of the body of loop,

i.e.

G ∧ I ⇒ [S ] I , and

• on termination, the post-condition Q is established, i.e.

¬G ∧ I ⇒ Q , and
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• the variant V is natural number, i.e.

G ∧ I ⇒ V ∈ 
 , and

• the variant V decreases for every iteration of the loop, i.e.

∀N .(G ∧ I ∧ (V = N )⇒ [S ] (V < N )) ,

then I ⇒ [loop]Q , i.e. we can prove I instead of [loop]Q .

Later, we extend the above theorem to cover probability-one termina-

tion and general probabilistic loops.

Proof of obligations. The B-Toolkit provides three different provers for discharg-

ing the obligations generated in the earlier steps. The developers can use a fully

automatic prover (which uses the standard library rules) called AutoProver, a man-

ual prover called BToolProver or a semi-automatic prover called InterProver. With

the BToolProver, extra proof rules can be added, in order to help with proving the

obligations. Discharging proof obligations guarantees that the construct is consis-

tent (in the case of specifications), and the refinement relationship is correct (in the

case of refinements and implementations).

Animation. The developers can animate any specification construct. The pur-

pose of animating is to validate that the specification is what the users want (veri-

fying against requirements). Since a specification is the first step in a development,

it is very important to have a correct specification [31, 36].

Translation. For the implementation construct, the translation to executable code

is straightforward (by simply clicking a button). The translation process is also

controlled by proof rules. The produced executable code is the code that provides

the functionality of the specified system. However, it still needs an interface in

order to be run properly.

Interface generation. In order to run the code generated by the translation pro-

cess, an interface construct needs to be added to the development. The interface

construct contains the name of the operations that the developers want to generate

the interface for.
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Documentation. Once analysed, all the constructs in the B-Toolkit can be docu-

mented, and this process is also driven by proof rules. This includes the obligations

and their proofs.

The nature of the B-Toolkit—that is built on top of a theorem prover— has the

advantage that it can be extended easily by adding new rules. Once the syntax and

semantics of the proof rules have been studied, adding new features to the B-Toolkit

is just a matter of writing the corresponding proof rules.

2.5 The Probabilistic Generalised Substitution Language

The (now called) “standard” GSL acts over predicates, and its substitutions can de-

scribe both the non-deterministic and deterministic behaviours of software. Non-

deterministic behaviour allows GSL to be used as a specification language, where

implementation issues can be deferred to later stages via refinement. A specifica-

tion is usually very simple and easy to understand, in order to be easily compared

with the users’ requirements.

Even so, the standard GSL cannot be used to describe systems with proba-

bilistic non-deterministic behaviours. For example, a system containing sensors

which have certain probabilities of failure would not be specified. Other limita-

tions include the inability to specify and implement randomised algorithms. In

other words, the standard GSL cannot describe the behaviour of substitutions such

as: “do S with some probability and do T otherwise”. The closest it can get to

describing this is to use a non-deterministic substitution such as

S [] T ,

which means that either S or T is performed but the information about probability

is ignored. Morgan’s proposal of pGSL [45] provides a solution to this problem.

In this section, we first review some elementary concepts from probability the-

ory; then we look at the syntax of the new language; then we present the semantics

of pGSL; and finally, we consider some examples of pGSL.

2.5.1 Elementary Probability Theory

Probability theory [18] provides the following concepts which are sufficient for our

purpose. The principal concepts we need are distribution and expected value.
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Experiment: Any process of observation or measurement.

Outcomes: The results obtained from an experiment.

Sample space: The set of all possible outcomes of an experiment.

Event: A subset of the sample space.

Probability distribution (discrete): A normalised function from the

sample space to [0, 1] giving the probability of each outcome.

Random variable: Any function from the sample space into the re-

als.

Characteristic function: The characteristic function of an event is a

random variable that takes value 1 for outcomes in the event, and

0 otherwise.

Expected value (discrete): If f is a bounded random variable and µ

is a discrete distribution, both over sample space S , then the ex-

pected value of f over µ is defined:∑
s∈S

f (s)× µ(s) .

As a consequence of the above definitions, it is easy to see that the expected

value of a characteristic function over a distribution is equal to the probability

assigned to its underlying set by that distribution.

2.5.2 pGSL Syntax

The probabilistic choice substitution is the only extra substitution in pGSL. It has

the following form

S p⊕ T . (2.12)

The meaning of the substitution is that the left branch S is chosen with probability

p and the right branch T is chosen with probability 1 − p. The probability p can

be a function of the state that takes the value between 0 and 1 (inclusive). So the

language of pGSL now involves both non-deterministic and probabilistic substitu-

tions. It proves to be a challenging task to have both kinds of substitutions in the

language. The language is now capable of modelling systems with probabilistic
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and non-deterministic behaviours, i.e. it can be used as a specification language

for probabilistic systems.

As a first example of a program written in pGSL, consider

x : = 1 1
2
⊕ x : = 2 , (2.13)

which sets x to either 1 or 2 with equal probability (one-half). As a more com-

plex example, consider a program with both probabilistic and non-deterministic

substitutions. (
x : = 1 1

3
⊕ x : = 2

)
[]
(
x : = 1 2

3
⊕ x : = 2

)
. (2.14)

The meaning of this program is either assign 1 to x with probability 1
3 and assign 2

to x otherwise, or to assign 1 to x with probability 2
3 and assign 2 to x otherwise.

Overall, the effect of Prog. (2.14) is to set x to 1 with a probability between 1
3 and

2
3 , and otherwise to set x to 2.

2.5.3 pGSL Semantics

In order to accommodate the extension, pGSL uses real-valued expressions instead

of Boolean-valued expressions for its “predicates”, which are now called “expec-

tations”: the numbers represent “expected values” rather than the normal predicate

that either does, or does not hold. In other words, we replace certainty by prob-

ability. The notion of weakest precondition in GSL gives the (weakest) condition

under which a certain program is guaranteed to establish a post-condition Q . There

is a similar notion in pGSL called weakest pre-expectation, which gives the lower

bound (evaluated in the initial state) of a post-expectation after executing the pro-

gram. Imagine that a program S is executed from the same initial state many times:

the expected value of post-expectation B in the resulting final states is then to be

“at least” 3 the actual value of the pre-expectation A in the initial state.

As an example, consider the program Prog. (2.13): what can we say about the

value of the expression x 2? It can be either 1 or 4 depending on which branch the

execution takes, but moreover, we can say that (in a long run) the expected value

of x 2 is
1
2
× 12 +

1
2
× 22 =

5
2

.

3The reason why it is “at least” rather than “equal to” will be explained later.
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With this intuition, we start with two definitions:

[[x : = E ]]B =̂ B with x replaced everywhere by E , 4

[[S p⊕ T ]]B =̂ p × [[S ]]B
+ (1− p) × [[T ]]B .

In the above definitions, we use double brackets [[·]] to distinguish the substitu-

tions of probabilistic programs from standard programs ([·]). Later, we will argue

that there are not many differences between them and the notation can be merged

together to avoid confusion.

What about questions such as “What is the probability that x ≤ 1 after the

execution of Prog. (2.13)?” It is easy to see that the probability is exactly 1
2 (the

probability of executing the left-branch), but how can we formally reason about

this? We introduce the notion of an embedded predicate 〈P〉. We define 〈true〉 to

be 1 and 〈false〉 to be 0, so that 〈P〉 is just the probability that a given predicate P

holds 5. Trivially, if P is false, it holds with probability 0 and if P is true, it holds

with probability 1. Returning to the question above, it turns out that the answer is

just [[Prog . (2.13)]] 〈x ≤ 1〉. We can calculate the probability as follows:[[
x : = 1 1

2
⊕ x : = 2

]]
〈x ≤ 1〉

≡ 1
2 × [[x : = 1]] 〈x ≤ 1〉

+ (1− 1
2) × [[x : = 2]] 〈x ≤ 1〉

probabilistic choice substitution

≡ 1
2 × 〈1 ≤ 1〉+ 1

2 × 〈2 ≤ 1〉 simple substitution

≡ 1
2 × 1 + 1

2 × 0 logic and embedded predicate

≡ 1
2 arithmetic

Implication-like relations between expectations are defined as follows:

A V B =̂ A is everywhere no more than B
A ≡ B =̂ A is everywhere equal to B
A W B =̂ A is everywhere no less than B

4Here, we only replace free occurrences of x in the substitution. If necessary, the variables will

be renamed to avoid name clashes.
5 In fact, 〈P〉 is the characteristic function of predicate P .
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These relations are used to give the definition for (algorithmic) refinement between

programs in pGSL. Program S is refined by program T if, for all expectations B ,

we have

[S ]B V [T ]B .

We will extend the B-Method with the probabilistic choice substitution and use this

definition of refinement in our new framework.

Even though we have used the double brackets ([[·]]) for probabilistic substitu-

tion, there is little distinction to make when the actual program is standard (i.e.,

when it contains no probabilistic choice substitution). In fact, the calculation for

standard programs in a probabilistic framework is effectively the same, as the fol-

lowing lemma shows.

Lemma 1 If S is a standard and feasible program — that is, one which contains

no probabilistic choice and is non-miraculous — then for any post-condition Q ,

we have

[[S ]] 〈Q〉 ≡ 〈[S ]Q〉 .

The lemma states that it is irrelevant for one to calculate the pre-expectation or the

precondition (and then use an embedding to convert into a real number), in the case

of a standard program with respect to a standard precondition. The intuition of the

lemma is that the standard implication and the implication-like relation in pGSL

agrees for standard predicates, i.e.

P ⇒ Q exactly when 〈P〉 V 〈Q〉 .

More details and the intuitive meaning of this lemma can be found elsewhere [41].

From now on, we will use the substitution ([·]) for probabilistic substitutions.

The distinction between probabilistic and standard substitution will be based on

the nature of the program itself with respect to predicates or expectations.

The semantics of probabilistic substitutions needs to be changed according to

the replacement of expectations by predicates. The summary for the semantics of

pGSL can be seen in Fig. 2.10 on the next page.

For the healthiness condition and algebraic properties of pGSL, the reader is

referred to other publications [49].

We now consider the Prog. (2.14). We can ask the same question “What is

the probability that x ≤ 1 after the execution of Prog. (2.14)?” There are no exact
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[x : = E ]B The expectation by replacing all free occurrences of x

by E in B .

[P | S ]B P × [S ]B .

[S [] T ]B [S ]B min [T ]B .

[S p⊕ T ]B p × [S ]B + (1− p)× [T ]B .

[S ;T ]B [S ] ([T ]B) .

[P =⇒ S ]B 1/P × [S ]B .

[skip]B B .

[@ x · S ]B ux · ([S ]B) .

• P is a predicate;

• B is an expectation;

• S ,T are probabilistic generalised substitutions;

• x is a variable (or a vector of variables);

• ux · (E ) is the minimum of E for all x .

• We also assume that∞× n =∞ for any positive number n .

Figure 2.10: pGSL — the pGSL semantics [45]

numbers that answer the question (because of the non-determinism). To be precise,

we have to re-phrase our question as: “What is the least guaranteed probability

that x ≤ 1 after the execution of Prog. (2.14)?” If we apply the semantics given in

Fig. 2.10, we calculate the answer as follows:[(
x : = 1 1

3
⊕ x : = 2

)
[]
(
x : = 1 2

3
⊕ x : = 2

)]
〈x ≤ 1〉

≡ non-deterministic substitution[
x : = 1 1

3
⊕ x : = 2

]
〈x ≤ 1〉

min [
x : = 1 2

3
⊕ x : = 2

]
〈x ≤ 1〉
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≡ probabilistic choice substitutions(
1
3 × [x : = 1] 〈x ≤ 1〉

+ (1− 1
3) × [x : = 2] 〈x ≤ 1〉

)
min (

2
3 × [x : = 1] 〈x ≤ 1〉

+ (1− 2
3) × [x : = 2] 〈x ≤ 1〉

)

≡

(
1
3 × 〈1 ≤ 1〉

+ (1− 1
3) × 〈2 ≤ 1〉

)
min (

2
3 × 〈1 ≤ 1〉

+ (1− 2
3) × 〈2 ≤ 1〉

)
simple substitutions

≡
(

1
3 × 1 + 2

3 × 0
)

min
(

2
3 × 1 + 1

3 × 0
)

logic and embedded predicates

≡ 1
3 min 2

3 arithmetic

≡ 1
3 . arithmetic of min

So we conclude that the probability of Prog. (2.14) to establish x ≤ 1 is at least
1
3 , which is reasonable since the program sets x to 1 with a probability between
1
3 and 2

3 . Because of the decision to have “min” for the semantics of the non-

deterministic substitution, the meaning of the weakest pre-expectation is at least

rather than equal to.

2.6 Summary

With the introduction of probability into GSL we obtain the new language pGSL.

B can be extended to cover probabilistic programs (programs with probabilistic

properties), from specifications to implementations. There is a need to have a tool

to support the method. The fact that the B-Toolkit is built on top of a theorem

prover reduces the work needed in order to integrate probabilistic features. We

simply need to construct the appropriate proof rules.

As a side effect of extending the B-Toolkit, we want to retain the original
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method (and hence the B-Toolkit) as much as possible. We want to have a sim-

ple extension of the method, whose application is sufficiently practical enough, but

also easy to build into the B-Toolkit. In a field where the full theoretical treatment

of both probabilistic choice and non-deterministic choice seems prohibitively com-

plex, we want to use practical problems to guide us towards the issues that are most

important.

The integration of probability into the B-Method results in a new method,

which can be applied to a wide range of problems: firstly for systems with almost-

certain termination (Chap. 3); secondly, with probabilistic invariant for probabilis-

tic machines (Chap. 4); and thirdly, the concept of refinement within the new

framework, which is retained (and explored in Chap. 5 and Chap. 6).



Chapter 3

Almost-certain Termination

3.1 Demonic- versus Probabilistic Termination

In some systems, we cannot be certain that the system will achieve a particular

result, but when we calculate the probability of obtaining such a result, it is actually

1. The simplest example is tossing a coin. If the coin is flipped often enough, then

“almost certainly” it will turn up heads. A more complex example is tossing two

coins: with similar reasoning, we can say that both coins will eventually be the

same with probability one. This kind of reasoning is often used in many existing

algorithms in distributed systems. It is an efficient way to break symmetry when

compared to normal deterministic algorithms.

Standard (non-probabilistic) B is currently not able to specify such systems

or indeed prove that they terminate with probability one. It can describe non-

determinism, for example, a coin that either turns up heads or tails. However, it is

not good enough to say that flipping the coin often enough will turn up heads, since

the non-deterministic choice allows the coin to turn up tails every time (Fig. 3.1 on

the next page) 1.

With the introduction of the “abstract probabilistic choice” operator (⊕), one

can specify an abstract coin such as in Fig. 3.2 on the following page. In this case,

1Here, we consider what is called demonically non-deterministic choice. There is also “angelic”

non-deterministic choice, which is used to specify the non-deterministic behaviour angelically, i.e. a

choice that can do either branch, but of which you can assume it always picks the better branch. From

now on, we assume that when talking about non-determinism, we are talking about demonically non-

deterministic choice.

39
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coin : = Tail ;
WHILE coin = Tail DO

coin : = Tail [] coin : = Head
END

Figure 3.1: A demonic coin

the coin also either comes up heads or tails but with some unknown probability.

(Later, we specify what the constraints for this probability are.) It is called abstract

probabilistic choice since we do not specify the exact probability of the choice.

The termination of the loop in the program in Fig. 3.2 happens with probability

one no matter which probability (provided not 0) is used for the coin (with some

exceptions). This is an important factor in simplifying the implementation of this

kind of “termination with probability one” algorithms.

coin : = Tail ;
WHILE coin = Tail DO

coin : = Tail ⊕ coin : = Head
END

Figure 3.2: An abstract coin

We want to give a formal notation and argument of how to express and rea-

son about the termination with probability one without significant changes to the

current B language.

In this chapter, we first study the zero-one law for probabilistic loops [41];

we then extend the GSL syntax to accommodate the abstract probabilistic choice

operator ⊕ and look at its corresponding AMN. We give the new proof obligations

for loops so that they are correct with respect to the new operator; we summarise

the necessary changes that have been made to the B-Toolkit; finally, we study two

examples, namely Root Contention (in the FireWire protocol [27, 28]) and Rabin’s

Choice-Coordination algorithm [57], which have been developed and proved using

the modified B-Toolkit.
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3.2 A Probabilistic Zero-one Law for Loops

In this section, we review the almost-certain property discussed in more details in

[41] and extract the rules required for the zero-one law.

3.2.1 Almost-Certain Correctness

Recall that in pGSL we usually deal with conclusions of the form

A V [S ]B ,

which can be interpreted as the “the expected value of B in the final state is at least

the (actual) value of A in the original state”. In the case that the post-expectation

is standard, i.e. of the form 〈Q〉, where Q is a standard predicate, [S ] 〈Q〉 is the

greatest guaranteed probability that predicate Q will hold after the execution of

the program S [49]. The post-condition is established “almost-certainly” when the

probability of establishing that post-condition is one. We start with the following

definition [41].

Definition 1 Probabilistic program S establishes post-condition Q almost-certainly

from precondition P when the following condition holds:

〈P〉 V [S ] 〈Q〉 .

The intuitive meaning of the definition is that when P does not hold, 〈P〉 is 0,

which makes the inequality hold trivially. When P holds, i.e. 〈P〉 is 1 and then

we must have [S ] 〈Q〉 is 1 also, which gives the above meaning of almost-certain

correctness.

The standard GSL logic is not defined for probabilistic choices, both abstract

(⊕) and concrete (p⊕). The best approximation one can get for probabilistic choice

in GSL is to use non-deterministic substitutions, but even with that, GSL fails to

prove the almost-certain correctness in most cases. GSL’s approximation in some

cases is too abstract, hence the information about termination will not be preserved

and should not be expected to be so. A trivial example is the program in Fig. 3.1

on the facing page. It is the non-deterministic approximation of the program in

Fig. 3.2 on the preceding page. However, while we know that (with some informal

reasoning) the program in Fig. 3.2 terminates with probability one, we cannot prove
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coin : = Tail ;
WHILE coin = Tail DO

coin : = Tail 0.5⊕ coin : = Head
END

Figure 3.3: A probabilistic coin

termination of the program in Fig. 3.1. In the next section, we will look at the

failure of the standard variant rule for loop when proving termination of this kind.

3.2.2 The Failure of the Standard Variant Rule

As we stated in the last section, the standard variant rule is not strong enough

to prove the almost-certain termination of a probabilistic loop (if we use a non-

deterministic approximation for the probabilistic choice). Consider the program

in Fig. 3.3. To avoid termination, the left branch (i.e. coin : = Tail ) must be

chosen in every iteration of the loop. The probability of this happening n times

in succession is 1
2n . Consider the case where the left branch is chosen “forever”.

The probability for that to happen therefore is 1
2∞ , and is effectively zero. So the

probability that the right branch (i.e. coin : = Head ) is chosen eventually —and

hence that the loop terminates— is essentially one.

Consider also the more abstract program in Fig. 3.2 on page 40, where the

concrete choice (0.5⊕) is replaced by abstract choice (⊕). Imagine that the abstract

probabilistic choice is in fact a probabilistic choice with unknown probability p.

With similar reasoning, the probability for the program avoiding termination is p∞.

So as long as p 6= 1, the program will be guaranteed to terminate with probability

one. Later, we will formalise the “proper” condition on p.

A standard program that can be used to describe the behaviour of both pro-

grams in Fig. 3.2 and Fig. 3.3 is the non-deterministic program in Fig. 3.1 on

page 40. However, the standard GSL variant rule fails to prove the termination

of such programs: there are no variants that are guaranteed to decrease for every

iteration of the loop, since indeed it does not necessarily terminate at all.

The failure of finding a variant for the loop indicates that we need to reason

about these probabilistic programs in a pGSL context. We need to strengthen the
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standard variant rule to concentrate on properties of the probabilistic choice (es-

pecially in the abstract case) with respect to almost-certain correctness. With the

introduction of the “zero-one” law in the next section, we will be able to reason

about this kind of correctness, which we are not able to in the standard semantics

of GSL.

3.2.3 Termination of Probabilistic Loops

In this section, we review the definition of the demonic retraction of probabilistic

programs, then based on that we give the zero-one law for loops.

In the previous section, we said that the program in Fig. 3.1 on page 40 is a

standard approximation for the programs in Fig. 3.2 on page 40 and Fig. 3.3 on

the preceding page. We will now take a closer look at this claim. Recall from

Sec. 3.2.1 that [S ] 〈Q〉 is the greatest guaranteed probability that Q is established

by the execution of S . If we want to find a standard approximation of S , then we

want to have a program Sd which is a standard program and is an abstraction of S ,

i.e. Sd v S . By the definition of refinement (Sec. 2.5.3), it would be necessary to

have:

[Sd ] 〈Q〉 V [S ] 〈Q〉 , for all predicate Q . (3.1)

On the other hand, the left-hand side of (3.1) can have values only either 0 or 1

since it is a standard program applied to a standard post-condition, and hence it is

trivially true that (3.1) is equivalent to

[Sd ] 〈Q〉 V b[S ] 〈Q〉c , (3.2)

where b·c is the mathematical floor function 2.

Recall from Def. 1 that the condition for almost-certain correctness for a prob-

abilistic program S to establish post-condition Q from precondition P is

〈P〉 V [S ] 〈Q〉 .

Since 〈P〉 has the value either 0 or 1, it is equivalent to

〈P〉 V b[S ] 〈Q〉c . (3.3)

2 The floor of a real number is the greatest integer that does not exceed it.
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Hence, for syntactic convenience, we make the following definition

bbSccQ =̂ ([S ] 〈Q〉 = 1) .

Even though S can be probabilistic, bbSccQ always has a Boolean value, i.e. it is a

predicate. Therefore, we can rewrite Fig. 3.3 on the preceding page, and state the

following definition.

Definition 2 Let S be a probabilistic program and let P and Q be predicates of

the state. We say that Q is almost-certainly established under execution of S from

any initial state satisfying P if

P ⇒ bbSccQ . (3.4)

(Notice we use⇒ to indicate that (3.4) is in fact a standard predicate).

We call bbScc the demonic retraction of [S ].

With the definition of demonic retraction, the zero-one law for probabilistic

loops can be defined as in the following lemma.

Lemma 2 Let

WHILE G DO
S

INVARIANT I
END

be a loop (denoted by “loop”) with invariant I being a predicate. If there exists a

number δ strictly greater than zero and we have that

I ∧G ⇒ bbSccI (3.5)

and δ × 〈I 〉 V [loop] 〈true〉 (3.6)

both hold, then in fact

〈I 〉 ⇒ [loop] 〈I ∧ ¬G〉 .

The intuitive meaning and proof of the above lemma can be found elsewhere [41,

44]. Here we concentrate on the application of the above lemma and define the

probabilistic variant rule for probabilistic loops.
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3.2.4 Probabilistic Variant Rule for Probabilistic Loops

The purpose of the probabilistic variant rule for loops is to reason about almost-

certain termination within the scope of standard predicates. In this section, we

look at some lemmas that support Boolean reasoning for probabilistic programs,

and then give the probabilistic variant rule.

In the previous section, we use demonic retraction to define the zero-one law

for loops. The property that makes demonic retraction so attractive to us is its

distributivity. The demonic retraction distributes just as the normal substitution

([·]) does, but it is also defined for probabilistic choice (p⊕). Moreover, the result

of demonic retraction is still in the Boolean domain, which means that the overall

reasoning is purely within the Boolean logic, as the following lemma shows.

Lemma 3 Demonic retraction has the same 3 distributivity properties as the stan-

dard substitution [·], and extends it as follows: if

0 < p < 1

then

bbS p⊕ TccQ ≡ bbSccQ ∧ bbTccQ .

Proof. For 0 < p < 1, we have

bbS p⊕ TccQ

≡ [S p⊕ T ] 〈Q〉 = 1 demonic retraction definition

≡ p × [S ] 〈Q〉 + (1− p)× [T ] 〈Q〉 = 1 . probabilistic choice

Since both [S ] 〈Q〉 and [T ] 〈Q〉 are between 0 and 1 (inclusive), we have

p × [S ] 〈Q〉 + (1− p)× [T ] 〈Q〉 = 1

if and only if

[S ] 〈Q〉 = 1 and [T ] 〈Q〉 = 1,

or equivalently

bbSccQ and bbTccQ both hold.
3An exception is that IF · · ·END must be treated as a whole.
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As for the substitution [·], there are no rules for distribution of bb·cc through WHILE

loops; instead it is approximated by the invariant/variant rules (see Sec. 2.4). Based

on Lem. 2, we can build the invariant/variant rules for probabilistic loops.

With this definition, one can see that the program in Fig. 3.1 on page 40 is the

demonic retraction of the program in Fig. 3.3 on page 42.

Before looking at the probabilistic variant rule, we need to introduce some

definitions as follows.

Definition 3 Let S be a probabilistic program in pGSL, and let P and Q be pred-

icates of the state. We say that Q has “some chance” of being established under

execution of S from any initial state satisfying P if

〈P〉 V d[S ] 〈Q〉e , (3.7)

where d·e is the mathematical ceiling function 4. As before, we make a definition

for syntactic convenience:

ddSeeQ =̂ ([S ] 〈Q〉 6= 0) .

Furthermore, ddSeeQ is a predicate even though S can be probabilistic. And we

can rewrite (3.7) as follows:

P ⇒ ddSeeQ .

We call ddSee the “angelic retraction” of [S ].

It turns out that “some chance” is not strong enough and we need to specify how

small the chance can be with the following definitions.

Definition 4 A probabilistic program S is “definite” if there exists a positive con-

stant ∆ such that, for all post-conditions Q , if S establishes Q with non-zero prob-

ability, then that probability is at least ∆. In other words

∆× d[S ] 〈Q〉e V [S ] 〈Q〉 . (3.8)

More information on angelic retraction and definiteness can be found elsewhere

[41].

Similarly to demonic retraction, we consider the distributivity of angelic retrac-

tion, and it turns out that a similar result can be achieved, as the following lemma

shows.
4 The ceiling of a real number is the least integer that it does not exceed.
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Lemma 4 Angelic retraction has the same 5 distributivity properties as the stan-

dard substitution [·], and extends it as follows: if

0 < p < 1

then

ddS p⊕ TeeQ ≡ ddSeeQ ∨ ddTeeQ .

There is also an extra condition for the distributivity of dd·ee into unbounded choice,

which is related to the definition uniformly definite. Full details can be found in

[41]. The definition is required to make sure that an infinite family of non-zero

probabilities does not have infimum zero. An important point to notice (similar

to the case of demonic retraction) is that the distributivity converts probabilistic

choice into Boolean disjunction, which again allows the overall reasoning to stay

within Boolean logic. Similarly, there are no distribution rules through WHILE

loops.

With the introduction of angelic retraction, we can now reformulate the second

rule (3.6) of Lem. 2 as the following probabilistic variant rule.

Lemma 5 Let

WHILE G DO
S

INVARIANT I
VARIANT V
END

be a loop (denoted by “loop”) with invariant I being a predicate, and variant V

being an integer-valued expression over the state. If we have

• V is bounded above and below, i.e. there are integer constants L, U such

that

I ∧G ⇒ L ≤ V ≤ U ; (3.9)

• V has some chance of decreasing, i.e. for any N , we have

I ∧G ∧ (V = N ) ⇒ ddSee(V < N ) ; and (3.10)

• S is definite,
5Again we insist that IF · · ·END be treated as a whole.
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then there is a strictly positive δ such that

δ × 〈I 〉 V [loop] 〈true〉 (3.11)

as required for Lem. 2.

Proof. Assume the loop has not terminated yet, i.e. I ∧ G holds in the current

state. From (3.9), the probability of termination from the current state is at least

the probability of U −L+1 successive decreases of V . However, from (3.10), we

know that for each iteration, the probability of V decreasing is non-zero, and from

the third condition (S is definite), the probability is at least ∆ for some positive

constant ∆. Therefore the overall termination probability is no less than ∆U−L+1.

So (3.11) is satisfied by taking δ to be ∆U−L+1.

With the above lemma, the proof obligation rules for loops can now be ex-

pressed entirely in Boolean logic, and we will re-assemble these in the next section.

3.2.5 Proof Obligation Rules for Probabilistic Loops

Informally, the proof obligations for probabilistic loops in order to prove almost-

certain correctness can be restated as follows:

1. The variant is bounded both above and below;

2. The body of the loop is definite.

3. The invariant is preserved. In this case, probabilistic choice is interpreted

demonically, i.e. using bb·cc; and

4. The variant decreases (with non-zero probability), in this case, we interpret

probabilistic choice angelically, i.e. using dd·ee.

The most important point to notice is that in the above summary the exact proba-

bility is not referred to at all. Formally, we have the following theorem about the

proof rule for probabilistic loops.
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Theorem 2 Assume we have the following loop (denoted by “loop”):

WHILE G DO
S

INVARIANT I
VARIANT V
END ,

where S is definite. Moreover, let I be a predicate, let V be an integer-valued

expression over the state space; and let L and U be constant integers (they can be

expressions of the state space, which are invariant over the execution of the loop

body). Let Q be the post-condition; then

If I ∧G ⇒ bbSccI (3.12)

and I ∧G ⇒ L ≤ V ≤ U (3.13)

and, for all N, I ∧G ∧ (V = N ) ⇒ ddSee(V < N ) (3.14)

and I ∧ ¬G ⇒ Q (3.15)

then 〈I 〉 ⇒ [loop] 〈Q〉 . (3.16)

In the above theorem, we said that the body of the loop S must be definite in

order to make sure that the theorem holds. Fortunately, this can be assured by the

following conditions 6:

• For any probabilistic choice, ensure that the probability of the choice is

“proper”, i.e., there exists a constant ε strictly greater than 0, such that for

every probability p in p⊕ satisfies ε < p < 1 − ε, every time the choice is

executed, and

• Do not allow (nested) WHILE-loops in the loop bodies.

Proofs that these conditions guarantee the definiteness can be found elsewhere [41].

Moreover, in the distribution laws for probabilistic choice, it does not matter

what the exact value of the probability (p) is, as long as p is “proper” (as in the first

condition). So we can simply ignore p altogether and, instead, use the “abstract

6 We will address these issues again in the next section about the implementation of almost-certain

termination.
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probabilistic choice” (⊕) with the “quasi-distribution laws” as follows:

bbS ⊕ TccQ ≡ bbSccQ ∧ bbTccQ (3.17)

ddS ⊕ TeeQ ≡ ddSeeQ ∨ ddTeeQ (3.18)

The above laws give us the opportunity to postpone the (real) arithmetic reasoning

and just concentrate on the almost-certain correctness, which can be reasoned en-

tirely in Boolean logic. This will be an important factor for extending the B-Toolkit

to support almost-certain correctness, which we will look at in detail in the next

section.

3.3 Implementation of Almost-certain Termination

The introduction of the abstract probabilistic choice operator (⊕) into GSL requires

changes in B, where the constructs (specifications, refinements, implementations)

are written in the AMN. (Only after analysis are programs translated into the more

concise GSL form.) We introduce a construct ACHOICE into AMN for this pur-

pose, so that

ACHOICE
S

OR
T

END

corresponds to S ⊕ T .

Since we have to prove that variants for loops are bounded above as well as

below, a new clause BOUND is introduced to declare the upper bound of a variant.

(By convention, the variant is always a natural number, so we can assume that the

lower bound is zero.) Thus, a WHILE-loop is now

WHILE G DO
S

INVARIANT I
VARIANT V
BOUND U
END .

Here, the type checker needs to be changed in order to check the type of the new

clause BOUND. The expression representing the upper bound must be correctly

typed as a natural number.
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When dealing with the proof obligation generator for loops, there are two parts:

proof obligations concerning partial correctness (if the loop terminates, then it is

correct) and total correctness (the loop does in fact (almost-certainly) terminate).

The rules are based on the Thm. 2 in Sec. 3.2.5, with an exception that, instead

of having a specific lower bound for the variant V , we prove that the variant is a

natural number (i.e. having an explicit 0 lower bound).

Unfortunately, treating the probabilistic choice both demonically (when prov-

ing the partial correctness) and angelically (when proving total correctness) might

result in duplicated proof obligations elsewhere. Consider the following example,

where an occurrence of ⊕ is followed by an operation with a precondition:

(S ⊕ T ) ; (P | U ) .

While proving the preservation of the invariant I , we treat ⊕ as [], i.e. we have to

prove that both S and T establish P . However, the proof of the decrease of the

variant must be handled separately, because of the angelic interpretation of ⊕; and

in this case we find that we must prove that either S or T establishes P .

This repetition of [S ]P and [T ]P is clearly not a problem in theory, but it is

certainly inconvenient in practice if the proofs require manual assistance — since it

will have to be given twice. A possible solution is to rely more heavily on the theory

of probabilistic loops [44], where we find that only partial correctness is required

for preservation of the invariant by the loop body: partial correctness applied to

preconditions allows them simply to be discarded.

For practical purpose, we can discard all preconditions of a loop body S before

generating the obligations for total correctness. Let dddSeee be the version of ddSee in

which all of the preconditions are discarded. We extend Thm. 2 as follows:

Theorem 3 Suppose we have a loop (denoted by “loop”)

WHILE G DO
S

INVARIANT I
VARIANT V
BOUND U
END ,

and we want to estimate bbloopccQ , where Q is a predicate. The following rules are

used to generate the proof obligations for this loop.
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If

• the invariant I is maintained during the execution of the loop (in which prob-

abilistic choice is interpreted demonically), i.e.

G ∧ I ⇒ bbSccI , and

• on termination, the post-condition Q is established, i.e.

¬G ∧ I ⇒ Q , and

• the variant V is natural number, i.e.

G ∧ I ⇒ V ∈ 
 , and

• the variant V is bounded above by U , i.e.

G ∧ I ⇒ V ≤ U , and

• the upper bound U is unchanged during the loop (in which probabilistic

choice is interpreted demonically), i.e.

∀N .(G ∧ I ∧ (U = N )⇒ bbScc(U = N )) , and

• the variant V has some chance of decreasing (in which probabilistic choice

is interpreted angelically), i.e.

∀N .(G ∧ I ∧ (V = N )⇒ dddSeee(V < N )) ,

then I ⇒ [loop]Q , i.e. we can prove I instead of [loop]Q .

The condition that the body of the loop (i.e. S ) is definite is guaranteed by the use

of the abstract probabilistic choice (which ensures that a proper probability will be

used in the implementation of this choice) and the restriction of the B-Method that

nested loops are not allowed.

This results in modifying the rules and theory for generating proof obligations

accordingly.
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3.4 Modifying the B-Toolkit for qB

3.4.1 System Library for Abstract Probabilistic Choice

We introduce the probability-one correctness into B and the result is called B with

probability-one termination (qB). We keep in mind that with qB we want to have

a simple solution for a set of problems with probability-one termination without

many changes to the original B-Method and the supporting B-Toolkit. Even though

the introduction of ACHOICE gives us a simple way of specifying probabilistic

programs and reasoning about them formally, the result will not have much practi-

cal use if we cannot implement them.

The abstract probabilistic choice ⊕ is not actually a program construct (i.e

code). It must be “refined” to or “implemented” by a proper probabilistic choice

substitution. In fact, an abstract probabilistic choice cannot be refined to any de-

terministic or non-deterministic substitution. It must be implemented by another

abstract probabilistic choice ⊕ or a probabilistic choice substitution p⊕ with a

“proper” p, i.e. be bounded away from 0 and 1 (see Sec. 3.2.5). The question now

is how this implementation can be done.

In fact, we say that the abstract probabilistic choice ⊕ is interpreted demoni-

cally everywhere (i.e. the same as the non-deterministic choice []) except inside a

loop. This interpretation makes the refinement of the ⊕ clause much harder. With-

out much improvement, if we simply treat⊕ the same as [], the proof obligation will

allow refinement from ⊕ to [], which we know to be unsound. To stop this happen-

ing, there must be a possible way to differentiate the abstract probabilistic choice

⊕ and the non-deterministic choice []. Since ⊕ can refine [], in most situations we

still want ⊕ to behave as [].

If we want to refine ⊕ during the development, then there must be some way

to distinguish between ⊕ and [], since the former is the refinement of the latter but

not the other way round. Moreover, if the program contains both ⊕ and [] then we

have to record the “positions” of both ⊕ and []. This makes the proof obligation

generation impossible to implement, and takes away the simplicity that we propose

by introducing ⊕ into B.

On the other hand, having abstract probabilistic choice ⊕ in a specification

or refinement construct gains nothing when compared with using [] (they are both
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MACHINE Rename AbstractChoice ( numerator , denominator )

CONSTRAINTS
¬ ( numerator = 0 ) ∧ ¬ ( denominator = 0 ) ∧

numerator < denominator

SEES Bool TYPE

OPERATIONS
bb←− Rename AbstractChoice =̂

ACHOICE bb := TRUE

OR bb := FALSE

END
END

Figure 3.4: Rename AbstractChoice system library machine

interpreted as []). However, in implementation construct, we cannot have ⊕ (di-

rectly) since it is not code. This suggests the proposal of having ⊕ as a system

library and the implementation from ⊕ to p⊕ is done during the code generation

phase, i.e., we have ⊕ as the specification of p⊕. Then we can use ⊕ for reasoning

about probabilistic-one termination, whereas the implementation to p⊕ is handled

automatically.

A library machine, namely Rename AbstractChoice, is created and develop-

ers will use this particular machine instead of using the ACHOICE clause directly.

Because it is a system library of the B-Toolkit, the developer does not need to worry

about the implementation of the Rename AbstractChoice machine. The speci-

fication has one operation to model the effect of an abstract probabilistic choice.

The specification Rename AbstractChoice can be seen in Fig. 3.4. In this ma-

chine, the concrete probability p is specified as a rational between numerator and

denominator which guarantees that p is “proper”, i.e. bounded away from 0 and

1. This is expressed as the constraints about numerator and denominator .

When using the ACHOICE clause, the developer can use machine composition

clauses such as, SEES, IMPORTS to embed a copy of Rename AbstractChoice

machine. In B implementation, only when a machine is imported are its parameters

initialised and an instance of its machine created. For Rename AbstractChoice

machine, this can be delayed until the final creation of the interface, which allows
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IMPLEMENTATION Rename AbstractChoiceI

REFINES Rename AbstractChoice

SEES Bool TYPE, Real TYPE

OPERATIONS
bb←− Rename AbstractChoice =̂

PCHOICE numerator // denominator OF

bb := TRUE

OR

bb := FALSE

END
END

Figure 3.5: Implementation of Rename AbstractChoice

the reasoning about the correctness of programs to stay in the Boolean context.

3.4.2 Syntactic and Other Changes

The introduction of the library machine Rename AbstractChoice avoids the ex-

tensive changes in the Analyser and TypeChecker. The Analyser only needs to

check that the ACHOICE clause is not allowed to be used directly. Since for every

machine, it needs the ASCII version for its pGSL syntax, a new clause is added that

is equivalent to the ACHOICE clause:

S <--> T is equivalent to S ⊕ T .

This syntax is important to the proof-obligation generator. Since we want to gener-

ate the obligations for proving probability-one termination properties of programs,

the proof-obligation generator for refinement is changed accordingly to incorpo-

rate the rules stated in the Sec. 3.3. This allows the obligations to be generated as

before for standard programs. If the program contains loops that have ACHOICE

clauses (or rather using the Rename AbstractChoice operation from the library

machine with the same name), the obligations are generated to prove the almost-

certain termination properties.

The implementation of Rename AbstractChoice machine can be written in

probabilistic Abstract Machine Notation (pAMN) as in Fig. 3.5. The abstract prob-
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#include "Rename_AbstractChoice.h"

#include "stdlib.h"

#include "Bool_TYPE.h"

void INI_Rename_AbstractChoice() {;}

void Rename_AbstractChoice(_bb)

int *_bb;

{

if (

(float)random() / (float)RAND_MAX <=

(float)Rename_AbstractChoiceP1 / (float)Rename_AbstractChoiceP2

) {

*_bb = TRUE;

}

else {

*_bb = FALSE;

}

}

Figure 3.6: Implementation of Rename AbstractChoice

abilistic choice ⊕ is now implemented by a (concrete) probabilistic choice p⊕,

where p is the fraction between the numerator and denominator parameters of

the machine 7. The constraint of the specification guarantees that p will be proper,

and hence the refinement condition for ⊕ is met. The translation of the implemen-

tation of the Rename AbstractChoice machine in C is done by using the random

facility as shown in Fig. 3.6.

Also, since we are using real numbers or rather a subset of real numbers repre-

sented by fractions between natural numbers, a machine is introduced as a system

library machine, namely Real TYPE (see Fig. 3.7 on the facing page). The imple-

mentation for frac(a, b) will be translated to C code as

(float) a / (float) b .

This requires a slight modification to the code-generation phase of the B-Toolkit.

7The symbol “//” is for the real division operator.
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MACHINE Real TYPE

SETS REAL

CONSTANTS frac

PROPERTIES frac ∈ 
 × 
1" REAL

DEFINITIONS a // b =̂ frac ( a , b )

END

Figure 3.7: Real TYPE system library machine for qB

Figure 3.8: Example of message sending

3.5 Applications of qB

In this section, we consider two case studies based on the development of qB,

both with probability-one termination. The first example is the Root Contention

problem in the FireWire protocol [27, 28]. The second example is Rabin’s Choice

Coordination algorithm [57].

3.5.1 Root Contention of the FireWire Protocol

The first example for termination with probability-one is the contention resolution,

part of the FireWire protocol [27, 28].

Overview of the Algorithm

We have a set of devices. The devices are connected in an acyclic network, where

each device is a node in this network. The connections between nodes in the net-

work are bidirectional. The algorithm provides a symmetric, distributed solution
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Figure 3.9: Contention

to find a node that will be a leader of the network in a finite amount of time. All

devices run the same algorithm to find the leader of the network. The algorithm is

described below.

Any node with only one connection can send the message “you be the leader”

via that channel to the neighbouring node. Also, any node that already received

the message “you be the leader” in all its connections except one, can send the

message “you be the leader” via that last remaining channel. This choice of which

node sends the message is non-deterministic. Finally there will be one node that

received the message “you be the leader” from all its connections and that will

become the leader of the network. An example can be seen in Fig. 3.8 on the

previous page.

The only problem that can happen is a livelock situation, when there are two

nodes left in the network that have not sent the message “you be the leader”. If

those two nodes connect with each other by one channel and both try to send the

message via that channel to tell the other node to be the leader of the network, then

livelock can occur. The nodes recognise the problem by receiving the message

“you be the leader” from the other node to which it has just sent a message. This

situation can be seen in Fig. 3.9.

Fortunately, there exists a probabilistic way to resolve the situation within a

finite time (which can be proved). The algorithm can be described as follows. Each

node independently chooses with the same non-zero probability, either to send the

message after a “short” time or after a “long” time (the assumption for the “long”

time being that it is long enough for the message to be transferred from one node

to another). Eventually, it is almost certain that one of them will choose to send

the message in a “short” time while the other has chosen to send the message in

a “long” time. The message that has been sent in a “short” time will then arrive

before the other has been sent (according to the assumption). An example for

solving contention can be seen in Fig. 3.10 on the next page, where one process

sends a “short” message and the other sends a “long” message.
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Figure 3.10: Probabilistic solution for contention problem

xx , yy←− Resolve =̂

CHOICE

xx : = short signal ‖ yy : = long signal

OR

xx : = long signal ‖ yy : = short signal

END

Figure 3.11: Specification Resolve operation

Specification: Non-deterministic Resolution

We are not going to model the full FireWire protocol, but only the part related to

the contention. When contention happens, two final nodes in the network try to

reconfigure and find the leader for the network. The abstraction of the algorithm

can be seen as one of the nodes becomes the leader non-deterministically. The

symmetry of the system is broken when one of the node waits for a long time

and the other waits for a short time. The Resolve operations have two outputs

and the effect of the operation is a non-deterministic assignment of short signal

and long signal to the outputs xx and yy, so that the outputs are different. This

specification can be seen in Fig. 3.11. The full machine is in Appendix A.1.

Implementation: Resolving the Contention

The implementation sees a copy of the standard library machine AbstractChoice

to gain access to an operation that represents abstract probabilistic choice (Fig. 3.12

on the next page). Two local variables tempx and tempy will represent the status

of the nodes during the process of breaking the contention. Initially, they are given

the same values (i.e. there is a contention).

Each node will either choose to send the message in a short time or to wait

for a long time (to have status short signal or long signal respectively) with some

non-zero probability. This maintains the fairness between choosing two different
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xx , yy←− Resolve =̂

VAR tempx , tempy , bb IN

tempx : = short signal ; tempy : = short signal ;
WHILE tempx = tempy DO

bb←− Firewire AbstractChoice ;
IF bb = TRUE THEN tempx : = short signal

ELSE tempx : = long signal END ;
bb←− Firewire AbstractChoice ;
IF bb = TRUE THEN tempy : = short signal

ELSE tempy : = long signal END

BOUND 1

VARIANT prob ( tempx = tempy )

INVARIANT tempx ∈ STATUS ∧ tempy ∈ STATUS

END ;
xx : = tempx ; yy : = tempy

END

Figure 3.12: Implementation Resolve operation

branches. A process cannot choose to send the message in a short time forever,

and vice versa. The contention is resolved (the loop is terminated) when two nodes

choose different values. Here, the values of tempx and tempy are changed according

to the result of the corresponding abstract probabilistic choice substitution.

The variant of the loop is the embedded predicate 〈tempx = tempy〉 8 —

denoted by prob(tempx = tempy) — which is the probability that tempx will be

the same as tempy. Clearly this variant is bounded above by 1 (by definition of

embedded predicates). The guard of the loop guarantees that the variant has value

1 before every iteration of the loop. And there is always a non-zero chance for the

variant to decrease to 0, i.e. that tempx and tempy are different.

The invariant is simply a type predicate for the local variable tempx and tempy.

On termination, the guard will guarantee that tempx 6= tempy , and also that the

outputs xx and yy are different, which satisfies our specification.

In this implementation, the abstract probabilistic choice comes from a seen

8Recall that the embedded predicate 〈P〉 has the value 1 if the predicate P is true and 0 otherwise.
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Resolve.5

cst ( FirewireResolveI 1 ) ∧ ctx ( FirewireResolveI 1 ) ∧

inv ( FirewireResolveI 1 ) ∧ asn ( FirewireResolveI 1 ) ∧

pre ( Resolve )

⇒

tempx ∈ STATUS ∧

tempy ∈ STATUS ∧

tempx = tempy

⇒

prob ( true ) < prob ( true )

∨

prob ( false ) < prob ( true )

∨

prob ( false ) < prob ( true )

∨

prob ( true ) < prob ( true )

Figure 3.13: Resolve.5 obligation

Construct Obs Automatic Manual Remained
FirewireResolve.mch 0 0 0 0
FirewireResolveI.imp 7 7 (in 2 levels) 0 0

Table 3.1: Proof obligations summary for Root contention problem

copy of the system library machine, namely Firewire AbstractChoice. The actual

probability that is used will be instantiated when the Firewire AbstractChoice

machine is included in the development. In this case, it is introduced into the

interface construct, i.e. it is instantiated when the actual interface is generated for

executable code. This does not effect the correctness of the implementation, since

as long as the input probability satisfies the constraint of Firewire AbstractChoice

machine (hence guaranteeing that it is proper), the program will terminate with

probability one. The full implementation is in Appendix A.2.
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Proof Obligations

Tab. 3.1 is the summary for proof obligations generated and discharged with the

root contention algorithm using the modified B-Toolkit.

Some proof rules need to be added to the rules base in order to discharge

the obligations for FirewireResolveI implementation. These are to assert facts

about embedded predicates, such as prob(true) = 1 and prob(false) = 0. The

obligation Resolve.5 for proving the termination with probability one is shown in

Fig. 3.13 on the preceding page. The disjunctions show that the abstract proba-

bilistic choice is interpreted angelically in this case. It means that the variant has

some chance (not necessary always) of decreasing.

So we have proved that the correct implementation for the contention and the

implementation does in fact terminate with probability one.

3.5.2 Rabin’s Choice Coordination

The second example of applying probability one termination is Rabin’s Choice

Coordination algorithm [57].

Overview of the Algorithm

The following is the summary of the problem and algorithm by Rabin in [57].

The Choice Coordination is the problem in which we have n different pro-

cesses (namely P1,P2, . . . ,Pn ) with k possible alternatives (A1,A2, . . . ,Ak ) for

the computations of these processes. Each process must choose only one of these

alternatives to execute. It does not matter which alternative to be chosen, but all

processes must choose the same alternative. It is assumed that each process has its

own system name, and for each alternative Ai where 1 ≤ i ≤ k , there is a shared

variable vi for 1 ≤ i ≤ k that can be accessed and modified by every process in

one indivisible step that cannot be interrupted by any other process. The algorithm

tries to break the inherent symmetry (where we are assuming that every process is

running the same algorithm).

We consider the slightly simplified version of the algorithm from Morgan [49]

which is described in terms of tourists. There is a group of tourists who try to agree

on going to either the church (assumed to be on the left) or the museum (assumed

to be on the right). In this case, the number of alternatives is 2. Each tourist carries
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a notepad that he/she uses to write a number on the notepad. There are two notice

boards outside the two places that can be used to write on. Usually, a number is

written on the notice board, but alternatively, a word “Here” can be written on it

as well. Originally, the number 0 appears on all of the tourists’ notepads and the

notice boards outside the two places.

Each tourist carries the notepad and chooses an initial place to go to, and then

alternates between the two places according to the following algorithm:

• If the notice board outside the place has the word “Here” then he goes inside

this place.

• Otherwise, the notice board will display a number L. By comparing this

number with the number K on his notepad, the tourist can do one of the

followings:

1. If K > L, he writes “Here” on the board then goes inside (deleting the

number L on the board).

2. If K = L, he then chooses a number K ′ = K + 2, then tosses a coin.

If the coin turns up heads then he keeps K ′ the same, otherwise he sets

K ′ to its “conjugate” 9 . He then writes K ′ on the board and on his

notepad before going to the other place.

3. If K < L, he replaces K with L on his notepad, and then goes to the

other place.

The algorithm is guaranteed to terminate with probability-one with all the

tourists inside either the church or the museum. We will investigate the correct-

ness of this algorithm by using B machines, refinements, and implementations. We

start with a very simple abstract specification and perform step by step refinements

of this specification.

Specification: Non-deterministic Destination

The specification contains no variables and has only one operation namely De-

cide. The inputs lout and rout of the operation represent the numbers of peo-

ple originally outside the two places: the church and the museum. The outputs
9conjugate of a number n is defined to be n + 1 if n is even and n − 1 if n is odd.



64 CHAPTER 3. ALMOST-CERTAIN TERMINATION

lin , rin←− Decide ( lout , rout ) =̂

PRE

lout ∈ 
 ∧ rout ∈ 
 ∧

lout + rout ≤ maxtotal

THEN

CHOICE

lin : = lout + rout ‖ rin : = 0

OR

rin : = lout + rout ‖ lin : = 0

END

END

Figure 3.14: Specification of Decide operation

lin and rin of the operation represent the numbers of people inside the places

afterwards. The behaviour of the operation is non-deterministic since the algo-

rithm does not specify where all the tourists will go. There are two possibilities:

either all the tourists will end up inside the left place (the church), in this case

lin : = lout + rout and rin : = 0; or they will all go inside the right place where

lin : = 0 and rin : = lout + rout .

The precondition in this case ensures that the total number of tourists does not

exceed a maximum number, which is specified as a parameter of the machine. This

is purely for the purpose of implementation in the later stage of the development

when importing the system libraries which have constraints on the their parameters.

The specification is shown in Fig. 3.14.

Refinement: Using Bags

In this step, we refine the above simple specification using the concepts of bags.

First of all, we introduce the specification of a “finite bag”. “Bag” is a mathematical

construct containing multiple elements. Unlike “Set”, that can only contain distinct

elements, “bags” can contain multiple occurrences of the same element. In the

specification, we model a finite bag of natural numbers as a function that maps

indexes to elements in the bag. The domain of the function is a finite set of natural

number to ensure that the bag is finite. Two indexes can map to the same number
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lin , rin←− Decide ( lout , rout ) =̂

BEGIN

ANY flinbag , frinbag , floutbag , froutbag

WHERE

flinbag ∈ Bag ∧ frinbag ∈ Bag ∧ floutbag ∈ Bag ∧ froutbag ∈ Bag ∧

dom ( flinbag ) ∈ � ( 
 ) ∧ dom ( frinbag ) ∈ � ( 
 ) ∧

dom ( floutbag ) ∈ � ( 
 ) ∧ dom ( froutbag ) ∈ � ( 
 ) ∧

floutbag = {} ∧ froutbag = {} ∧

( bagSize ( flinbag ) = 0 ∨ bagSize ( frinbag ) = 0 ) ∧

bagSize ( flinbag ) + bagSize ( frinbag ) = lout + rout

THEN

lin . SetToBag ( flinbag ) ‖ rin . SetToBag ( frinbag ) ‖

lout . SetToBag ( floutbag ) ‖ rout . SetToBag ( froutbag )

END ;
lin←− lin . Size ‖ rin←− rin . Size

END

Figure 3.15: First refinement of Decide operation

to represent the capability of having multiple elements in a bag.

The specification has operations to set the contents of the bag (SetToBag op-

eration), take out one element from the bag (Takelem operation), add one element

to the bag (Addelem operation), non-deterministically get one element from the

bag (Anyelem operation) and a query operation (Size) to get the size of the bag.

The details of the FBag machine are given in Appendix B.1.

The context machine FBag ctx contains context information (definitions) re-

lated to finite bags. It include the definitions of Bag and some other mathematical

constructs related to bags, such as, the size of a bag and the maximum element in

the bag. This machine also can be seen in Appendix B.2.

Using the idea of finite bags, we can represent the tourists in our algorithm.

Our tourists will be in one of four places: inside or outside, or the left or right

places (the church or the museum). Each tourist carries a notepad with a number

on it, and this will be the only characteristic of the tourist. Hence we can use four

finite bags to represent four groups of tourists. With the mechanism of renaming in
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the INCLUDES clause (see Sec. 2.2), we can have four instances (namely, lin, rin,

lout, rout for inside-left, inside-right, outside-left and outside-right, respectively)

of the finite bag specified above.

The operation Decide is now described in terms of these four bags. We still use

a non-deterministic clause (ANY) to specify the final values of the four bags. The

two bags that represent tourists outside two places (lout and rout) will be empty,

whereas only one of the bags representing tourists inside will be empty. The total

number of tourists is unchanged, i.e all the tourists will be gathered in the place

represented by the non-empty bag. This refinement can be seen in the Fig. 3.15 on

the preceding page.

Implementation: Using Abstract Probabilistic Choice

In the implementation of the Rabin’s algorithm, an instance of the AbstractChoice

system machine, namely tourist AbstractChoice is seen. This will allow access

to an abstract probabilistic choice substitution in the tourist AbstractChoice op-

eration. The implementation of the Decide operation (Fig. 3.16 on the next page)

starts with the InitState operation from the RabinState machine. This step corre-

sponds to a different set of people initially going to different places (where outside

the church there are lout people, and outside the museum there are rout people).

The main body of the implementation is a WHILE loop. The action of tourists

moving from one place to another continues until all of them end up in the same

place, i.e. the number of people outside the two places is zero (sizelout = 0 ∧
sizerout = 0). While there are still some people outside the destinations, a tourist

updates his pad according to the algorithm. And this step continues after checking

whether there are some people outside the two places. Here, we use the definition

of “conjugate” numbers when specifying the updating of the tourists’ notepads.

When the loop terminates, the sizes of the bag lin and rin are assigned to the

outputs accordingly. The invariant of the loop guarantees that the temporary vari-

ables sizelout and sizerout hold the number of people outside the two places, and

the total number of tourists is unchanged during the execution of the algorithm. An-

other invariant is needed (and is explained in [49]). It is that there are no tourists

outside the right place that have the same number on their notepad as the conjugate

of the number on the board at the left place and vice versa. This is expressed as

¬ ( Conjugate ( LLval ) ∈ ran ( routbag )) .
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lin , rin←− Decide ( lout , rout ) =̂

VAR sizelout , sizerout , bb , sizelin , sizerin , LLval , RRval , rr , ll IN

InitState ( lout , rout ) ; LLval←− LLVal ; RRval←− RRVal ;
sizelout←− loutSize ; sizerout←− routSize ; sizelin←− linSize ; sizerin←− rinSize ;
WHILE sizelout 6= 0 ∨ sizerout 6= 0 DO

IF sizelout 6= 0 THEN ll←− loutAnyelem ;
IF sizelin = 0 ∧ ll < LLval THEN MoveToRight ( ll , LLval )

ELSIF sizelin 6= 0 ∨ ll > LLval THEN MoveInLeft ( ll )

ELSE LLval : = LLval + 2 ; bb←− tourist AbstractChoice ;
IF bb = TRUE THEN MoveToRight ( ll , LLval )

ELSE LLval←− ConjugateCal ( LLval) ; MoveToRight ( ll , LLval ) END

END

ELSE rr←− routAnyelem ;
IF sizerin = 0 ∧ rr < RRval THEN MoveToLeft ( rr , RRval )

ELSIF sizerin 6= 0 ∨ rr > RRval THEN MoveInRight ( rr )

ELSE RRval : = RRval + 2 ; bb←− tourist AbstractChoice ;
IF bb = TRUE THEN MoveToLeft ( rr , RRval )

ELSE RRval←− ConjugateCal ( RRval ) ; MoveToLeft ( rr , RRval ) END

END

END ;
sizelout←− loutSize ; sizerout←− routSize ; sizelin←− linSize ; sizerin←− rinSize

BOUND lexicographic ( 2 , 0 )

VARIANT

lexicographic ( rEqual ( LLval , RRval ) ,

3 × ( bagSize ( linbag ) + bagSize ( rinbag ) ) +

( bagGreat ( loutbag , LLval ) + bagGreat ( routbag , LLval ) ) +

( bagGreat ( loutbag , RRval ) + bagGreat ( routbag , RRval ) ) )

INVARIANT

LL = LLval ∧ RR = RRval ∧ LLval 7→ RRval ∈ dom ( rEqual ) ∧ total = lout + rout

¬ ( Conjugate ( LLval ) ∈ ran ( routbag ) ) ∧

¬ ( Conjugate ( RRval ) ∈ ran ( loutbag ) ) ∧

bagSize ( loutbag ) = sizelout ∧ bagSize ( routbag ) = sizerout ∧

bagSize ( linbag ) = sizelin ∧ bagSize ( rinbag ) = sizerin ∧

END ;
lin←− linSize ; rin←− rinSize

END

Figure 3.16: Implementation of Decide operation
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The variant is defined to be a natural number corresponding to the lexicographi-

cal variant defined in [49]. Since the algorithm is to terminate with probability-one,

we have to specify the upper bound of the variant (see Sec. 3.3). In this case the

upper bound is defined using the BOUND clause, and a proof obligation will be

generated to prove that the variant is “always” bounded above by this constant (i.e.

lexicographic(2, 0)). The basis properties of lexicographic are as follows:

lexicographic(a, b) > lexicographic(c, d) iff a > c

and

lexicographic(a, b) > lexicographic(a, c) iff b < c ,

for a, b, c, d are natural numbers. In the variant, we use the definition rEqual

which can be seen in Fig. 3.17 on the facing page. The term rEqual is defined

according to the definition of conjugate numbers.

The main part of the algorithm (how the tourist updates his/her notepad) is rep-

resented by two branches of the IF clause. Here, the scheduler gives the favour

to the case where there are some people outside the left place. (In the ideal situ-

ation, it should be able to have a non-deterministic choice between the two cases,

or even better, a probabilistic choice). The implementation includes the machine

RabinState to model the sets of people in the different places. The program is

symmetric in terms of left and right (except for the choice that explained above).

For example, if there are some people outside the left place, any person from the

left place can have his turn, i.e.

ll←− loutAnyelem .

Then depending on the relationship between the number on his pad (ll) and the

number on the board (LLval), and whether or not there are already some people

inside the left place, the tourist responds accordingly by calling operations such as

MoveToRight or MoveInLeft. When there are no people inside the left place, and

the number on his pad equals to the number on the board, i.e.

ll = LLval ,

he increases his number by 2. The variable bb represents the output of the operation

tourist AbstractChoice (the outcome of the tossing a coin). Depending on the
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PROPERTIES
rEqual ∈ 
 × 
� 
 ∧

∀ ( mm , nn ) . ( mm ∈ 
 ∧ nn ∈ 
 ∧ mm = nn⇒ rEqual ( mm , nn ) = 2 ) ∧

∀ ( mm , nn ) . ( mm ∈ 
 ∧ nn ∈ 
 ∧

( mm = Conjugate ( nn ) ∨ nn = Conjugate ( mm ) )⇒

rEqual ( mm , nn ) = 0 ) ∧

∀ ( mm , nn ) . ( mm ∈ 
 ∧ nn ∈ 
 ∧

( minConjugate ( mm ) = minConjugate ( nn ) + 2 ∨

minConjugate ( nn ) = minConjugate ( mm ) + 2 )⇒

rEqual ( mm , nn ) = 1 )

Conjugate ∈ 
" 
 ∧

∀ nn . ( nn ∈ 
 ∧ nn mod 2 = 0⇒ Conjugate ( nn ) = nn + 1 ) ∧

∀ nn . ( nn ∈ 
 ∧ nn mod 2 = 1⇒ Conjugate ( nn ) = nn − 1 ) ∧

minConjugate ∈ 
" 
 ∧

∀ nn . ( nn ∈ 
 ∧ nn mod 2 = 0⇒ minConjugate ( nn ) = nn ) ∧

∀ nn . ( nn ∈ 
 ∧ nn mod 2 = 1⇒ minConjugate ( nn ) = nn − 1 ) ∧

Figure 3.17: Definition of rEqual

value of bb, the tourist either keeps the number the same or changes to its conjugate,

and then goes to the right. The algorithm behaves similarly for people on the right.

The machine RabinState consists of four instances of FBag to represent four

groups of people in four different places. The machine provides operations corre-

sponding to the the movement of tourists from place to place, where they perform

different actions. For example the operation MoveInLeft in Fig. 3.18 moves a

person with the number ll on his pad from outside to inside the left place.

The operation InitState in Fig. 3.19 on the next page sets the bags to represent

the initial state of the algorithm: there are no tourists inside the church or the
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MoveInLeft ( ll ) =̂

PRE

ll ∈ ran ( loutbag ) ∧ ( bagSize ( linbag ) 6= 0 ∨ ll > LL )

THEN

lout . Takelem ( ll ) ‖

lin . Addelem ( ll )

END

Figure 3.18: MoveInLeft operation

InitState ( lout , rout ) =̂

PRE lout ∈ 
 ∧ rout ∈ 
 ∧ lout + rout ≤ maxtotal THEN

lin . SetToBag ( {} ) ‖ rin . SetToBag ( {} ) ‖

lout . SetToBag ( ( 1 . . lout ) × { 0 } ) ‖

rout . SetToBag ( ( 1 . . rout ) × { 0 } ) ‖

total : = lout + rout ‖

LL : = 0 ‖ RR : = 0

END ;

Figure 3.19: InitState operation

museum, outside the church (on the left) there are lout tourists, and outside the

museum (on the right) there are rout tourists.

Similar to the previous example, the actual probability used in this case is in-

stantiated in the interface construct.

All the machines, refinements and implementations mentioned here are given

in Appendix B.

Proof Obligations

The table below is a summary of the proof obligations generated and discharged

for Rabin’s Choice Coordination algorithm using the modified B-Toolkit.

For those obligations that have been discharged manually, all of them are for

total correctness, i.e. to prove the angelic decrease of the variant. (The last two

obligations are very difficult to prove). The partial correctness of the implementa-

tion is carried by the invariants from RabinChoice and RabinState. Some proof
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Construct Obs Automatic Manual Remained
Rabin.mch 1 1 0 0
RabinR.ref 1 1 0 0
RabinRI.imp 103 83 (in 2 levels) 20 (in 2 levels) 0
RabinState.mch 46 39 (in 2 levels) 7 (in 1 level) 0

Table 3.2: Proof obligations summary for Rabin’s Coordination

rules are added to the rule base in order to discharge the obligations. These proof

rules are related to the concept of bags, and to facts about some mathematical con-

structs that are used in the development.

We have developed and proved the correctness of programs implement Rabin’s

Choice Coordination algorithm. We developed the algorithm in layers, in order to

separate the complexity of the system. Using finite bags, we are able to abstractly

represent the tourists who are identified by the number on their notepads. Further-

more, we are able to prove the probability-one termination of the algorithm with

the modified B-Toolkit.

3.6 Conclusions and Related Work

In this chapter, we presented the idea of probability-one termination and introduced

abstract choice substitution (⊕). We discussed how abstract choice can be imple-

mented into B and supported by the modified B-Toolkit. The two examples that we

used in this chapter has been developed and proved completely using the modified

B-Toolkit.

Here, we did not focus on the quantitative side of a probabilistic program (e.g.

expected time for termination, etc.). To calculate such values, we would need to

have the full pGSL in order to reason numerically. We chose to separate the proof

of termination by using a simple logic, which resulted in a simple extension of B,

but it is still expressive enough to cover the important issues of termination. This

led to the practical result of having a tool to support the development of programs

(including generating proof obligations and proving such obligations). The math-

ematical foundations can also be found in earlier work by Morgan and McIver

for temporal logic [47, 48]. The work introduced in this chapter is based on their

theoretical work.
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A similar approach has been pursued by Rao [58, 59] using UNITY programs.

It includes the definition of a UNITY-style fairness assumption.

Similarly Pnueli [54, 22] considered the termination of probabilistic concurrent

programs and introduced the concept of extreme fairness. This fairness is later on

extended to α-fairness by Zuck [69] for past-time temporal logic. The concept

of probability-one correctness has also been used in other work, in which it has

been called P-valid. The concept of γ-fairness is close to what we have called the

angelic interpretation of probabilistic choice: if a probabilistic choice is invoked

infinitely many times from a given state then each branch of the choice should be

taken from that state [70].

For the FireWire protocol, there is some other work by Fidge and Shankland,

and by Abrial using probabilistic- and standard predicate transformers respectively.

This is summarised by Stoelinga in [64]. The example also introduces for mechan-

ical verification methods by Stoelinga, as in [62, 65].

The question of “how long?” was asked by Fidge and Shankland, and in order

to investigate the expected value of time, we would need to use numeric logic in-

stead of simple probability-one reasoning. In their work [17], Fidge and Shankland

use the probabilistic Guarded Command Language (pGCL) which is a probabilistic

extension of GCL (the original Dijkstra’s version of GSL).

Moreover, Abrial’s development of the FireWire protocol [5] was done in Event-

B [3, 6] which is the successor of the (now called) original B. In this development,

the contention is resolved by some fairness assumptions which is in fact the intu-

ition behind this work. This also leads some new concerns which could be regarded

as future work.

Event-B is an event based style of development in which systems comprise of

events (which can be enabled) rather than operations (which can be called). There

are no explicit loops in an event system. Instead the whole system is a WHILE loop

in which the body of the loop is essentially the non-deterministic choice of all the

events. In Event-B, an abstract system can be refined by a concrete system with

more events, but there must be a corresponding event to each event in the abstract

system as before. The set of new events generates a different set of obligations

according to the following rules:

• each new event refines skip event; and

• each new event decreases the same variant.
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The second rule ensures that the new events cannot take over the system and they

must eventually deadlock, in order to allow the original events to be enabled.

If we want to keep the same terminology of Event-B, i.e. to have naked guarded

commands with a simple body as events, then the reasoning about probabilistic

choice (both abstract and concrete) can exist between events. Here, we are only

concerned only about the abstract choice. Then the second rule would have to be

changed so that new events probabilistically decrease the same variant. The notion

of dd·ee should be useful with this new rule.

In our case studies, we only consider a small fraction of the real protocol (in the

case of FireWire), and our final systems are not distributed. But we can consider

these systems as faithful abstractions of the real systems.





Chapter 4

Probabilistic Machines

4.1 Numerical Reasoning

In the previous chapter, in order to cover probability-one-termination correctness,

we extended B to qB by introducing the abstract probabilistic choice operator ⊕
(and its corresponding AMN clause). The overall method of reasoning for qB is

still in Boolean logic. The set of problems that qB covers includes distributed

systems where probability is used to break symmetry. However, qB cannot handle

numerical reasoning such as the expected time to terminate, or the expected values

of some expressions over the state.

In this chapter, we enable numerical reasoning by introducing the (concrete)

probabilistic choice substitution p⊕, and by using the semantics of expectations

to reason about our programs. Recall from Sec. 2.5 that GSL can be extended

to pGSL, in which the standard Boolean values —representing certainty— are re-

placed by real values —representing probabilities. Hence, in principle, the stan-

dard machines of B can be extended to probabilistic B-Method (pB) machines,

allowing us to implement random algorithms, or to model faulty (unreliable) op-

erations. Moreover, we need to have a tool to support the probabilistic constructs

enabling us to generate and discharge proof obligations. For practical purposes, we

want to retain the Boolean reasoning as much as possible by separating the proba-

bilistic and standard constructs. This enables proofs to be conducted in the existing

Boolean logic extended by the set of rules supporting reals.

We have already presented the foundational issues on probabilistic computa-

75
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tional models, in Sec. 2.5. One important point to notice is that the theory on which

the current chapter is based [40] requires that those “expectations” (real-value func-

tions from state) are non-negative and bounded. For simplicity, however, the exam-

ples presented in this chapter do not necessarily adhere to these constraints. Here,

we only discuss the development and tool support of probabilistic machines based

on pGSL.

This chapter extends the concept of invariant to probabilistic machines, based

on the theory of pGSL, as follows: we define probabilistic invariants; we set out the

proof obligations for maintaining such invariants; we give informal interpretations

of the meaning of these invariants in practice; we develop a machine construct and

give examples of how to use it; and we highlight possible pitfalls, and possible

approaches to correct them.

4.2 Probabilistic Invariant for Probabilistic Machines

In this section, we focus on our main topic of the chapter: the meaning of expec-

tations when used as “invariants” for a pB machine. We will use the well known

example of a library to illustrate our ideas here.

We begin with a standard specification and use it as a basis against which we

can contrast a probabilistic version. Our aim is, first, to show how probabilistic

invariants capture their probabilistic properties and, second, to highlight some of

the unexpected and subtle issues that can arise.

4.2.1 A Simple Library in B

Consider the specification of a simple library in Fig. 4.1 on the facing page. The

state of the machine contains three variables, namely booksInLibrary , loansStarted

and loansEnded , representing the number of books in the library, the number of

book loans initiated by the library, and the number of book loans completed by

the library, respectively. To keep the example simple, we ignore other functions

of the library (such as user management, etc.). Initially, booksInLibrary has value

totalBooks (a parameter of the machine). Both loansStarted and loansEnded are

assigned 0 initially.

We have two operations that can modify the state of the machine: StartLoan,
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MACHINE StandardLibrary ( totalBooks )

VARIABLES
booksInLibrary , loansStarted , loansEnded

INVARIANT
booksInLibrary ∈ 
 ∧ loansStarted ∈ 
 ∧ loansEnded ∈ 
 ∧

loansEnded ≤ loansStarted ∧

booksInLibrary + loansStarted − loansEnded = totalBooks

INITIALISATION
booksInLibrary , loansStarted , loansEnded := totalBooks , 0 , 0

OPERATIONS
StartLoan =̂

PRE booksInLibrary > 0 THEN

booksInLibrary := booksInLibrary − 1 ‖

loansStarted := loansStarted + 1

END ;

EndLoan =̂

PRE loansEnded < loansStarted THEN

booksInLibrary := booksInLibrary + 1 ‖

loansEnded := loansEnded + 1

END

END

Figure 4.1: Standard specification of a Library

for starting a loan of a book, and EndLoan, for ending the loan of a book. The

StartLoan operation has a precondition that there are books available for loan:

the operation decrements the books held and increments the books loaned. The

EndLoan operation is complementary in the obvious way.

The (standard) invariant of this machine (which is declared by the INVARIANT

clause in Fig. 4.1) is (we ignore some other typing and trivial invariants)

booksInLibrary + (loansStarted − loansEnded) = totalBooks , (4.1)
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in which the term “loansStarted − loansEnded” is an abstraction of the number

of books that are in the on-loan database of the library. Notice that when there are

books that are lost, the number of books that recorded in the database might be

different from the “actual” number of books that have been borrowed. In this case

however, these numbers are the same.

4.2.2 Adding Probabilistic Properties to the Library

In the Boolean world of standard B, the operations and invariants express certainty:

books are either in the library or they are on loan; they cannot be anywhere else.

In a real library, books are occasionally lost. In this section, we discuss how losing

books can be modelled in pB.

In the first approach, we might consider adding a Lose operation of the form

Lose =̂ booksInLibrary : = booksInLibrary − 1 , (4.2)

and to arrange that every so often Lose is invoked, with some probability. The

problem with this is that we have no way in B (or in pB for that matter) of modelling

a probabilistically invoked operation. (Later on, we discuss a similar approach for

Event-B as future work.)

However, we can use a probabilistic choice substitution to model operations

with probabilistic effects in pB, and so we take this approach. Again, for simplicity,

we consider the case of losing a book when returning only. Obviously, in reality,

books can be lost in other situations, including borrowing. Here, the loss of a book

will be modelled by altering the EndLoan operation so that, with some probability

pp, the user fails to return a book to the library; in that case, the effect of EndLoan

is to consider the book as lost. The other 1−pp of the time, the book is successfully

returned.

With the introduction of probabilistic choice substitution (as in Sec. 2.5), we

can specify this behaviour within the EndLoan operation. The PCHOICE con-

struct is the pAMN counterpart of the operator p⊕, i.e.

PCHOICE p OF
S

OR
T

END

corresponds to S p⊕ T .
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We introduce the variable booksLost to keep the number of books lost. We ini-

tialise booksLost to 0 —there are no books lost at the beginning. For the EndLoan

operation, the chance of a book being lost is pp —where booksInLibrary fails to

increase; the other 1− pp of the time, booksInLibrary increases as normal. In the

case of losing a book, booksLost will increase accordingly. Hence, we replace the

standard substitution booksInLibrary : = booksInLibrary + 1 with the following:

PCHOICE pp OF

booksLost : = booksLost + 1

OR

booksInLibrary : = booksInLibrary + 1

END

To take into account the new variable booksLost, we need to modify the (stan-

dard) invariant (4.1) as follows:

(booksInLibrary + booksLost)
+ (loansStarted − loansEnded) = totalBooks .

(4.3)

The first term on the left-hand side is the number of books not in the on-loan

database; the second term is the number of books that are in the on-loan database.

This specification is simply modelling the effect of loss, without attempting to

identify where it occurs. In practice, loss could be the consequence of a faulty

(unreliable) loan or return operation. At some point, “loss” needs to be recognised

and that is modelled by the assignment booksLost : = booksLost + 1. Here, we

choose to model the loss as part of the EndLoan process. The full specification of

the probabilistic library can be seen in Fig. 4.2 on the following page.

4.2.3 The EXPECTATIONS Clause

Notice in Fig. 4.2 on the next page we introduce a new EXPECTATIONS clause

into pAMN for declaring the probabilistic invariant. It gives an expression E over

the program variables, denoting the (real-value) random-variable invariant, and an

initial expression e which is evaluated over the program variables when the ma-

chine is initialised. We write this as

e V E .
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MACHINE ProbabilisticLibrary ( totalBooks )

SEES Real TYPE

CONSTANTS pp

PROPERTIES pp ∈ REAL ∧ pp ≤ real ( 1 ) ∧ real ( 0 ) ≤ pp

VARIABLES
booksInLibrary , loansStarted , loansEnded , booksLost

INVARIANT
booksInLibrary ∈ 
 ∧ loansStarted ∈ 
 ∧

loansEnded ∈ 
 ∧ booksLost ∈ 
 ∧

loansEnded ≤ loansStarted ∧

booksInLibrary + booksLost + loansStarted − loansEnded = totalBooks

EXPECTATIONS
real ( 0 ) V pp × real ( loansEnded ) − real ( booksLost )

INITIALISATION
booksInLibrary := totalBooks ‖

loansStarted , loansEnded , booksLost := 0 , 0 , 0

OPERATIONS
StartLoan =̂

PRE booksInLibrary > 0 THEN

booksInLibrary := booksInLibrary − 1 ‖

loansStarted := loansStarted + 1

END ;

EndLoan =̂

PRE loansEnded < loansStarted THEN

PCHOICE pp OF

booksLost := booksLost + 1

OR

booksInLibrary := booksInLibrary + 1

END ‖

loansEnded := loansEnded + 1

END

END

Figure 4.2: Simple probabilistic Library
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Its interpretation is that that the expected value of E , at any point, is always at least

e . The value of e can depend on the context of the machine (i.e. the machine’s

parameters, constants, etc.), but often e will be a constant. For example, in the

library, e can be an expression over the parameter totalBooks and the constant pp.

4.2.4 What Do Probabilistic Invariants Guarantee?

We answer the above question by an analogy with standard invariants, which we

review first.

Suppose a machine has initialisation init and two operations OpX and OpY. Here,

for simplicity, we assume the operations have no preconditions and also omit ref-

erences to the context of the machine. If we satisfy the standard proof obligations

with respect to some invariant I , viz.

true ⇒ [init ] I

I ⇒ [OpX] I

I ⇒ [OpY] I , (4.4)

then we are assured that

true⇒ [init ; Op?; Op?; . . . ; Op?] I (4.5)

holds for any (finite) sequence of operations Op? each chosen from the set of

operations {OpX, OpY}. Here, the individual choice for Op? is arbitrary (as long

as the precondition of chosen operation is satisfied). The ordering of operations

and the decision on when to stop are irrelevant. Operation sequences could be

chosen in advance or “on-the-fly”. In both cases, the maintenance of the invariant

does not depend on the decision of when operations of the machine are invoked.

The fact that (4.4) assures (4.5) is an expression of the soundness of the (stan-

dard) invariant technique.

For soundness of the probabilistic invariant technique, clearly there must be a sim-

ilar situation —that is, a probabilistic version of (4.4) and (4.5)— with the first

implying the second. (Again, we omit the preconditions of the operations and the

context of the machine).
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MACHINE Counter

SEES Int TYPE , Real TYPE

VARIABLES count

INVARIANT count ∈ INT

INITIALISATION count := 0

OPERATIONS
cc←− OpX =̂

PCHOICE 1 // 2 OF

count := count + 1 ‖ cc := count

OR

count := count − 1 ‖ cc := count

END ;
OpY =̂ count := 0

END

Figure 4.3: The Counter Machine

We require that

e V [init ]E

E V [OpX]E

E V [OpY]E , (4.6)

assures that

e V [Init; Op?; Op?; . . . ; Op?]E (4.7)

for any finite sequence Op?; Op?; . . . ; Op? of operations, no matter when or how

they are chosen. (Recall that e is some initial expression, possibly depending on

parameters and/or constants of the machine).

In contrast with the standard case, the “when or how” decision makes an im-

portant difference in the probabilistic world. In the following example, we show

why it does.

Consider the Counter machine shown in Fig. 4.3. This machine fails to satisfy

our probabilistic proof obligations (4.6), even though

0 V [init ; Op?; Op?; ...; Op?] count (4.8)
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holds, for any finite sequence Op?; Op?; ...; Op? of operations chosen in advance.

Here, the initial expression e is 0.

The machine fails to satisfy (4.6) because count V [OpY] count cannot be

proved. The reason that it must fail is that (4.8) is not true —for this machine— if

the operations can be chosen on-the-fly. Consider for example the program frag-

ment
Prog =̂ init ;

c ←− OpX;
IF c = 1 THEN OpY ELSE OpX END .

(4.9)

The IF-statement represents a choice, on-the-fly, of whether to execute OpX or

OpY as the second operation; and it is readily verified that the expected value of

“count” after (4.9) is −0.5, which fails the instantiation (4.8) of the general proof

obligation (4.6) for this machine. That is, we do not have 0 V [Prog ] count .

Thus, the answer to the title of this section is

probabilistic invariants guarantee (4.7) provided (4.6) holds.

The constraint “no matter how the operations are chosen” in (4.7) seems to be

too strong but it is absolutely necessary: the (usual) situation is that our machine

must behave correctly no matter what the environment makes use of it. A system

containing a fragment like (4.9) is a perfectly reasonable use of the Counter ma-

chine; any system that uses machine composition has access to all operations and

the state of the component machines. The choice of operations is demonic and the

above example shows that it is possible to choose operations “on the fly” in such

a way as to have a significant effect on the expectation. However, such a choice

is valid and the semantics cannot depend on uniform choice of operations; the se-

mantics must require the expectation to increase monotonically regardless of of the

chosen order of execution of operations, hence requirement (4.6).

4.2.5 A Probabilistic Invariant for the Library

In this section, we try to find the probabilistic invariant for our probabilistic library

(Fig. 4.2 on page 80) by “informal” reasoning.

Practically, with the probabilistic library, we want to estimate the number of

books lost, in particular, the upper bound of the number of books lost, since that

will affect the cost of running the library. We believe that, informally, the expected
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value of number of books actually lost is pp × loansEnded , since the probability

of losing a book when ending a loan is in fact pp. This informal reasoning leads

to:

the expected value of pp × loansEnded−booksLost is at least 0.

Thus we define E =̂ pp × loansEnded − booksLost to be the expected-value

invariant of the probabilistic library machine. It can be seen that the initial value

for E is 0 (established by the initialisation).

Recall from Sec. 4.2.4, which discussed the meaning of the probabilistic invari-

ant, that if we take the expected value of E for many observations during the run-

ning of operations of the probabilistic library, then the average value will be at least

0. From this, we can conclude for our probabilistic library machine, the expected

number of books lost (value of booksLost) is bounded above by pp× loansEnded .

4.2.6 Proof Obligations

Recall from Sec. 2.3 that the proof obligations for a non-probabilistic (standard)

machine are (where we ignore the obligations about the context of the machine):

N1: Under the context of the machine (information about parameters, sets and

constants), the initialisation needs to establish the invariant:

[init]I .

N2: The operations need to maintain the invariant given that the precondition

holds.

I ⇒ [Op]I .

For probabilistic machines, the same ideas will be applied, except that the in-

variant may now take real values instead of Boolean. In order to prove that the real

invariant is bounded below, we have to prove the following:

P1: Under the context of the machine (information about parameters, sets and

constants), the initialisation needs to establish the lower bound of the proba-

bilistic invariant:

e V [Init ]E .
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P2: Given that the precondition holds, the operations do not decrease the ex-

pected value of the probabilistic invariant, i.e. the expected value of the

invariant after the operation is at least the actual value before the operation

E V [Op]E .

We have to prove the above for each real-valued invariant. The standard invari-

ants (Boolean-valued) can be treated the same as before (with probabilistic choice

substitution being treated as demonic). Consequently, proof obligations for the

probabilistic (expectation) and Boolean invariants may be generated, and proved,

separately.

4.2.7 Proving the Obligations

Here, we only discuss the proof of maintenance of the probabilistic invariant:

E =̂ pp × loansEnded − booksLost . (4.10)

The maintenance of the standard invariant is straightforward and similar to the

standard library (with the probabilistic choice interpreted demonically).

In the example in Fig. 4.2 on page 80, consider the proof obligation for the

initialisation (P1) 1. We have to prove that

0 V [init]E .

Consider the right-hand side of the inequality:

[init]E

≡


booksInLibrary : = totalBooks ||
loansStarted ,
loansEnded ,
booksLost : = 0, 0, 0

E definition of init

≡ definition of E
booksInLibrary : = totalBooks ||
loansStarted ,
loansEnded ,
booksLost : = 0, 0, 0

( pp × loansEnded
−booksLost

)

≡ pp × 0− 0 simple substitutions

≡ 0 arithmetic

1All calculations use real numbers, but we will omit any type casting, e.g. real(·).
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So we have shown that the initialisation establishes the initial lower bound for the

probabilistic invariant E as required.

With the proof obligation P2 for operation StartLoan, since the operation both

increases loansStarted and decreases booksInLibrary deterministically, and since

the real-valued invariant does not contain either variable, it can be easily proved

that the operation maintains the invariant.

We have to do similar reasoning with the EndLoan operation, i.e. to prove that

E V [EndLoan]E (proof obligation P2). Using pp for 1− pp, we calculate

[EndLoan]E

≡ definition of EndLoan
(booksLost : = booksLost + 1

pp⊕
booksInLibrary : = booksInLibrary + 1)


||

loansEnded : = loansEnded + 1

E

≡ parallel substitution with pp⊕, see below

(booksLost : = booksLost + 1
||
loansEnded : = loansEnded + 1)


pp⊕(booksInLibrary : = booksInLibrary + 1
||
loansEnded : = loansEnded + 1)




(

pp × loansEnded
−booksLost

)

≡ probabilistic choice substitution pp⊕

pp×

 booksLost : = booksLost + 1
||
loansEnded : = loansEnded + 1

( pp × loansEnded
−booksLost

)
+

pp×

 booksInLibrary : = booksInLibrary + 1
||
loansEnded : = loansEnded + 1

( pp × loansEnded
−booksLost

)
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≡ parallel substitution and simple substitution

pp × (pp × (loansEnded + 1)− (booksLost + 1))
+ pp × (pp × (loansEnded + 1)− booksLost)

≡ pp × loansEnded − booksLost arithmetic

≡ E

For the deferred judgement, we use the distribution property of parallel substi-

tution with respect to probabilistic choice substitution, i.e. that if we have U is a

deterministic substitution then

(S p⊕ T ) || U ≡ (S ||U ) p⊕ (T ||U ) .

So we have shown that E V [EndLoan]E . (In fact, the expectation is un-

changed, i.e. E ≡ [EndLoan]E since there is no demonic non-determinism.)

In this example, we have specified a library system that includes the chance of

books being lost. From the probabilistic invariant, provided that we know pp, we

can estimate the cost of maintaining the library (relating to the number of books

lost). Furthermore, we have discussed how we can reason about the specification

and how to write it in pB (or rather pAMN for that matter).

4.2.8 What the Invariant Means

With the two calculations in the previous section, we have established the math-

ematical validity of the (probabilistic) invariant E for the machine in Fig. 4.2 on

page 80, in the sense that the proof obligations are satisfied. How do we interpret

this validity?

Recall Sec. 4.2.4: it means that over a large number of tests of the machine,

carried out by an adversary who can choose to resolve demonic choice within op-

erations any way that he wishes (although there are none in our example), and who

can choose to invoke operations in any order (i.e. to resolve demonic choice “be-

tween” operations), we will observe that the average value of E is at least the stated

value.

For the case of the machine in Fig. 4.2 on page 80, we conclude therefore

that the expected value of pp × loansEnded − booksLost is at least 0; no matter

what the adversary does. We wrote the invariant this way around (e.g. instead of
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totalCost←− StockTake =̂

BEGIN

totalCost : = cost × booksLost ‖

booksInLibrary : = booksInLibrary + booksLost ‖

loansStarted : = loansStarted − loansEnded ‖

loansEnded : = 0 ‖

booksLost : = 0

END

Figure 4.4: StockTake operation

its negation) so that we could give an expected upper bound for booksLost—it is

pp × loansEnded always.

In general, we might wish to establish several such average-case inequali-

ties. For each one we would formulate a suitable probabilistic invariant and lower

bound; and each would generate its own proof obligations (P1), (P2) as above.

4.3 Pitfalls: Mixing Demonic and Probabilistic Choice

With the validity of a probabilistic invariant, we assure that there is a lower bound

for its expected (average) value over many runs of machine-operation invocations.

In this section, we give a clearer picture of how strong this requirement is, by using

an example in which an adversarial user of the system has complete freedom in

choosing (on-the-fly) which operations to execute. The mathematical reasoning

about maintaining the probabilistic invariant guides us in the design of machines

that are well-behaved even against such adversaries.

4.3.1 StockTake Breaks the Probabilistic Invariant

For a real library, imagine that it needs to do a stocktake annually, i.e. update the

number of books lost, and reset the information of the library. At the same time, the

library wants to estimate the running cost for that particular year. For simplicity,

we assume that the cost for replacing a book in the library is a constant, cost . The

operation StockTake is defined in Fig. 4.4.
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The StockTake operation is similar to the initialisation, but with an extra out-

put to represent the cost for replacing the books lost. One can easily prove that

the operation maintains the standard invariant. The surprise comes when trying to

prove the obligation for maintaining the probabilistic invariant by this operation.

We have to prove that E V [StockTake]E . Consider the right-hand side of that

inequality (only considering the effects on variables loansEnded and booksLost ,

which are related to the value of E ):

[StockTake]E

≡ [loansEnded , booksLost : = 0, 0]E definition of StockTake

≡ definition of E

[loansEnded , booksLost : = 0, 0](pp × loansEnded − booksLost)

≡ pp × 0− 0 simple substitutions

≡ 0 . arithmetic

So in order to show the (probabilistic) invariant does not decrease we must prove

that

pp × loansEnded − booksLost V 0 , (4.11)

which we cannot prove in this context. The question here is what did we do wrong

in the above operation.

4.3.2 Surprising Interaction of Demonic and Probabilistic Choice

To understand the failure to maintain the probabilistic invariant we will discuss a

number of aspects.

Initialisation is not forever The reason the StockTake operation is added to the

library firstly is to have more details for the library. It is not the intention for this

operation to cause any problems with the probability. It turns out however that

our hopes for the operation StockTake is too optimistic. As indicated earlier, the

operation is very similar to the machine initialisation. Starting from the intuition

in standard B, the initialisation can be invoked many times whenever we want,

and clearly the standard invariant will be maintained (and this fact can be easily

proved). However, as stated in Sec. 4.2.4, the meaning of maintaining probabilis-

tic invariant is that its expected value does not decrease. If we view the standard
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B invariant in this particular way, it is a Boolean expression that is must evaluate

to true (1) after the initialisation. Moreover, this also represents a monotonic in-

crease over its value before initialisation, which was either false (0) or true (1). Of

course, during the execution, if we re-run the initialisation as a normal operation,

it starts from an expected value of true (1) and so still guarantees not to decrease

the expected value.

For real-value expectations, the expected values of the probabilistic invariant

can have values other than just the two discrete values 0 or 1. This results in

a strong obligation to maintain the expected value, and as a consequence, some

notions taken from the simpler Boolean context will not be valid.

According to our interpretation, the initialisation of a pB machine establishes

the probabilistic invariant on the assumption of a lower bound of the expectation;

e.g. 0 for the probabilistic library. For any run, the sequence of operations mono-

tonically increases the expected value of the probabilistic invariant; hence it is

presumptuous to expect that the initialisation would maintain the expected value of

such invariant if run again at an arbitrary time. Thus, if an operation duplicates the

initialisation of a machine, there are no guarantees for this operation to maintain

the probabilistic invariant.

The effect of demonic non-determinism It is worth reminding ourselves that

there are two types of demonic non-determinism in B. The first form of demonic

non-determinism is explicit within operations in terms of non-deterministic choice

substitution ([]). The second form is implicit in terms of the choice of invoking

operations for a machine. As a consequence, the machines must be designed to

guarantee that any undesirable operation sequences do not lead to a violation of

critical properties in machine behaviour. This is also the precise reason why we

use invariance for both non-probabilistic and probabilistic machines: to establish

that such critical properties are maintained regardless of the choice of operation

sequence.

In our example, the probabilistic library machine is designed to establish an

upper bound of pp × loansEnded for booksLost . Prior to the addition of the

StockTake operation, this was being controlled solely by the probabilistic choice

within the EndLoan operation (the StartLoan operation does not affect the value

of the probabilistic invariant). By introducing the StockTake operation, there is
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an opportunity for demonic non-determinism (between operations) to subvert that

expectation. Consider the following scenario where a malevolent library adminis-

trator wishes to show that the library loan system is “broken” by trying to show

that the actual rate of book loss is higher than the desired value pp. He or she can

choose a policy of running StockTake only when the value of booksLost is large

relative to pp × loansEnded , a situation that is guaranteed to with probability one

to occur at some points: if the library manager is “encouraged” to look only at

those points then he will indeed believe that the system is “broken”.

Practically, during the operation of the probabilistic library, there can be times

when loss rate will be higher than expected. The above scenario exploits the fact

that operations can be chosen demonically to run only at those times. In order

to avoid this, we might suggest that, when testing a system, a machine-tester, in

selecting what operation to run next, should not be able to look at the current state

of the machine. That this is reasonable can be seen by testing a coin: it would be

wrong to flip the coin until heads shows, and then say “look, it always gives heads”.

The demonic choice taken by the tester as to which operation to run next is

called oblivious if he is not allowed to see the machine’s state. Obviously, this

takes away from the tester some of the power compared to when he is allowed

to look at the machine state (in this case, we say that it is omniscient). Given

that the tester has more power to control the execution of the machine, omniscient

testing is clearly more severe than oblivious testing. Hence our proof obligations,

which are sufficient for correctness under omniscient testing, are stronger than the

other alternative obligations we might consider to guarantee the correctness un-

der oblivious testing. In fact, if we formulate the proof obligations for oblivious

testing, operation StockTake would probably be admitted (since a malevolent li-

brary administrator will not know when the actual booksLost is high relative to

pp × loansEnded ). 2

Finally, when it comes to standard machines, omniscient and oblivious testing

makes no difference. If a standard machine is guaranteed to pass oblivious testing,

then it is also guaranteed to pass omniscient testing. Only probabilistic 3 machines

make the distinction between omniscient and oblivious testing.
2The formulation of oblivious testing turns out to be surprisingly complex. The notion of what

“can be seen” is hard to formalise, and we believe that it would limit the way machine can be com-

posed (to be consistent with “oblivious”). We regard this as a fruitful line of further research.
3Adding angelic choice also reveals the distinction: any two of probabilistic/angelic/demonic are

sufficient.
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4.3.3 Capturing Long-term Behaviour

The failure when proving the obligations for the StockTake operation is in fact

(mathematically) suggesting what we should do to fix it. We introduce a new vari-

able called fix in order to be able to prove the obligation. Routine calculation tells

us that we must change the machine as follows: initially, fix is given the value 0; fix

is unchanged in StartLoan and EndLoan operations; and in the StockTake oper-

ation, we modify fix to maintain the information about the number of booksLost

related to pp × loansEnded , which is crucial for the expectation:

fix : = pp × loansEnded − booksLost + fix . (4.12)

We also need to change our probabilistic invariant accordingly:

E ′ =̂ pp × loansEnded − booksLost + fix . (4.13)

The lower bound for our new expectation is 0 also, which is established trivially

by the initialisation. For operations StartLoan and EndLoan, the value of fix does

not change so the probabilistic invariant E ′ is maintained (similar to those original

cases, but with fix acting as a constant). With the StockTake operation, we can

prove the maintenance of the probabilistic invariant E ′ as follows (we only consider

the changes for the set of variables relating to the value of E ′, i.e. loansEnded ,

booksLost and fix ):

[StockTake]E ′

≡ definition of StockTake
loansEnded : = 0 ||
booksLost : = 0 ||
fix : = pp × loansEnded−

booksLost + fix

E ′

≡ definition of E ′
loansEnded : = 0 ||
booksLost : = 0 ||
fix : = pp × loansEnded−

booksLost + fix

( pp × loansEnded−
booksLost + fix

)

≡ simple substitutions

pp × 0− 0 + (pp × loansEnded − booksLost + fix )

≡ pp × loansEnded − booksLost + fix arithmetic
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So we prove that E ′ V [StockTake]E ′, i.e. the StockTake operation does not

decrease the expected value of E ′.

What is the meaning of the variable fix that we have introduced? In fact, it

records the long-term surplus/deficit indicator of the books lost in the library com-

pared with what we expected to lose.

Moreover, when we re-initialise variables of the library as in the original ver-

sion of StockTake, we lost some information about the number of books actually

lost. The new probabilistic invariant repairs that by forcing us not to “lose informa-

tion” that way. The reason for this is the long-term behaviour can only be captured

if there are variables which record this information; any operation that somehow

“deletes” the long-term behaviour will violate the proof obligations. This is in fact

what probability is about.

In our probabilistic library, we can have a case in which —without fix— a

hostile library administrator could decide (the demonic choice between operations)

to run StockTake only when the rate of books lost was “running high”, and by

doing so, give a false picture of the “current snapshot” of the long-term behaviour

of the library. Having fix makes sure that any snapshot includes every behaviour

up to that point.

4.4 Actual Changes to the B-Toolkit

The B-Toolkit needs to be changed in order to support the new construct and syn-

tax of probabilistic machines. Moreover, the new toolkit should be capable of

generating proof obligation for the maintenance of probabilistic invariants. The

extension from GSL to pGSL (hence the necessary extension from AMN to pAMN)

is by introducing the probabilistic-choice substitution. This introduction and the

new probabilistic invariant affect the processing of probabilistic machines (such as

analysing, type checking, proof-obligation generating and proving).

Firstly, since we use real numbers for our probabilistic choice and probabilistic

invariant, we introduce real numbers by using the Real TYPE context machine,

as in Sec. 3.4. Recall from the Real TYPE machine that currently it provides the

set of non-negative rational numbers, where numbers are denoted by constructors

frac(m,n).
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In this section, we introduce two new pAMN constructs: the EXPECTATIONS

clause to declare probabilistic invariants and the corresponding lower-bounds; and

the PCHOICE-OF-OR clause for probabilistic choice substitution.

With the introduction of new pAMN clauses, the analyser of the B-Toolkit needs

to be modified to accept the new constructs (including parsing, type checking) and

translate the pAMN into a canonical, syntactically parsed form. The type informa-

tion is also stored in canonical form in order to be used in later phases.

The most important change to the B-Toolkit is with the proof obligation gener-

ator. The new toolkit needs to generate obligations for the new PCHOICE clause

and for the maintenance of probabilistic invariants. For probabilistic invariants, the

proof obligations must follow the semantics of pGSL, as stated in figure Fig. 2.10

on page 36. Assume that we have a probabilistic machine as follows:

MACHINE MachineName(x)
CONSTRAINTS P
CONSTANTS c
PROPERTIES Q
VARIABLES v
INVARIANT R
EXPECTATIONS e1 V E1; . . .; en V En

INITIALISATION T
OPERATIONS

z←− OpName =̂ PRE L THEN S END;
· · ·

END .

Beside the normal proof obligations generated for maintaining the standard in-

variant (as described in Sec. 2.4 4), each pair of expectation and its lower-bound

ei V Ei yields the following proof obligations:

1. P ∧Q ⇒ ei V [T ]Ei

2. P ∧Q ∧ R ∧ L ⇒ Ei V [S ]Ei

The first condition states that the lower-bound for each expectation is established

by the initialisation and the second condition states that the expectation is main-

tained (non-decreased) by each operation given the context information, the invari-

ant and the precondition of the operation.

For practical reasons, we leave Boolean expressions unchanged, even though

they could be converted to numeric expressions (using embedded predicate 〈·〉).
4When proving obligations related to the standard invariant, probabilistic choice is treated de-

monically.
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This has the effect of ensuring that the proof of all Boolean goals or sub-goals will

proceed using the standard proof rules.

It turns out that no changes were required for the provers, but some new proof

rules were needed to support real-number evaluations. This is a consequence of

having probabilistic invariants (which are real numbers).

Finally, some small changes ware required to “mark-up” the EXPECTATIONS,

PCHOICE clauses and the V expectation order.

An advantage of separating the canonical form and type information after the

analysing phase of the Toolkit is that, afterwards, all other phases can be based

purely on syntax. This, somewhat surprisingly, simplified the modification of the

B-Toolkit to be able to process numeric, rather than Boolean logic since, after

analysing, proof obligations and proof rules are typeless. In the new context in-

cluding real numbers, some proof rules became invalid and had to be modified.

Moreover, some new rules had to be added to support the reasoning about real

numbers. Currently, the probabilistic information (of expectations) of a probabilis-

tic machine is stored separately from the unaltered standard (non-probabilistic)

information, but in general, they could be merged.

In our example of the probabilistic library, the ProbabilisticLibrary machine

has been analysed, proof obligations have been generated and discharged; and the

machine has been marked up using the modified B-Toolkit.

4.5 Conclusions and Future Work

We have presented a practical approach to extending B to include probability. We

have extended B machine to include probabilistic choice constructs and probabilis-

tic invariants. New proof obligations for the establishment and maintenance of

probabilistic invariants have been described. We have applied our theoretical work

to a simple case study of a library, in which books may be (occasionally) lost. We

have used this example to illustrate how to write programs in pB (using pAMN no-

tation) and how to reason formally about their correctness. Lastly, we have shown

that there are significant differences between standard B constructs and pB con-

structs, differences that need to be carefully understood.

The B-Toolkit has been modified to incorporate the new pAMN constructs and

also to provide the generation and discharging of proof obligations. In some cases,
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we have carefully designed our constructs to accommodate existing capabilities of

the B-Toolkit.

This chapter discusses the first step of reasoning about “absolute” correctness

for probabilistic system. This is in contrast with the “almost-certain” correct-

ness that we have introduced in the previous chapter, where probability is deliber-

ately introduced into the system to guarantee termination, even when the standard

method fails.

With the introduction of probabilistic machines, we can model many perfor-

mance properties of systems including “the expected time to achieve a stated goal”

[39] or the “probability that a goal will be achieved within a specific time”. Ex-

pected time to achieve “stability” for instance is of particular importance when

systems use probability as an “in-built” facility.

There are some other tools, such as model checker PRISM [55], which can

also deal with these problems. However the model-checking approach contrasts

fundamentally with B in that model-checkers are analysis, rather than design tools.

The introduction of Event-B [3, 6] gives another possible approach. In Event-

B, each operation (or now called an “event”) has a naked guarded command with

a simple body. If we want to introduce probability into Event-B, then naturally

the probability should be somehow integrated into the naked guard. With this ap-

proach, the body of operations can be kept as simple as possible (without proba-

bility), but the reasoning about the correctness of probabilistic guard requires other

considerations that will be not discussed in this dissertation. More information

about this approach can be found in [46].



Chapter 5

Probabilistic Specification
Substitutions

5.1 Refinement of Probabilistic Systems

In earlier chapters, we introduced a number of extensions to B in order to incor-

porate what could be called “low-level” features. The results of that work are a

method (and a corresponding toolkit) for probability-one termination, called qB,

and a simple method for specifying probabilistic program with full probabilistic

reasoning, called pB. In the former method, qB would be applied to the final stages

of an algorithm like the IEEE 1394 (FireWire) protocol [5, 17] or Rabin’s Choice-

Coordination [57] where in each case a potential livelock is resolved with probabil-

ity one. In the latter method, pB has the full capability to reason about probabilistic

systems (not just probability-one termination) via the introduction of probabilistic

choice substitutions.

The probabilistic-choice substitution can be considered as “code” in the sense

that it is directly translatable into executable code. It will usually be used in the

later stage of software development (even though we have introduced and used it

in specifications from the outset).

In this chapter, we change our focus and concentrate on the “high-level” issues

of the probabilistic-system development. We want to start from abstract specifica-

tions (usually containing some form of non-determinism), and then move through

the concept of “refinement” to reach the implementations of such specifications.

97
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Because of its abstraction, the specification needs to be refined (possibly through

many steps) into a more concrete implementation before being translated into code.

This is the backbone of software development using B.

We propose a new construct called “probabilistic specification substitution”

which is the B version of the probabilistic specification substitution for Z [67]. We

extend the “fundamental theorem” for the traditional specification statement [42]

to the probabilistic context, which allows us to show that the new substitution is

“valid” within the refinement context.

Furthermore, in order to be able to implement such specifications, we extend

the methods for reasoning about correctness of standard loops to probabilistic

loops, using probabilistic wp-logic [49]. We focus on the practical side of the

problem, in which we can separate standard (Boolean) and probabilistic (numer-

ical) reasoning. This separation allows us to extend the B-Toolkit without much

change to the original Boolean logic underneath. The new (complex) obligations

for probabilistic properties can be generated and proved (separately) with some

extra (simple) modifications to the prover, while standard reasoning can use those

facilities available within the original toolkit.

We use the well known example of the “Min-Cut” algorithm to show how the

new construct can be used. We start by specifying the algorithm using probabilis-

tic specification substitution, then continue by implementing the algorithm using

probabilistic loops, and we give the reasoning for the correctness of the develop-

ment. We also give some explanation about an unexpected issue that arises during

the development of the Min-Cut algorithm.

The chapter is structured as follows: in Sec. 5.2 we first review the traditional

specification substitution for standard systems, and we also introduce the proba-

bilistic specification substitution to describe probabilistic systems; in Sec. 5.3 we

appeal to the expectation semantics from pGSL and obtain the probabilistic fun-

damental theorem which is a generalised version of the corresponding standard

theorem. For practical reasons, in the chapter, we consider the set of expectations

which are within the closed interval [0..1].

In Sec. 5.4 we discuss proof obligations for probabilistic loops, which are the

generalisation of the variant and invariant technique for standard loops.

In Sec. 5.6 we first apply the fundamental theorem to the Min-Cut algorithm,
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and we also set out the proof obligations for verifying the refinement relationship,

which will help us to find an unexpected issue related to our probabilistic specifi-

cation substitution.

In Sec. 5.7, we introduce the terminating probabilistic specification substitution

and the corresponding fundamental theorem, This is to take advantage of the fact

that obligations about termination are always checked when developing systems

using the B-Toolkit. Finally, we summarise the development, draw our conclusions

and outline possible future work.

The example of the Min-Cut algorithm, which is used in the chapter, has been

developed and completely proved using the modified B-Toolkit.

5.2 Probabilistic Specification Substitutions

Specification is the starting point for the refinement steps that lead to executable

code. This is the main framework for B, whether standard or probabilistic. Here,

we turn to probabilistic specification substitutions, which will be used as specifica-

tions for probabilistic developments. We begin by reviewing the standard specifi-

cation substitution that B already contains.

5.2.1 Standard Specification Substitutions

In this section, we briefly review the interaction of specifications and so-called

“specification substitutions”. During the specification stage, a standard (i.e. non-

probabilistic) specification S is traditionally specified by giving a (not necessarily

weakest) precondition P and a post-condition Q , where both P and Q are predi-

cates over the state space:

P ⇒ [S ]Q . (5.1)

Informally, this means that, assuming an initial state satisfying P , the execution of

S must establish a final state satisfying Q , which directs an implementer to develop

a program with the required property. For the purpose of abstraction, it is common

to use pre- and post-conditions to describe the possible behaviour of the system

to be built in specification stage of a development. There are many forms of this,

which are summarised below:
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• Hoare triples [26]:

{P} S {Q} (5.2)

where P and Q are predicates over the program state, and S is program

statement. If P holds in the initial state and S is executed and terminates,

then Q is guaranteed to hold in the final state.

• Dijkstra’s weakest precondition [16]:

P ⇒ wp(S ,Q) (5.3)

where P and Q are predicates over the program state, and S is program state-

ment. The notation wp(S ,Q) denotes the weakest precondition of S with

respect to Q , i.e. the weakest precondition, under which Q is guaranteed to

be established after the execution of S .

• Morgan’s specification statements [43]:

v : [P ,Q ] (5.4)

where v is the frame, a sub-vector of the program variables whose values

may change. P and Q are predicates describing the initial state and the final

state, respectively.

Other notations also include Morris’s prescription [52] and Back’s pre/post-

condition specifications [8].

In B (or more precisely, GSL) [4], the same idea is presented with a different

syntax:

P | v : Q , (5.5)

with the meaning that the substitution will establish Q under the precondition P ,

and change only the variables in v . In this form, we will always assume that P

and Q are predicates over x and over x0, v , respectively. The variables v (sub-set

of the variables x ) are those that can be possibly changed by the substitution. The

variables x0 are distinct from x and represent their original values. Intuitively, the

meaning of (5.5) can be derived from the semantics presented Fig. 2.2 on page 12

by decomposing it into an unbounded choice substitution and a precondition sub-

stitution as follows:

P | @ v ′ ·
([

x0, v : = x , v ′
]
Q =⇒ v : = v ′

)
.
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In fact, this is the form, into which the B-Toolkit will de-sugar the substitution.

It is common in B to get the meaning of a substitution by decomposing it in this

way. When this is done, it can be easily seen that specification (5.5) is just another

presentation of those illustrated in (5.2), (5.3) or (5.4).

5.2.2 Probabilistic Specification Substitutions

The ideas in Sec. 5.2.1 can be generalised to the probabilistic context. In this

section, we propose a probabilistic version of (5.5) which has the same role in the

probabilistic world as the original standard specification substitution does in the

standard world.

Recall that in the expectation logic, we write

A V [S ]B , (5.6)

to mean that the execution of S guarantees to establish that the expected value of

B over the final state distributions is bounded below by the value of A in the initial

state. By analogy with the connection between Dijkstra-style wp-specification and

Morgan’s specification statement, we propose a probabilistic specification substi-

tution written as in the standard case, that is

A | v : B , (5.7)

except that now A is an expectation defined over the program variables, B is an

expectation that may additionally refer to x0 and v . The variables v (which we also

call the frame of the substitution) are a sub-vector of program variables x , which

the substitution “constrains” to change only those variables (we will address what

we mean by constrains later).

As the first example, if we want to specify a coin that comes up heads with

probability at least one-half, then in the style of (5.6) we would write

1
2

V [Flip]〈coin = Head〉 ,

where coin is the state variable with possible values {Head ,Tail}. In the style of

(5.7), we would instead specify the substitution Flip as

1
2
| coin : 〈coin = Head〉 , (5.8)
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for the following reason: it achieves coin = Head (post-expectation 〈coin =

Head〉) with probability at least 1
2 (pre-expectation).

Thus the probabilistic specification substitution generalises the traditional stan-

dard specification substitution into the probabilistic program domain.

We now give the definition for (5.7) so that we can explain why specifications

like Flip have the meaning we claim for them. The precise semantics of our new

construct is as follows.

Definition 5 The semantics of the specification substitution “A | v : B”, with

respect to arbitrary post-expectation E (containing no x0) is given by

[A | v : B ]E =̂ A × [x0 : = x ] u x · (E ÷ Bw ) , (5.9)

where x is the vector of all variables appearing in A,B or E , w is the vector of

variables in x but not in v , and

Bw =̂ B × 〈w = w0〉 .

The symbol ÷ denotes division of real numbers 1.

In general, ux · (E ) means the greatest lower bound of the expression (expec-

tation) E over the possible values of x . The scope of the minimum is indicated by

the brackets that follow the “·”, and hence the expression ux · (E ÷ Bw ) means

the minimum of “E ÷ Bw” over all x .

Intuitively, Def. 5 says that the specification takes an initial state to any one of

a number of final state distributions, all of which satisfy the requirement that the

expected value of B evaluated over that final distribution is bounded below by A

evaluated on the initial distribution. Given this and applying the scaling property of

a probabilistic program, the definition calculates the expected value of an arbitrary

expectation E (instead of B ). The scaling property in [49] states the following:

multiplication by a non-negative constant distributes through substitution, i.e.

[S ] (c × E ) ≡ c × [S ]E , (5.10)

for any substitution S , any post-expectation E , and any constant c. We use Bw in

the division (instead of B ) since the variables in w are “constrained” not to change.

1 We assume that n ÷ 0 = ∞ for any number n .
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We will address the issue of variables that are allowed to change in the next chapter.

In our definition, ux ·(E ÷ Bw ) is the biggest constant factor between E and Bw .

The substitution x0 : = x just ensures that the variables in the original state (zero-

subscripted) are converted to the state variables.

Taking the example of Prog. (5.8), we can calculate the probability that the

outcome is heads, i.e. with respect to the post-expectation 〈coin = Head〉. From

Def. 5 it is given as[
1
2 | coin : 〈coin = Head〉

]
〈coin = Head〉

≡ Def. 5

1
2 × [coin0 : = coin] u coin · (〈coin = Head〉 ÷ 〈coin = Head〉)

≡ 1
2 × [coin0 : = coin] 1 arithmetic 2

≡ 1
2 . arithmetic and simple substitution

So indeed the probability that Prog. (5.8) establishes coin is Head is at least 1
2 .

If we calculate the probability that the outcome of the same program is tails,

however, we have[
1
2 | coin : 〈coin = Head〉

]
〈coin = Tail〉

≡ Def. 5

1
2 × [coin0 : = coin] u coin · (〈coin = Tail〉 ÷ 〈coin = Head〉)

≡ 1
2 × [coin0 : = coin] 0 minimum 0÷ 1 occurs at coin = Head

≡ 0 . arithmetic and simple substitution

The conclusion is that: Prog. (5.8) does not give any guarantee at all that the out-

come is tails. We will address this point later, in Sec. 5.7.

5.3 The Fundamental Theorem

The substitution that we introduced in the last section can be used to specify a prob-

abilistic system, but it is not automatically translatable into code. In other words,

we have to refine such substitutions, ourselves, into more concrete constructs and

—while doing so— prove the refinement relationship between them. In this sec-

tion, we give justification to the semantics of the new substitution by looking at
2We assume that x ÷ 0 is ∞ for any x so that the u ignores it.
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the fundamental theorem that such semantics should obey. There is also a standard

fundamental theorem, and we will propose the corresponding probabilistic version

of it.

5.3.1 The Standard Fundamental Theorem

The standard fundamental theorem comes from the refinement calculus [43, 42];

here we explain it in terms of B-style notation.

Theorem 4 Let “P | v : Q” be defined as in (5.5) and T be any program written

in GSL with state variables x . Then

(P | v : Q) v T

if and only if

P ⇒ [x0 : = x ][T ]Qw ,

where

Qw =̂ Q ∧ w = w0 .

Similar theorems and their proofs can be found in [50, 7]. The theorem states that

T guarantees to establish the post-condition Q in the after state if the initial state

satisfies the precondition P and, in doing so, T changes only variables in v (and

leaves variables in w unchanged). Hence, obviously, T satisfies the specification

“P | v : Q”.

5.3.2 The Probabilistic Fundamental Theorem

In this section, we give the probabilistic generalised version of the fundamental

theorem, with respect to the expectation semantics from pGSL. We will apply the

theorem to some simple examples to show how it can be used.

The probabilistic fundamental theorem can be stated as follows:

Theorem 5 Let “A | v : B” be defined as in Def. 5 and T be any substitution

which is free from variables x0. Assume B satisfies the assumption:

∀ x0 · (∃ v · (B 6= 0)) . (5.11)

Then

(A | v : B) v T iff A V [x0 : = x ][T ]Bw .
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Proof. We now prove the theorem in each direction separately using Lem. 6 and

Lem. 7 below.

Lemma 6 Let “A | v : B” and T be the same as in Thm. 5. If

(A | v : B) v T

then we have

A V [x0 : = x ][T ]Bw ,

where, as before, x is “all variables”, i.e. those occurring in A,B or T .

Proof. We begin the proof from the right-hand side. The first few calculations in

the proof are because the post-expectation in Def. 5 (E there but Bw here) is not

supposed to contain any occurrences of x0.

[x0 : = x ][T ]Bw

≡ [x0 : = x ]([T ]Bw ) sequential substitution

≡ [x0 : = x ]([x ′ : = x0][T ][x0 : = x ′]Bw ) x ′ are fresh variables
T contains no x0

≡ [x0 : = x ][x ′ : = x0]([T ][x0 : = x ′]Bw ) sequential substitution

≡ [x ′ : = x ]([T ][x0 : = x ′]Bw ) no x0 in [T ][x0 : = x ′]Bw

≡ [x ′ : = x ]([T ]([x0 : = x ′]Bw )) sequential substitution

W monotonicity and refinement assumption

[x ′ : = x ]([A | v : B ]([x0 : = x ′]Bw ))

≡ from Def. 5

[x ′ : = x ] (A × [x0 : = x ] u x · ([x0 : = x ′]Bw ÷ Bw ))

≡ A × [x ′ : = x ][x0 : = x ] u x · ([x0 : = x ′]Bw ÷ Bw ) no x ′ in A
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≡ [x0 : = x ] is free of x ′

A × [x0 : = x ][x ′ : = x0] u x · ([x0 : = x ′]Bw ÷ Bw )

≡ A × [x0 : = x ] u x · ([x ′ : = x0]([x0 : = x ′]Bw ÷ Bw )) properties of u

≡ simple substitution and Bw is free of x ′

A × [x0 : = x ] u x · ([x ′ : = x0][x0 : = x ′]Bw ÷ Bw )

≡ A × [x0 : = x ] u x · (Bw ÷ Bw ) sequential substitution
no x ′ in Bw

≡ A × [x0 : = x ] 1 non-zero assumption (5.11) on B and Bw =̂ B × 〈w = w0〉

≡ A , arithmetic

which completes the proof.

Lemma 7 Let “A | v : B” and T be the same as in Thm. 5. If

A V [x0 : = x ][T ]Bw (5.12)

then we have

(A | v : B) v T .

Proof. We begin by calculating the application of substitution “A | v : B” to

any expectation E that is free from x0:

[A | v : B ]E

≡ A × [x0 : = x ] u x · (E ÷ Bw ) Def. 5

V [x0 : = x ][T ]Bw × [x0 : = x ] u x · (E ÷ Bw ) Assumption (5.12)

≡ [x0 : = x ] ([T ]Bw × u x · (E ÷ Bw )) simple substitution [x0 : = x ]

≡ T free from x0 and scaling [T ]; see below

[x0 : = x ]([T ] (ux · (E ÷ Bw )× Bw ))
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V monotonicity
ux · (E ÷ Bw ) V E ÷ Bw as E free from x0

[x0 : = x ]([T ]((E ÷ Bw ) × Bw ))

≡ [x0 : = x ]([T ]E ) non-zero assumption on B

≡ [T ]E . both T and E free from x0

Since E was arbitrary, we have that

(A | v : B) v T ,

which completes the proof.

For the deferred judgement, we use the scaling property (5.10) of substitutions

which states that multiplication by a non-negative constant distributes through sub-

stitutions [49].

As an example for the fundamental theorem, we return to the specification of a

coin in Prog. (5.8). We look at some programs that refine this specification.

• T1 =̂ coin : = Head 1
2
⊕ abort.

This program returns a Head with probability one-half, otherwise, it does

not even guarantee to terminate. We prove the refinement by considering:

[coin0 : = coin][T1]〈coin = Head〉

≡ [coin0 : = coin]([T1]〈coin = Head〉) sequential substitutions

≡ [T1]〈coin = Head〉 no coin0 in [T1]〈coin = Head〉

≡ probabilistic choice substitution

1
2 × [coin : = Head ]〈coin = Head〉 + 1

2 × [abort]〈coin = Head〉

≡ 1
2 × 〈Head = Head〉 + 1

2 × 0 simple and abort substitutions
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≡ 1
2 × 1 + 0 embedded predicate, arithmetic

≡ 1
2 . arithmetic

Hence we have

1
2

V [coin0 : = coin][T1]〈coin = Head〉 ,

and by Thm. 5, we conclude that

Prog . (5.8) v T1 .

• T2 =̂ coin : = Head .

This program always assigns Head to coin and clearly the probability that it

establishes coin = Head is 1. Consider

[coin0 : = coin][T2]〈coin = Head〉

≡ [coin0 : = coin]([T2]〈coin = Head〉) sequential substitution

≡ [T2]〈coin = Head〉 no coin0 in [T2]〈coin = Head〉

≡ [coin : = Head ]〈coin = Head〉 definition of T2

≡ 〈Head = Head〉 simple substitution

≡ 1 . embedded predicate

So, we have

1
2

V [coin0 : = coin][T2]〈coin = Head〉 ,

and by Thm. 5, we conclude that

Prog . (5.8) v T2 .
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5.4 Probabilistic Loops

In Chap. 3, we gave a small extension to the proof obligation rule for loops to

cover almost-certain termination. This extension is for the total correctness of

loops, which ensures that the reasoning about probability-one termination with

loops remains within the Boolean domain. We now turn to more general reasoning

about loops in pB, i.e. we are concerned with partial correctness of probabilistic

loops.

We will first recall the proof obligation rule for partial correctness of standard

loops; then we set out the corresponding generalised proof obligation rule for prob-

abilistic loops.

5.4.1 Proof Obligations for Standard Loops

For a standard loop, denoted loop, such as 3

WHILE G DO
S

INVARIANT I
END ,

we recall the proof obligations for its partial correctness, i.e. we try to reason

about [loop]Q where Q is a predicate representing the desired post-condition. The

following conditions guarantee the partial correctness of the above loop [19]:

S1: The invariant I is maintained during the execution of the loop, i.e.

G ∧ I ⇒ [S ] I .

S2: On termination, the post-condition Q is established, i.e.

¬G ∧ I ⇒ Q .

5.4.2 Proof Obligations for Probabilistic Loops

We concentrate on giving the generalised version of the proof obligation rule for

probabilistic loops. In general, a probabilistic loop will be calculated against a

post-expectation B instead of a post-condition Q .

For a probabilistic loop, denoted loop, such as
3Here, we ignore the effect of the variant.
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WHILE G DO
S

EXPECTATIONS E
END ,

we formulate the proof obligations for its partial correctness, i.e. we try to reason

about [loop]B where B is an real-value expression of the state represents the desire

post-expectation. The following conditions guarantee the partial correctness of the

above probabilistic loop:

P1: The expectation E is “maintained” (does not decrease) during the execution

of the loop, i.e.

〈G〉 × E V [S ]E .

P2: On termination, the post-expectation B is “established” (everywhere no less

than the expectation E of the loop), i.e.

〈¬G〉 × E V B .

The full semantics for probabilistic loops can be given with fixed-point notions

and can be found elsewhere [49].

However, in practice, we usually calculate the pre-expectation of a probabilistic

substitution with respect to a post-expectation of a particular form. This kind of

post-expectation is usually a product of an embedded predicate 4(〈·〉) and another

(general) expectation. The normal (standard) invariant is captured by the embedded

predicate and the rest deals with the quantitative properties of the loop.

For practical reasons, we want to be able to separate the standard and proba-

bilistic reasoning. The following lemma is provided for this purpose.

Lemma 8 Let S be a probabilistic substitution; let P and Q be predicates; and

let A and B be expectations. If we have

〈P〉 V [S ]〈Q〉 , and (5.13)

〈P〉 ×A V [S ]B , then we have (5.14)

〈P〉 ×A V [S ](〈Q〉 × B) (5.15)
4Recall that an embedded predicate 〈P〉 is 1 if P holds and 0 otherwise.
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Proof. In order to prove the lemma, we need to use the concept of “probabilistic

conjunction operator”. The operator (denoted &) is defined over the expectation

space as follows:

A & B =̂ (A + B − 1) max 0 ,

for any pair of expectations A and B . This operator is the probabilistic generalisa-

tion of the standard conjunction operation (∧) in Boolean domain. The properties

of & operator can be found elsewhere [44, 49]. Here, we only need to use the

following properties of the probabilistic conjunction operator:

Monotonic: For expectations A1,A2,B1,B2, if

A1 V B1 and A2 V B2 ,

then we have

A1 & A2 V B1 & B2 .

Sub-conjunctivity: For any pair of expectations A,B and probabilistic program

S we have:

[S ](A & B) W [S ]A & [S ]B . (5.16)

Special property related to embedded predicates: For any expectation E is in

the range [0..1], we have that

〈P〉 × E ≡ 〈P〉 & E . (5.17)

Returning to our lemma, we begin the proof with the left-hand side (here, we

use the assumption that the expectations in this chapters are in the range [0..1]):

〈P〉 ×A

≡ 〈P〉 × (〈P〉 ×A) arithmetic of 〈·〉

≡ 〈P〉 & (〈P〉 ×A) property (5.17) (since 0 ≤ 〈P〉 ×A ≤ 1)

V assumption (5.13), assumption (5.14) and monotonicity of &

[S ]〈Q〉 & [S ]B
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V [S ](〈Q〉 & B) sub-conjunctivity (5.16)

≡ property (5.17) (since B is within the range [0..1]

[S ](〈Q〉 × B) ,

which completes the proof.

We can now use Lem. 8 to obtain the generalisation of the proof-obligation

rule for the partial correctness of probabilistic loops. The total-correctness prop-

erty can be proved using standard variant technique (in which, probabilistic choice

substitutions are interpreted demonically), or the loop can be proved to terminate

with probability-one using our technique from Chap. 3. We only consider partial

correctness here.

Assuming that we have a loop (denoted as “loop”) written in pGSL as follows:

WHILE G DO
S

INVARIANT I
EXPECTATIONS E
END .

The partial correctness of the above loop (with respect to the post-expectation

〈Q〉 × B ) is guaranteed by the following condition:

P1: The loop body cannot decrease the expected value of E if the invariant I and

the guard G hold:

〈G ∧ I 〉 × E V [S ] (〈I 〉 × E ) .

According to Lem. 8, this is achieved by the following two proof obligations:

P1a: The invariant I must hold within the loop body with probabilistic choice

substitution being treated demonically — this is called demonic retrac-

tion. If bbScc represents the demonic retraction of S 5, then this rule can
5This demonic retraction was introduced in Chap. 3 as

bbSccP ≡ ([S ]〈P〉 = 1) .

This is defined to take advantage of the fact that [S ]〈P〉 can only take values in {0, 1}, and can

be easily calculated by replacing all probabilistic choice substitutions by non-deterministic ones

(provided that S contains no loops).
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be formulated by

〈G ∧ I 〉 V bbScc〈I 〉,

or equivalently

G ∧ I ⇒ bbSccI .

P1b: The expectation E must not decrease within the loop body, i.e. the

operation within the loop body cannot decrease the expectation E if

the invariant I and the guard G hold:

〈G ∧ I 〉 × E V [S ]E .

P2: On termination, the loop establishes the post-expectation B with post-condition

Q , i.e.

〈¬G ∧ I 〉 × E V 〈Q〉 × B .

According to Lem. 8 this can be achieved by the following:

P2a: On termination, the loop establishes the post-condition Q , that is we

have

〈¬G ∧ I 〉 V 〈Q〉 .

We can rewrite this without embedding as

¬G ∧ I ⇒ Q .

P2b: On termination, the loop establishes the post-expectation B :

〈¬G ∧ I 〉 × E V B .

If the above conditions are satisfied, and the total correctness condition is met, we

have proved that

〈I 〉 × E V [loop] (〈Q〉 × B) .

5.5 Actual Changes to the B-Toolkit

The introduction of probabilistic specification substitution requires changes to be

made to the B-Toolkit in order to support the new construct. We need to be able

to write in some syntax the probabilistic specification substitution, namely, the
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pre-expectation, the post-expectation and the frame (list of variables) of the substi-

tution.

In standard AMN, the standard specification specification “P | v : Q” is

written in the following form:

PRE P THEN
ANY v ′ WHERE [x0, v : = x , v ′]Q THEN

v : = v ′

END
END ,

where v ′ is a list of primed variables corresponding to v and assumed to be fresh,

[x0, v : = x , v ′]Q is the predicate in which x0 is replaced by x and v is replaced

by v ′ in Q . The standard specification is expressed in terms of a non-deterministic

substitution with a precondition.

We can use the similar syntax for expressing the probabilistic specification

substitution “A | v : B”. Here, we consider a special kind of expectation which is

a product of a (standard) embedded predicate and a (general) expectation (with the

assumption that it is in the range [0..1]). In other words, we consider specifications

of the form

(〈P〉 ×A) | v : (〈Q〉 × B) .

The following code is equivalent to the above specification:

PRE P ∧ expectation(A) THEN
ANY v ′ WHERE

[x0, v : = x , v ′]Q ∧ expectation([x0, v : = x , v ′]B)
THEN

v : = v ′

END
END ,

in which the expectation(·) clause is just to distinguish between the embedded

predicate and the expectation.

For the analyser, the toolkit will treat the above clause just as a normal substi-

tution. There are some changes that need to be made to the type checker in order

to verify that expectation(A) and expectation(B) are well-typed, i.e., to check

that A and B are real numbers. Then, the type checker can treat expectation(·) as

a predicate for well-typing. In other words, expectation(·) acts as a type casting

from real to Boolean in the type-checking process.
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In the proof-obligation generation phase, we need to make some changes in

order to have correct obligations for maintaining the correctness of the refinement

relation. Here, we separate the treatment of standard (predicates) from probabilistic

(expectations) components. The obligations are generated according to Thm. 5 in

Sec. 5.3.2.

Moreover, since the implementation can contain loops, the proof obligation

generation process needs to be changed for loops at the same time. Again, we

separate the obligations for standard and probabilistic components. That means

extra proof obligations are generated according to rules P1b, P2b in Sec. 5.4.2.

Obligations P1a, P2a are already generated as in the original toolkit.

5.6 The Min-Cut Algorithm

We use the example of finding a minimum cut of a graph to illustrate the application

of the theorems in Sec. 5.3 and Sec. 5.4 in practice.

The Min-Cut algorithm operates on undirected and connected graphs. Between

two connected nodes, there can be more than one edge. A cut is a set of edges such

that if we remove just those edges, the graph will become disconnected. A mini-

mum cut is a cut with the least number of edges. With this definition, a particular

graph can have more than one minimum cut. The number of edges for a minimum

cut is called the connectivity of the graph.

The algorithm has two parts. In the first part, a minimum cut of the graph is

found probabilistically, but at low probability. In the second part, we use the well

known technique of “probabilistic amplification” in order to increase the probabil-

ity of finding a true minimum cut.

We will first briefly describe the Min-Cut algorithm and the probabilistic am-

plification technique; then we discuss how to code the Min-Cut algorithm in pB,

and we look in particular at the proof obligations required.

5.6.1 Informal Description of the Min-Cut Algorithm: Contraction

Deterministic algorithms’ complexities are often improved by randomisation, and

Min-Cut algorithm is an example of that. The result for randomised algorithms

is much better (in terms of time and complexity) than for the deterministic one,
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especially for dense graphs [53].

The algorithm consists of a number of “contraction” steps. In a contraction,

two connected nodes are chosen randomly and merged together. The resulting

contracted graph then has one node fewer than the original one. Furthermore, the

connectivity of the contracted graph is always no less than the original graph. It

can be proved that any specific minimum cut in the original graph remains in the

contraction with probability at least NN−2
NN (where NN is the number of nodes in

the graph). This step is done repeatedly until there are only two nodes left in the

graph. Then the only cut left is the (multiple) edge connecting the last two nodes,

and this will be the chosen cut. This cut is not guaranteed to be a minimum cut, but

the number of edges for that cut cannot be less than connectivity of the graph (the

number of edges in a minimum cut). If we are lucky, it will be in fact equal to the

connectivity of the graph; and that is the point of probabilistic amplification, as we

will see.

By “lucky” we mean that although the above contraction procedure does not

guarantee to find a minimum cut for the original graph, there is a non-zero lower

bound of probability that it will. It is easy to see that by multiplying the probabili-

ties for the successive stages, the overall probability of finding a true minimum cut

is at least

p(NN ) =
NN − 2

NN
×NN − 3

NN − 1
×· · ·× 2

4
× 1

3
=

2
NN × (NN − 1)

. (5.18)

This probability is relatively small, however, especially when there are a large num-

ber of nodes in the graph. Fortunately, further independent repetitions of the pro-

cess can reduce the probability that a witness (solution to the problem) is not found

on any of the repetitions. This is the probabilistic amplification technique that we

describe below.

Full details of this algorithm are given by Motwani and Raghavan [53].

5.6.2 Probabilistic Amplification

When the search space contains a large number of possible solutions, it is diffi-

cult to find the right one deterministically. It often suffices however to choose an

element at random from the search space, because there will be a small non-zero

probability that the chosen element is a solution. This probability can be improved
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by further independent repetitions of the process. This improvement is known as

probabilistic amplification.

As an example, if we calculate the probability of finding a true minimum cut in

one contraction test when NN = 10, it would be 2
10×9 , that is approximately 2%.

We repeat the process of finding minimum cut in order to increase the probability.

This can be shown by calculating the probability that a minimum cut is not found

in any one of those tests. For MM tests, this probability will be at most

(1− p(NN ))MM ,

since for each test, the probability of not finding a true minimum cut is at most

1− p(NN ). Hence, the overall probability of finding a true minimum cut for MM

tests is at least

P(NN ,MM ) = 1− (1− p(NN ))MM ,

where p(NN ) is as in previous section.

For example, if we run the NN = 10 case 120 times, the error probability

would only be around 10%, that is, our probability of success is increased from 2%

to 100 − 10 = 90%.

5.6.3 Formal Development of Contraction

We will show how the contraction steps are specified and then subsequently im-

plemented in pAMN; and we take a look at the proof obligations for preserving the

refinement relationship between the specification and the implementation.

Specification of Contraction

We look at the specification of the contraction, i.e. of the one test to find the

minimum cut. We take the abstract view for the specification since the probability

that we are interested in depends only on the number of nodes in the original graph.

The machine (specification) has no variables and has one operation to model the

result of a single contraction. The input NN of the operation represents the number

of nodes in the original graph. The output ans is of BOOL type. It is TRUE when

we have found a true minimum cut, and FALSE otherwise. In this specification,

we want to state that for any input NN , the probability that the output ans is

TRUE on termination is at least 2
NN×(NN−1) (as at (5.18)). The specification
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MACHINE contraction

SEES Bool TYPE , Real TYPE , Math

OPERATIONS
ans←− contraction ( NN ) =̂

PRE

NN ∈ 
 ∧ 2 ≤ NN ∧

expectation ( frac ( 2 , NN × ( NN − 1 ) ) )

THEN

ANY aa WHERE

aa ∈ BOOL ∧ expectation ( emb ( aa ) )

THEN

ans := aa

END

END
END

Figure 5.1: Specification of contraction in pAMN

is shown in Fig. 5.1. The pAMN notation emb(a) is equivalent to 〈a〉, where

a ∈ BOOL with the definition that 〈TRUE 〉 = 1 and 〈FALSE 〉 = 0.

An Implementation of Contraction

A loop implementation of the contraction is given in Fig. 5.2 on the next page. The

pAMN notation embedded(Q) is equivalent to 〈Q〉, where Q is a predicate.

In this implementation, we have a local variable nn to keep the number of

nodes in the current graph, and so we start with nn = NN (original graph) and

ans = TRUE (for the fact that there will be some minimum cuts in the original

graph). At each stage, variable ans is TRUE just when all actual minimum cuts

have not yet been destroyed by any merge so far. We keep merging while the

number of nodes is greater than 2. The operation merge(nn, ans) is specified in
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IMPLEMENTATION contractionI

REFINES contraction

SEES Bool TYPE , Real TYPE , merge , Math

OPERATIONS
ans←− contraction ( NN ) =̂

VAR nn IN

nn := NN ; ans := TRUE ;
WHILE 2 < nn DO

ans←− merge ( nn , ans ) ;
nn := nn − 1

VARIANT

nn

INVARIANT

nn ∈ 
 ∧ nn ≤ NN ∧ 2 ≤ nn ∧ ans ∈ BOOL ∧

expectation ( frac ( 2 , nn × ( nn − 1 ) ) × emb ( ans ) )

END

END
END

Figure 5.2: Implementation of contraction in pAMN

the machine merge as in Fig. 5.3 on the following page. The operation says

that with probability “at most” 2
nn , all minimum cuts will be destroyed by the

contraction. Otherwise, there is a minimum cut that has not been destroyed. The

merge operation can be explained by its equivalent GSL as follows:

(ans : = FALSE 2
nn
⊕ ans : = aa) [] ans : = aa

≡ ans : = FALSE ≤ 2
nn
⊕ ans : = aa)
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MACHINE merge

SEES Bool TYPE , Real TYPE

OPERATIONS
ans←− merge ( nn , aa ) =̂

PRE nn ∈ 
 ∧ aa ∈ BOOL THEN

CHOICE

PCHOICE frac ( 2 , nn ) OF

ans := FALSE

OR

ans := aa

END

OR

ans := aa

END

END
END

Figure 5.3: Specification of merge operation in pAMN

Proof Obligations of Contraction

We now will apply the generalised proof obligation rule for the probabilistic loop

to prove the correctness of the implementation of the contraction process.

To prove the refinement relationship between the specification and its imple-

mentation of the contraction process, Thm. 5 is applied to those programs. The

pGSL equivalent of the specification is

〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN ) | ans : 〈ans〉 .

We thus have to prove that

〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN )
V [ans0 : = ans][contractionImpl ]〈ans〉 ,
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which can be simplified to

〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN ) V [contractionImp]〈ans〉 ,

where we have used the fact that there are no ans0 on the right-hand side, so that

the substitution [ans0 : = ans] is redundant.

We first state all the components of the loop (denoted loop1) within our reason-

ing context. Referring to Sec. 5.4.2, we have the following information.

• The standard invariant is

I1 =̂ nn ∈ 
 ∧ nn ≤ NN ∧ 2 ≤ nn ∧ ans ∈ BOOL .

• The guard for the loop is G1 =̂ 2 < nn .

• The body of the loop is

S1 =̂ ans ←− merge(nn, ans); nn : = nn − 1 .

• The expectation (probabilistic invariant) is E1 =̂ 2
nn×(nn−1) × 〈ans〉.

• The post-condition Q1 is the constant predicate true.

• The post-expectation is B1 =̂ 〈ans〉.

Proving the partial correctness of loop1 using the rules in Sec. 5.4.2 allows us

to prove 〈I1〉 × E1 instead of the [loop1] 〈ans〉 (the total correctness is trivial with

the declared variant’s certain decrease for every iteration of the loop). So we have

to prove that the (probabilistic) invariant is established initially, i.e.

〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN ) V [nn : = NN ; ans : = TRUE ](〈I1〉 × E1) .

According to Lem. 8, it is equivalent to prove

NN ∈ 
 ∧ 2 ≤ NN ⇒ [nn : = NN ; ans : = TRUE ]I1 ,

and under the assumption that NN ∈ 
 ∧ 2 ≤ NN , to prove

p(NN ) V [nn : = NN ; ans : = TRUE ]E1 .

From all this, we have in fact that there are 14 proof obligations for the im-

plementation of the contraction, all of which have been proved using the modified

B-Toolkit with some extra proof rules.
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Proving the Obligations

Here, we look at the proof for the maintenance of E1 during the execution of loop1

(proof obligation P1b in Sec. 5.4.2). We have to prove that

〈G1 ∧ I1〉 × E1 V [S1]E1 .

The complete proof of the development can be found in [24]. Furthermore, we

have used the fact that proving

〈P〉 ×A V B (5.19)

is equivalent to proving

A V B

under the assumption that P holds 6— so it is sufficient to prove

E1 V [S1]E1 ,

under the assumption G1 ∧ I1. We start from the right-hand side as follows:

[S1]E1

≡ definition of S1 and E1

[ans ←− merge(nn, ans); nn : = nn − 1]
(

2
nn×(nn−1) × 〈ans〉

)
≡ sequential substitution

[ans ←− merge(nn, ans)] [nn : = nn − 1]
(

2
nn×(nn−1) × 〈ans〉

)
≡ simple substitution

[ans ←− merge(nn, ans)]
(

2
(nn−1)×(nn−2) × 〈ans〉

)
≡ definition of merge[

(ans : = FALSE 2
nn
⊕ ans : = ans)

[] ans : = ans

](
2

(nn−1)×(nn−2) × 〈ans〉
)

6When P does not hold, the left-hand side of (5.19) is zero, which makes the inequality holds

trivially.
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≡ non-deterministic substitution[
ans : = FALSE 2

nn
⊕ ans : = ans

] (
2

(nn−1)×(nn−2) × 〈ans〉
)

min
[ans : = ans]

(
2

(nn−1)×(nn−2) × 〈ans〉
)

≡ probabilistic and simple substitution 2
nn ×

(
2

(nn−1)×(nn−2) × 〈FALSE 〉
)

+
(
1− 2

nn

)
×

(
2

(nn−1)×(nn−2) × 〈ans〉
)


min (

2
(nn−1)×(nn−2) × 〈ans〉

)
≡ embedded predicate and arithmetic(

2
nn ×

(
2

(nn−1)×(nn−2) × 0
)

+ nn−2
nn × 2

(nn−1)×(nn−2) × 〈ans〉
)

min (
2

(nn−1)×(nn−2) × 〈ans〉
)

≡ arithmetic(
2

nn×(nn−1) × 〈ans〉
)

min
(

2
(nn−1)×(nn−2) × 〈ans〉

)
≡ 2

nn×(nn−1) × 〈ans〉 2
nn×(nn−1) < 2

(nn−1)×(nn−2) when 2 ≤ nn

≡ E1 . definition of E1

So we have proved that E1 V [S1]E1. Proofs of the other obligations can be

found in [24].

5.6.4 Formal Development of Probabilistic Amplification

This section discusses the use of the probabilistic amplification technique in order

to increase the probability of finding a true minimum cut. We start by looking

at the specification and its implementation using a probabilistic loop, and then

we look at the proof obligations for the refinement step. We will show that a
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slightly more specialised version of the probabilistic specification substitution (and

the corresponding fundamental theorem) is required for developments of this kind.

Specification of Min-Cut Probabilistic Amplification

Similar to specification of the contraction machine, the specification MinCut does

not have any variables to represent its state. The machine has only one operation,

namely minCut. As well as the input NN representing the number of nodes in the

original graph, the operation has one extra input MM that represents the number

of times we “amplify” the probability, i.e. the number of times we will carry out

a contraction. The output ans of the operation again abstractly models whether

we find a true minimum cut or not after the amplification process. We begin with

a “one-shot” specification in Fig. 5.4 on the next page, similar to the contraction.

The specification states that the probability of finding the correct minimum cut

should be at least

P(NN ,MM ) = 1− (1− p(NN ))MM ,

where p(NN ) = 2
NN×(NN−1) .

Implementation of Min-Cut Probabilistic Amplification

The implementation of the probabilistic amplification is shown in Fig. 5.5. In the

implementation, we use two auxiliary variables, namely mm and aa , which rep-

resent the counter and the recent output from the contraction process, respectively.

In the beginning, mm is assigned MM because we want to repeat the contraction

process MM times; and ans is assigned FALSE since we have not found the right

minimum cut yet. In the body of the loop, a contraction process is taken and its

result is carried out in aa; then ans is the disjunction of the new result aa and the

old ans (since if we find the correct (least) cut once, we can never lose it); and

finally, the counter decreases accordingly.

Proof Obligations of Min-Cut Probabilistic Amplification

We apply Thm. 5 for refining a probabilistic specification substitution and the rules

in Sec. 5.4.2 for proof obligations for partial correctness of loops in order to prove

the correctness of the implementation. The total correctness of the loop in this case
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MACHINE minCut

SEES
Bool TYPE , Real TYPE , Math

OPERATIONS
ans←− minCut ( NN , MM ) =̂

PRE

NN ∈ 
 ∧ 2 ≤ NN ∧MM ∈ 
1 ∧

expectation ( real ( 1 ) −

power ( real ( 1 ) − frac ( 2 , NN × ( NN − 1 ) ) , MM ) )

THEN

ANY aa WHERE

aa ∈ BOOL ∧ expectation ( emb ( aa ) )

THEN

ans := aa

END

END
END

Figure 5.4: Specification of MinCut probabilistic amplification in pAMN

is trivial since the variant mm decreases for every iteration of the loop. The pGSL

equivalent of the probabilistic amplification specification is:

〈NN ∈ 
 ∧ 2 ≤ NN ∧ MM ∈ 
1〉 × P(NN ,MM ) | ans : 〈ans〉 .

Applying Thm. 5, we must show that

〈NN ∈ 
 ∧ 2 ≤ NN ∧ MM ∈ 
1〉 × P(NN ,MM )
V [ans0 : = ans][minCutImplementation]〈ans〉 , (5.20)

in order to establish the refinement. The implication (5.20) can be simplified to

〈NN ∈ 
 ∧ 2 ≤ NN ∧ MM ∈ 
1〉 × P(NN ,MM )
V [minCutImplementation]〈ans〉 ,
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IMPLEMENTATION minCutI

REFINES minCut

SEES Bool TYPE , Real TYPE , Math , contraction , Bool TYPE Ops

OPERATIONS
ans←− minCut ( NN , MM ) =̂

VAR mm , aa IN

mm := MM ; ans := FALSE ;
WHILE mm > 0 DO

aa←− contraction ( NN ) ;
ans←− DIS BOOL ( ans , aa ) ;
mm := mm − 1

VARIANT

mm

INVARIANT

mm ∈ 
 ∧ mm ≤MM ∧ ans ∈ BOOL ∧

expectation ( emb ( ans ) + embedded ( ¬ ( mm = 0 ) ) × emb ( neg ( ans ) ) ×

( real ( 1 ) − power ( real ( 1 ) − frac ( 2 , NN × ( NN − 1 ) ) , mm ) ) )

END

END
END

Figure 5.5: Implementation of MinCut probabilistic amplification in pAMN

by noting that there are no occurrences of ans0 on the right-hand side. Also, we

again separate the standard predicates and the expectations, i.e. we will prove

P(NN ,MM ) V [minCutImplementation]〈ans〉 ,

under the assumption that NN ∈ 
 ∧ 2 ≤ NN ∧ MM ∈ 
1.

Referring to Sec. 5.4.2, we obtain the following information about all the com-

ponents of the loop (denoted loop2) within our reasoning context:
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• The standard invariant is

I2 =̂ mm ∈ 
 ∧ mm ≤ MM ∧ ans ∈ BOOL .

• The guard for the loop is G2 =̂ mm 6= 0.

• The body of the loop is

S2 =̂ aa ←− contraction(NN ); ans : = ans ∨ aa; mm : = mm − 1 .

• The expectation (probabilistic invariant) is

E2 =̂ 〈ans〉 + 〈mm 6= 0〉 × 〈¬ans〉 × P(NN ,mm) .

• The post-condition Q2 is the constant predicate true.

• The post-expectation is B2 =̂ 〈ans〉.

Proving the correctness of loop2 using the rules in Sec. 5.4.2 allows us to prove

〈I2〉 × E2 instead of [loop2] 〈ans〉. So we have to prove that

〈NN ∈ 
 ∧ 2 ≤ NN ∧ MM ∈ 
1〉 × P(NN ,MM )
V [mm : = MM ; ans : = FALSE ](〈I2〉 × E2) .

According to Lem. 8, it is equivalent to prove

NN ∈ 
 ∧ 2 ≤ NN ∧ MM ∈ 
1 ⇒ [mm : = MM ; ans : = FALSE ]I2 ,

and under the assumption that NN ∈ 
 ∧ 2 ≤ NN ∧ MM ∈ 
1, to prove

P(NN ,MM ) V [mm : = MM ; ans : = FALSE ]E2 .

From the above information there are 14 proof obligations for the implementa-

tion of the contraction, 13 of which have been proved using the modified B-Toolkit

with some extra proof rules. We will look at the remaining proof obligation in the

next section.
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An Undischargeable Obligation

Here, we concentrate only on the proving of P1b in Sec. 5.4.2, i.e. the maintenance

of E2 during the execution of the loop. The complete proofs of other obligations

can be seen elsewhere [24]. For P1b, we have to prove that

〈G2 ∧ I2〉 × E2 V [S2]E2 ,

which is equivalent to proving

E2 V [S2]E2 ,

under the assumption that G2 and I2 both hold. We begin the proof from the right-

hand side.

[S2]E2

≡ definition of S2 and E2 aa ←− contraction(NN );
ans : = ans ∨ aa;
mm : = mm − 1

(〈ans〉 +
〈mm 6= 0〉 × 〈¬ans〉 × P(NN ,mm)

)

≡ sequential substitution[
aa ←− contraction(NN );
ans : = ans ∨ aa

]
[mm : = mm − 1](

〈ans〉 +
〈mm 6= 0〉 × 〈¬ans〉 × P(NN ,mm)

)

≡
[

aa ←− contraction(NN );
ans : = ans ∨ aa

]
(
〈ans〉 +
〈mm − 1 6= 0〉 × 〈¬ans〉 × P(NN ,mm − 1)

) simple substitution

≡ sequential substitution

[aa ←− contraction(NN )] [ans : = ans ∨ aa](
〈ans〉 +
〈mm − 1 6= 0〉 × 〈¬ans〉 × P(NN ,mm − 1)

)

≡ simple substitution

[aa ←− contraction(NN )](
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)
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≡ definition of contraction

[〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN ) | aa : 〈aa〉](
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)

≡ probabilistic specification substitution

〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN )×

uaa ·
((
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)
÷ 〈aa〉

)

≡ minimum when aa = TRUE , see below

〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN )×(
〈ans ∨ TRUE 〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ TRUE )〉 × P(NN ,mm − 1)

)

≡ 〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN )×(
〈TRUE 〉 +
〈mm − 1 6= 0〉 × 〈¬TRUE 〉 × P(NN ,mm − 1)

) logic

≡ 〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN )×(
1 +
〈mm − 1 6= 0〉 × 0× P(NN ,mm − 1)

) embedded predicate

≡ 〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN )× 1 arithmetic

≡ 〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN ) . arithmetic

For the deferred judgement, when aa = FALSE , 〈aa〉 is zero which sets the value

of fraction to infinity —and thus the minimum u will ignore it.

So we have to prove that

〈ans〉 + 〈mm 6= 0〉×〈¬ans〉×P(NN ,mm) V 〈NN ∈ 
∧2 ≤ NN 〉×p(NN ) ,

which in fact does not hold. We found that this is a problem related to termina-

tion. This is not surprising in retrospect, because our definition of probabilistic

specification substitution does not require that the specification always terminates.
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For example, a specification “p | v : 〈Q〉” which is ensured to establish Q with

probability at least p might still with probability 1 − p not establish Q , or even

fail to terminate at all. In the example, we rely on the fact that even in the case

contraction does not find a true minimum cut, it still terminates and returns aa is

FALSE . Hence, we must ensure that the specification does terminate in any case,

even though we do not care about which post-condition it establishes. In the next

section, we will address the problem by introducing the terminating probabilistic

specification substitution and its corresponding fundamental theorem.

5.7 Terminating Probabilistic Specification Substitutions

In order to avoid the problem revealed in the last section, we have to introduce

the concept of “terminating probabilistic specification substitution” and a corre-

sponding fundamental theorem for it. We also reconstruct the proof obligations for

refinement of the new terminating probabilistic amplification program.

Here, we consider a special case of the probabilistic substitution, where the

post-expectation B is standard, i.e is in the form 〈Q〉 for some predicate Q ; and

the pre-expectation A is the probability —still a function of the state— that Q will

be achieved. For consistency with probability elsewhere, we use lower-case p for

the pre-expectation.

The specification substitutions defined in Sec. 5 do not exclude aborting pro-

grams. In B, however, all programs are proved to terminate. So we want to take

advantage of that and propose the terminating probabilistic specification substitu-

tion. It is defined as follows.

Definition 6 Let p be a probabilistic expression over x which is free from x0; and

let Q be a predicate defined over x0, v and satisfying

∀ x0 · (∃ v ·Q) . (5.21)

The specification {p | v : 〈Q〉} is defined by:

{p | v : 〈Q〉} =̂ (1 | v : 〈Q〉) p⊕ (1 | x : 1) . (5.22)

That is, the specification {p | v : 〈Q〉} establishes Q with probability at least p;

but even if it does not, it still terminates 7. Here, termination is represented by the
7The termination is what distinguishes it from “p | v : 〈Q〉”.
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specification “1 | x : 1”, corresponding to standard program “true | x : true”.

Secondly, we introduce the fundamental theorem for the above terminating

substitution as follows.

Theorem 6 Let p be an expression over x ; let Q be a predicate defined over x0, v ,

and satisfying

∀ x0 · (∃ v ·Q) ;

and let T be any program. For all such programs T , if

(1 | x : 1) v T , i.e. if T terminates

and if

(p | v : 〈Q〉) v T

then in fact

{p | v : 〈Q〉} v T .

Proof. Let E be an arbitrary expectation over x . For any x0, we have from

arithmetic that

E W u x · (E ) + (ux · (E ÷ 〈Qw 〉)− ux · (E ))× 〈Qw 〉 (5.23)

where

Qw =̂ Q ∧ w = w0 .

We have the above inequality because of the non-empty condition (5.21) of Q in

Def. 6 and because the embedded predicate 〈Qw 〉 can have value only 1 or 0. And

in each case, it can be easily proved that the inequality holds.

First, we estimate the pre-expectation of T with respect to E : for all x0 we

have

[T ]E

W (5.23) and monotonicity of T

[T ] (ux · (E ) + (ux · (E ÷ 〈Qw 〉)− ux · (E ))× 〈Qw 〉)

W ux · (E )× [T ]1+
(ux · (E ÷ 〈Qw 〉)− ux · (E ))× [T ]〈Qw 〉 .

sublinearity of T , see below
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For the deferred judgement, we use the sublinearity property [49] of proba-

bilistic programs, which states that, for any non-negative real constants c1, c2, any

post expectations B1,B2, and any program S , we have

[S ] (c1 × B1 + c2 × B2) W c1 × [S ]B1 + c2 × [S ]B2 . (5.24)

Hence (since x0 is unconstrained), in particular,

[T ]E

W x0 is given a value x

[x0 : = x ]
(
ux · (E )× [T ]1 +
(ux · (E ÷ 〈Qw 〉) − u x · (E ))× [T ]〈Qw 〉

)

≡ simple substitution x0 : = x

[x0 : = x ](ux · (E )× [T ]1) +
([x0 : = x ] (ux · (E ÷ 〈Qw 〉) − u x · (E )))× [x0 : = x ][T ]〈Qw 〉

≡ x0 is a fresh variable and simple substitution

ux · (E )× [x0 : = x ][T ]1 +
([x0 : = x ] u x · (E ÷ 〈Qw 〉) − u x · (E ))× [x0 : = x ][T ]〈Qw 〉

W ux · (E )× 1+
([x0 : = x ] u x · (E ÷ 〈Qw 〉)− ux · (E ))× p

refinement assumption

≡ arithmetic

ux · (E ) × (1− p) + [x0 : = x ] u x · (E ÷ 〈Qw 〉) × p

≡ [1 | x : 1]E × (1− p) + [1 | v : 〈Q〉]E × p Def. 5

≡ [(1 | v : 〈Q〉) p⊕ (1 | x : 1)]E probabilistic choice substitution

≡ [{p | v : 〈Q〉}]E . Def. 6

Because E is arbitrary, therefore

{p | v : 〈Q〉} v T .



5.7. TERMINATING SUBSTITUTIONS 133

Since the proof obligations for termination are always generated by the B-

Toolkit, from now on we will assume that we always use the terminating version of

probabilistic specification substitutions.

With the new terminating version of the specification and fundamental theo-

rem, we can reconstruct and prove all the proof obligations for the implementation

of probabilistic amplification as follows.

Recall from Sec. 5.6.4 that we have to prove the maintenance of E2 during the

execution of the loop, i.e. we have to prove

E2 V [S2]E2 , (5.25)

under the assumption that G2 and I2 both hold. Similar calculations can be car-

ried out, where we just need to replace the specification of contraction with its

terminating version. We begin the proof from the right-hand side:

[S2]E2

≡ definition of S2 and E2 aa ←− contraction(NN );
ans : = ans ∨ aa;
mm : = mm − 1

(〈ans〉 +
〈mm 6= 0〉 × 〈¬ans〉 × P(NN ,mm)

)

≡ sequential substitution[
aa ←− contraction(NN );
ans : = ans ∨ aa

]
[mm : = mm − 1](

〈ans〉 +
〈mm 6= 0〉 × 〈¬ans〉 × P(NN ,mm)

)

≡ simple substitution[
aa ←− contraction(NN );
ans : = ans ∨ aa

]
(
〈ans〉 +
〈mm − 1 6= 0〉 × 〈¬ans〉 × P(NN ,mm − 1)

)

≡ sequential substitution

[aa ←− contraction(NN )] [ans : = ans ∨ aa](
〈ans〉 +
〈mm − 1 6= 0〉 × 〈¬ans〉 × P(NN ,mm − 1)

)
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≡ simple substitution

[aa ←− contraction(NN )](
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)

≡ definition of “terminating” contraction

[{〈NN ∈ 
 ∧ 2 ≤ NN 〉 × p(NN ) | aa : 〈aa〉}](
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)

≡ terminating probabilistic specification substitution[
(1 | aa : 〈aa〉) 〈NN∈
∧2≤NN 〉×p(NN )⊕ (1 | aa : 1)

](
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)

≡ context information guarantees that NN ∈ 
 ∧ 2 ≤ NN[
(1 | aa : 〈ans〉) p(NN )⊕ (1 | aa : 1)

](
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)

≡ probabilistic choice substitution

p(NN )× [1 | aa : 〈aa〉](
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)
+

(1− p(NN ))× [1 | aa : 1](
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)

≡ probabilistic specification substitution

p(NN ) ×

uaa ·
((
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)
÷ 〈aa〉

)
+

(1− p(NN )) ×

uaa ·
((
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)
÷ 1
)
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≡ the first minimum established when aa = TRUE

p(NN ) ×
(
〈ans ∨ TRUE 〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ TRUE )〉 × P(NN ,mm − 1)

)
+

(1− p(NN )) ×

uaa ·
(
〈ans ∨ aa〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ aa)〉 × P(NN ,mm − 1)

)

≡ logic and the expand the minimum for aa = TRUE or aa = FALSE

p(NN )×
(
〈TRUE 〉 +
〈mm − 1 6= 0〉 × 〈¬TRUE 〉 × P(NN ,mm − 1)

)
+

(1− p(NN )) ×
(
〈ans ∨ TRUE 〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ TRUE )〉 × P(NN ,mm − 1)

)
min (

〈ans ∨ FALSE 〉 +
〈mm − 1 6= 0〉 × 〈¬(ans ∨ FALSE )〉 × P(NN ,mm − 1)

)


≡ logic and embedded predicate

p(NN )×
(

1 +
〈mm − 1 6= 0〉 × 0× P(NN ,mm − 1)

)
+

(1− p(NN )) × (
1 + 〈mm − 1 6= 0〉 × 0× P(NN ,mm − 1)

)
min (

〈ans〉 + 〈mm − 1 6= 0〉 × 〈¬ans〉 × P(NN ,mm − 1)
)


≡ arithmetic

p(NN )× 1+

(1− p(NN )) ×(
1 min

(
〈ans〉 + 〈mm − 1 6= 0〉 × 〈¬ans〉 × P(NN ,mm − 1)

))
≡ the right-hand side of min is alway less than 1

p(NN )+
(1− p(NN ))×

(
〈ans〉+ 〈mm − 1 6= 0〉 × 〈¬ans〉 × P(NN ,mm − 1)

)
.

Now we consider two cases: mm = 1 and mm 6= 1

• When mm = 1, the left-hand side of (5.25) (i.e. E2) is the same as:

〈ans〉 + 〈¬ans〉 × P(NN , 1) ≡ 〈ans〉 + 〈¬ans〉 × p(NN ) .
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The right-hand side of (5.25) is equivalent to

p(NN )+
(1− p(NN )) ×

(
〈ans〉+ 〈1− 1 6= 0〉 × 〈¬ans〉 × P(NN , 1− 1)

)
≡ logic and arithmetic

p(NN )+
(1− p(NN )) ×

(
〈ans〉+ 〈FALSE 〉 × 〈¬ans〉 × P(NN , 1− 1)

)
≡ embedded predicate and arithmetic

p(NN ) + (1− p(NN )) × 〈ans〉

≡ 〈ans〉 + (1− 〈ans〉) × p(NN ) arithmetic

≡ 〈ans〉 + 〈¬ans〉 × p(NN ) , logic

which is the same as the right-hand side.

• When mm 6= 1, we simplify the right-hand side of (5.25) further as follows:

p(NN )+
(1− p(NN ))×

(
〈ans〉+ 〈TRUE 〉 × 〈¬ans〉 × P(NN ,mm − 1)

)
≡ embedded predicate

p(NN )+
(1− p(NN ))× (〈ans〉+ 1× 〈¬ans〉 × P(NN ,mm − 1))

≡ arithmetic

p(NN ) + (1− p(NN ))× (〈ans〉+ 〈¬ans〉 × P(NN ,mm − 1))

≡ arithmetic and 〈aa〉+ 〈¬aa〉 = 1

p(NN )× (〈ans〉+ 〈¬ans〉) +
(1− p(NN ))× 〈aa〉+ (1− p(NN ))× P(NN ,mm − 1)× 〈¬aa〉
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≡ arithmetic

(p(NN ) + (1− p(NN )))× 〈ans〉 +
(p(NN ) + (1− p(NN ))× P(NN ,mm − 1))× 〈¬ans〉

≡ arithmetic and definition of P(NN,mm- 1)

1× 〈ans〉 +
(p(NN ) + (1− p(NN ))× (1− (1− p(NN ))mm−1))× 〈¬ans〉

≡ arithmetic

〈ans〉 +
(p(NN ) + (1− p(NN ))− (1− p(NN ))mm)× 〈¬ans〉

≡ 〈ans〉 + (1− (1− p(NN ))mm)× 〈¬ans〉 arithmetic

≡ 〈ans〉 + P(NN ,mm)× 〈¬ans〉 . definition of P(NN, mm)

For the left-hand side of (5.25), we have the equivalent

〈ans〉 + 〈¬ans〉 × P(NN ,mm) ,

since the standard invariant guarantees that mm 6= 0. Thus the probabilistic

invariant E2 is indeed maintained by the loop.

5.8 Specification Frame

In this section, we discuss the frame of our probabilistic specification substitution

and the intuitive meaning (somewhat surprising) related to it.

Consider the following program{
1
2
| coinA : 〈coinA = Head〉

}
, (5.26)

which guarantees to terminate and establish that coinA is Head with probability at

least 1
2 . What about other variables in our system? Assume that the program state

contains another coin, namely coinB . We consider the post-expectation where

coinB is Head . Applying the semantics from Sec. 5.7, we have
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[{
1
2 | coinA : 〈coinA = Head〉

}]
〈coinB = Head〉

≡ terminating probabilistic specification substitution[
(1 | coinA : 〈coinA = Head〉) 1

2
⊕ (1 | (coinA, coinB) : 1)

]
〈coinB = Head〉

≡ probabilistic choice substitution

1
2 × [1 | coinA : 〈coinA = Head〉] 〈coinB = Head〉

+
1
2 × [1 | (coinA, coinB) : 1] 〈coinB = Head〉

≡ probabilistic specification substitution

1
2 × 1× [coinA0, coinB0 : = coinA, coinB ]
ucoinA · (〈coinB = Head〉 ÷ (〈coinA = Head〉 × 〈coinB = coinB0〉))

+
1
2 × 1× [coinA0, coinB0 : = coinA, coinB ]
u(coinA, coinB) · (〈coinB = Head〉 ÷ 1)

≡ the first minimum is 〈coinB0 = Head〉 when coinA is Head and coinB is coinB0

the second minimum is 0 when coinB is Tail
1
2 × [coinA0, coinB0 : = coinA, coinB ] 〈coinB0 = Head〉

+ 1
2 × [coinA0, coinB0 : = coinA, coinB ] 0

≡ 1
2 × 〈coinB = Head〉 . arithmetic and simple substitution

The semantics of the substitution tell us that it establishes the post-expectation

〈coinB = Head〉 with probability at least 1
2 × 〈coinB = Head〉. If we start in the

state where coinB is indeed Head , the guaranteed probability we get is 1
2 . How-

ever, we might expect the probability to be 1 (not 1
2 ) in the case where coinB is

Head initially, since coinB is not in the frame. Hence we cannot guarantee that

the system keeps coinB unchanged (always). In fact, we can only guarantee that

coinB is unchanged at least half of the time (when the program also establishes the

desired post-expectation 〈coinA = Head〉). The reason for this apparent anomaly

is the right-hand branch, executed with probability 1
2 , which can set coinB arbi-

trary.
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This result came as a surprise at first 8, but the semantics of the terminating

probabilistic specification substitution clearly allows this behaviour. The condition

for termination “1 | x : 1” specifies that the system does terminate but can change

any variable of the state. So in fact, the terminating probabilistic specification

substitution {p | v : 〈Q〉} allows variables other than v to be changed (at most)

1− p of the time.

Moreover, this behaviour also can be observed with our original probabilistic

specification substitution, since the only difference with the terminating proba-

bilistic specification substitution (beside the fact that the terminating version only

applies for embedded predicate expectations) is the termination condition. This

means we cannot guarantee that the specification change only the variables speci-

fied in the frame. In fact, a program such as

coinA : = Head 1
2
⊕ coinB : = Tail

is a valid implementation of both programs

1
2
| coinA : 〈coinA = Head〉

and {
1
2
| coinA : 〈coinA = Head〉

}
.

Recall our probabilistic specification substitution defined as “A | v : B”

with the meaning that the substitution establishes the expectation of B (in the final

set of distributions) with at least the expected value A (in the initial distribution)

and “is constrained” to change variable in v only. Now we can have more pre-

cise understanding of our terminating probabilistic specification {p | v : 〈Q〉} :

it specifies a terminating program which guarantees to establish the post condition

Q and change only variables in v with probability of at least p, i.e. the other 1− p

of the time, other terminating behaviours are allowed, including changes made to

variables not in v .

Changing variables outside the frame is in fact not something new. Consider

the program (in the standard context) as follows:

false | v : true .

8This issue arose in our discussions with Prof. Steve Schneider at University of Surrey.
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This program is in fact equivalent to abort and it is never guaranteed to terminate:

even when it does, it can change other variables rather than variables in v .

We can define a special version of the terminating probabilistic specification

substitution (we called this the restricted terminating probabilistic specification

substitution) to restrict the changes made to the variables in the frame of the spec-

ification, as follows.

Definition 7 Let p be a probabilistic expression over x and free from x0; and let

Q be a predicate defined over x0, v and satisfying

∀ x0 · (∃ v ·Q) .

The specification {{p | v : 〈Q〉}} is defined by

{{p | v : 〈Q〉}} =̂ 1 | v : 〈Q〉 p⊕ 1 | v : 1 . (5.27)

That is, the specification {{p | v : 〈Q〉}} establishes Q with probability at least p;

but even if it does not, it still terminates and changes only variables in v . 9

Furthermore, we have a special version of the fundamental theorem corre-

sponding to the above (restricted) specification as follows.

Theorem 7 Let p be an expression over x and let Q be a predicate defined over

x0, v , and satisfying ∀ x0 · (∃ v · Q); and let T be any program. For all such

programs T , if

(1 | v : 1) v T , i.e. T changes only variables in v and terminates,

and

(p | v : 〈Q〉) v T

then

{{p | v : 〈Q〉}} v T .

Proof. The proof of the theorem is similar to the proof in Sec. 5.7. Details can

be found in Appendix C.

9The restriction in the frame is what distinguishes it from {p | v : 〈Q〉}. That restriction is

made by changing the frame of the right-hand-side branch of the probabilistic choice in (5.27) from

x to v .
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The first issue with restricted terminating probabilistic specification substitu-

tions is tool support. We have to check not only the refining program, i.e. T ,

terminates (which the original toolkit already generates proof obligations for), but

also whether T makes changes only to variables within the frame. This can be

easily done by syntactic checking through the program to discover which variables

have been changed. We defer this as future work.

Moreover, the second issue is related to the completeness of probabilistic spec-

ification substitutions. In the standard context, every sequential program can be

described by a single standard specification substitution (i.e. by specifying a pair

of pre- and post-conditions). In the probabilistic context, not every program can be

described by a probabilistic specification substitution. A simple example is a fair

coin, i.e. a coin that returns Head and Tail with equal probability. This kind of

system needs to be described by “multiple pre- and post-expectations”. To estab-

lish each expectation, a program might have to modify different sets of variables

(i.e. having a different frame for each post-expectation). We will explore this kind

of system further in the next chapter.

5.9 Conclusions and Future Work

In this chapter, we proposed a second step in to the pB domain, by adding to the

earlier proposed probabilistic machines (Sec. 4) the “superstructure” required for

following the concept of the specify-refine-implement path embodied in the B-

Method. We showed that the new construct is well defined and interacts properly

with the other existing constructs in B, especially stepwise refinement. The case

study of the Min-Cut algorithm turns out to be not completely trivial when it comes

to formalisation 10.

Similar ideas have been presented by Neil White, but they are expressed in Z,

in his MSc thesis at Oxford [67], even though he did not consider the extensions to

terminating specifications. The reason for that is there are no compositions in Z.

Moreover, the B context provides a number of new challenges, some of which

we have addressed here. The issue of separation of standard reasoning from prob-

abilistic reasoning is (or will be) of crucial importance if pB is to handle devel-

10It was suggested to us by Annabelle McIver, based on a case-study of the same algorithm done

in the theorem-proving environment Coq [29] by Prof. Christine Paulin-Mohring of the LRI in Paris.
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opments of anything like the same size and scope as standard B does. The (un-

restricted) “terminating” specification substitution (mentioned here in Sec. 5.7) will

probably become the one used in practice.

The B-Toolkit has been modified to accommodate the new syntax for the un-

restricted terminating specification substitution, and the example given in this chap-

ter has been developed within the new pB-Toolkit.

The restricted terminating probabilistic specification substitution needs to have

tool support, which will check the scope of the refining program. This can be done

by a simple syntactic check for all operations to record the set of variables which

have been changed by the substitution in the operation. We regard this as possible

future work.



Chapter 6

Multiple Expectation Systems

6.1 Completeness of Probabilistic Specification
Substitutions

In the last chapter, we introduced the notion of probabilistic specification substi-

tutions and the corresponding fundamental theorem used to refine systems spec-

ified by such substitutions. We have also investigated and introduced a different

variation of the probabilistic specification substitution to include the terminating

condition. This inclusion allows probabilistic systems to be developed in layers.

Introducing the probabilistic specification substitution is an important step which

takes pB closer to the refinement framework which is so characteristic of the stan-

dard B-Method.

As we concluded in the last chapter, probabilistic specification substitutions

are not in themselves complete: a system specified by probabilistic specification

substitutions can only describe one “aspect” of its behaviours using a single pair

of pre- and post-expectations. In general, however, a probabilistic system usually

needs to be specified by more than one pair of pre- and post-expectations. Spec-

ifying a fair coin is an obvious example for this: we need to specify that the coin

returns heads (at least) half of the time, and also that it returns tails (at least) half

of the time.

Thus we need to have a generalised version of the substitution defined in the

previous chapter in order to capture the behaviours of probabilistic systems in gen-

eral. Moreover, we will need to develop the corresponding fundamental theorem

143
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for the new substitution. Here, the framework that we concentrate on will be sim-

ilar to the one in the previous chapter. The new substitution should fit snugly into

the framework, i.e. it should allow systems to be developed in layers. We will use

the example of “Duelling Cowboys” to illustrate our ideas.

This chapter is organised as follows: in Sec. 6.2, we define the syntax and give

the semantics for “multiple probabilistic specification substitution”; in Sec. 6.3,

we give the corresponding fundamental theorem and a simple example using the

theorem; in Sec. 6.4, we give the case study of Duelling Cowboys, starting from a

simple situation with two cowboys, and then extending that to the case where there

are three; in Sec. 6.5, we propose possible changes to the B-Toolkit to accommo-

date the new substitution and its fundamental theorem; in Sec. 7, we conclude and

discuss possible future work.

6.2 Multiple Probabilistic Specification Substitutions

In this section, we introduce the concept of multiple probabilistic specification

substitutions and we give some examples to illustrate when and how we can use

them.

6.2.1 Definition

We begin by considering the special case where the post-expectations are standard,

i.e. they are all embedded predicates of the form 〈Q〉 where Q is a predicate of the

state.

Recall the definition of a “multi-way probabilistic choice” which is the gen-

eralised version of a probabilistic choice [49]. It specifies a (probabilistic) choice

over n alternatives, as follows:

(S1@p1 | S2@p2 | · · · | Sn@pn) ;

if we write it vertically, we have

S1 @p1

S2 @p2

· · ·
Sn @pn ,
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in which in either form the sum of the probabilities pi for i ∈ (1..n) is no more

than 1. The meaning of the substitution is that it will behave like Si at least pi

of the time, for all of the i ’s simultaneously. The semantics of the substitution is

defined with respect to an arbitrary post-expectation B as follows:
S1 @p1

S2 @p2

· · ·
Sn @pn ,

B ≡

p1 × [S1]B
+ p2 × [S2]B
+ · · ·
+ pn × [Sn ]B .

More information on multi-way probabilistic choices can be found elsewhere [49].

We define (terminating) “multiple probabilistic specification substitutions”, us-

ing multi-way probabilistic choices, in the following definition.

Definition 8 For i ∈ (1..n), let pi be a probabilistic expression over the state x

and free from x0 and satisfying

n∑
i=1

pi ≤ 1 ; (6.1)

let Qi be predicates defined over x0, v (where v is a subset of x ) and satisfying, for

all Qi , that we have

∀ x0 · (∃ v ·Qi) . (6.2)

Then the specification

v :

{p1, 〈Q1〉}
{p2, 〈Q2〉}
· · ·
{pn , 〈Qn〉}

is defined by

v :

{p1, 〈Q1〉}
{p2, 〈Q2〉}
· · ·
{pn , 〈Qn〉}

=̂

(1 | v : 〈Q1〉) @p1

(1 | v : 〈Q2〉) @p2

· · ·
(1 | v : 〈Qn〉) @pn

(1 | x : 1) @p0 ,

(6.3)

where

p0 = 1−
n∑

i=1

pi .
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The definition states that with probability of at least pi , the substitution be-

haves like program “1 | v : 〈Qi〉” (for i ∈ (1..n)). Otherwise, the system still

guarantees to terminate. Clearly, this is a generalised version of the terminating

probabilistic specification substitution (if we have only one pair of pre- and post-

expectation).

6.2.2 Examples

The first example that we consider is a fair coin. We can specify a fair coin using

the substitution defined in the previous section as follows (assuming that the system

only has one variable named coin):

coin :
{1

2 , 〈coin = Head〉}
{1

2 , 〈coin = Tail〉} .
(6.4)

The specification specifies that it establishes coin is Head at least 1
2 of the time

and also establishes coin is Tail at least 1
2 of the time.

We calculate the least guarantee probability that Prog. (6.4) establishes coin is

Head according to the semantics as follows:[
coin :

{1
2 , 〈coin = Head〉}
{1

2 , 〈coin = Tail〉}

]
〈coin = Head〉

≡ multiple probabilistic specification substitution, see below[
(1 | coin : 〈coin = Head〉) @ 1

2

(1 | coin : 〈coin = Tail〉) @ 1
2

]
〈coin = Head〉

≡ multi-way probability choice

1
2 × [1 | coin : 〈coin = Head〉] 〈coin = Head〉

+ 1
2 × [1 | coin : 〈coin = Tail〉] 〈coin = Head〉

≡ probabilistic specification substitutions

1
2 × 1× [coin0 : = coin] u coin · (〈coin = Head〉 ÷ 〈coin = Head〉)

+1
2 × 1× [coin0 : = coin] u coin · (〈coin = Tail〉 ÷ 〈coin = Head〉)

≡ the first minimum is 1 when coin = Head
the second minimum is 0 when coin = Head

1
2 × [coin0 : = coin] 1 + 1

2 × [coin0 : = coin] 0

≡ 1
2 . simple substitutions and arithmetic
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For the deferred judgement, zero probability is assigned to “1 | coin : 1”, since

the probabilities for Head and Tail sum to 1.

So the meaning of the substitution, as given by its semantics, shows that the

probability of establishing coin is Head is indeed at least 1
2 . Similarly, the proba-

bility for Prog. (6.4) to establish coin is Tail is at least 1
2 .

We take another example where the state contains two coins, namely coinA

and coinB . We have the following specification:

(coinA, coinB) :

{1
3 , 〈coinA = Head〉}
{1

4 , 〈coinA = Tail ∧ coinB = Head〉}
{1

4 , 〈coinA = Tail ∧ coinB = Tail〉}
, (6.5)

which specifies that the substitution establishes coinA is Head at least 1
3 of the

time; coinA is Tail and coinB is Head at least 1
4 of the time; and finally, coinA

and coinB are both Tail at least 1
4 of the time.

Our intuition tells us that the guaranteed probability for Prog. (6.5) to estab-

lishes coinA is Tail is 1
2 (the probability to establish coinA is Tail and coinB is

Head plus the probability to establish coinA is Tail and coinB is Tail ). Again,

we will use the semantics given in Def. 8 to calculate the probability as follows:(coinA, coinB) :

{1
3 , 〈coinA = Head〉}
{1

4 , 〈coinA = Tail ∧ coinB = Head〉}
{1

4 , 〈coinA = Tail ∧ coinB = Tail〉}


〈coinA = Tail〉

≡ multiple probabilistic specification substitution, see below
(1 | (coinA, coinB) : 〈coinA = Head〉) @ 1

3

(1 | (coinA, coinB) : 〈coinA = Tail ∧ coinB = Head〉) @ 1
4

(1 | (coinA, coinB) : 〈coinA = Tail ∧ coinB = Tail〉) @ 1
4

(1 | (coinA, coinB) : 1) @ 1
6


〈coinA = Tail〉
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≡ multi-way probabilistic choice

1
3× [1 | (coinA, coinB) : 〈coinA = Head〉] 〈coinA = Tail〉

+ 1
4× [1 | (coinA, coinB) : 〈coinA = Tail ∧ coinB = Head〉]

〈coinA = Tail〉
+ 1

4× [1 | (coinA, coinB) : 〈coinA = Tail ∧ coinB = Tail〉]
〈coinA = Tail〉

+ 1
6× [1 | (coinA, coinB) : 1] 〈coinA = Tail〉

≡ probabilistic specification substitutions

1
3× 1× [coinA0, coinB0 : = coinA, coinB ]

u(coinA, coinB) · (〈coinA = Tail〉 ÷ 〈coinA = Head〉)
+1

4× 1× [coinA0, coinB0 : = coinA, coinB ]
u(coinA, coinB) · (〈coinA = Tail〉 ÷ 〈coinA = Tail ∧ coinB = Head〉)

+1
4× 1× [coinA0, coinB0 : = coinA, coinB ]
u(coinA, coinB) · (〈coinA = Tail〉 ÷ 〈coinA = Tail ∧ coinB = Tail〉)

+1
6× 1× [coinA0, coinB0 : = coinA, coinB ]

u(coinA, coinB) · (〈coinA = Tail〉 ÷ 1)

≡ the first minimum is 0 when coinA = Head
the second minimum is 1 when coinA = Tail ∧ coinB = Head

the third minimum is 1 when coinA = Tail ∧ coinB = Tail
the fourth minimum is 0 when coinA = Head

1
3× 1× [coinA0, coinB0 : = coinA, coinB ] 0

+1
4× 1× [coinA0, coinB0 : = coinA, coinB ] 1

+1
4× 1× [coinA0, coinB0 : = coinA, coinB ] 1

+1
6× 1× [coinA0, coinB0 : = coinA, coinB ] 0

≡ 1
2 , simple substitutions and arithmetic

which is consistent with our intuition about the program.

For the deferred judgement, the probability assigned to “1 | (coinA, coinB) : 1”

is

1−
(

1
3

+
1
4

+
1
4

)
=

1
6

.
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6.3 The Multiple Probabilistic Fundamental Theorem

In this section, we formulate the fundamental theorem corresponding to the sub-

stitution introduced in the previous section, and look at an example showing how

to use the theorem. We are considering a special kind of multiple probabilistic

specification substitution where the post-conditions are disjoint.

6.3.1 The Fundamental Theorem

The theorem is an extension of the fundamental theorem for terminating proba-

bilistic specification substitutions, and can be stated as follows:

Theorem 8 For i ∈ (1..n), let pi be probabilistic expressions over x and free from

x0 and satisfying
n∑

i=1

pi ≤ 1 . (6.6)

Let Qi be predicates defined over x0, v and satisfying, for all predicates Qi , that

we have

∀ x0 · (∃ v ·Qi) . (6.7)

Moreover, all those predicates are pairwise disjoint 1, i.e. for any pair Qi and Qj ,

where i 6= j , we have

Qi ∧Qj = false . (6.8)

For all programs T , if

• T terminates, i.e.

(1 | x : 1) v T , (6.9)

and

• for all i ∈ (1..n),

(pi | v : 〈Qi〉) v T (6.10)

then we have

v :

{p1, 〈Q1〉}
{p2, 〈Q2〉}
· · ·
{pn , 〈Qn〉}

v T . (6.11)

1 This disjointness condition is the extra condition for the soundness of the fundamental theorem.
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Proof. Let E be an arbitrary expectation over x . For any x0, we have from

arithmetic that

E W ux · (E )× 1 +
(ux · (E ÷ 〈Qw

1 〉)− ux · (E ))× 〈Qw
1 〉 +

(ux · (E ÷ 〈Qw
2 〉)− ux · (E ))× 〈Qw

2 〉 +
· · · +
(ux · (E ÷ 〈Qw

n 〉)− ux · (E ))× 〈Qw
n 〉

(6.12)

where Qw
i =̂ Qi ∧w = w0, for i ∈ (1..n). We have the above inequality because

the embedded predicates 〈Qw
i 〉 and 〈w = w0〉 can have values only 1 or 0. In each

case, it can be proved that the inequality (6.12) holds, as shown below.

• If w 6= w0, the right-hand side of (6.12) is ux · (E ), which is everywhere no

more than E .

• If Qw
i holds for a particular i , with the condition (6.8) Qw

j is false for any

j 6= i . Given the non-emptiness condition (6.7), the right-hand side of (6.12)

is ux · (E ÷ 〈Qw
i 〉) which is everywhere no more than E , given that Qw

i

holds.

• If w = w0 ∧ ¬(Q1∧Q2∧· · ·∧Qn), the right-hand side of (6.12) is ux ·(E ),

which is everywhere no more than E .

First, we can estimate the pre-expectation of T with respect to E , since for all

x0 we have:

[T ]E

W (6.12) and monotonicity of T

[T ]


ux · (E )× 1 +
(ux · (E ÷ 〈Qw

1 〉)− ux · (E ))× 〈Qw
1 〉 +

(ux · (E ÷ 〈Qw
2 〉)− ux · (E ))× 〈Qw

2 〉 +
· · · +
(ux · (E ÷ 〈Qw

n 〉)− ux · (E ))× 〈Qw
n 〉


W general sublinearity of T (see (5.24) in Sec. 5.7)

ux · (E )× [T ]1 +
(ux · (E ÷ 〈Qw

1 〉)− ux · (E ))× [T ]〈Qw
1 〉 +

(ux · (E ÷ 〈Qw
2 〉)− ux · (E ))× [T ]〈Qw

2 〉 +
· · · +
(ux · (E ÷ 〈Qw

n 〉)− ux · (E ))× [T ]〈Qw
n 〉 .
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Hence (since x0 is unconstrained), in particular,

[T ]E

W x0 is given a value x

[x0 : = x ]


ux · (E )× [T ]1 +

(ux · (E ÷ 〈Qw
1 〉)− ux · (E ))× [T ]〈Qw

1 〉+
(ux · (E ÷ 〈Qw

2 〉)− ux · (E ))× [T ]〈Qw
2 〉+

· · · +
(ux · (E ÷ 〈Qw

n 〉)− ux · (E ))× [T ]〈Qw
n 〉


≡ simple substitution x0 : = x

[x0 : = x ](ux · (E )× [T ]1) +

[x0 : = x ] (ux · (E ÷ 〈Qw
1 〉)− ux · (E ))

×[x0 : = x ][T ]〈Qw
1 〉 +

[x0 : = x ] (ux · (E ÷ 〈Qw
2 〉)− ux · (E ))

×[x0 : = x ][T ]〈Qw
2 〉 +

· · · +

[x0 : = x ] (ux · (E ÷ 〈Qw
n 〉)− ux · (E ))

×[x0 : = x ][T ]〈Qw
n 〉

≡ x0 is a fresh variable and simple substitution

[x0 : = x ] u x · (E ) × [x0 : = x ][T ]1 +

[x0 : = x ] (ux · (E ÷ 〈Qw
1 〉)− ux · (E ))

×[x0 : = x ][T ]〈Qw
1 〉 +

[x0 : = x ] (ux · (E ÷ 〈Qw
2 〉)− ux · (E ))

×[x0 : = x ][T ]〈Qw
2 〉 +

· · · +

[x0 : = x ] (ux · (E ÷ 〈Qw
n 〉)− ux · (E ))

×[x0 : = x ][T ]〈Qw
n 〉

W refinement assumption

[x0 : = x ] u x · (E )× 1 +

[x0 : = x ] (ux · (E ÷ 〈Qw
1 〉)− ux · (E ))× p1 +

[x0 : = x ] (ux · (E ÷ 〈Qw
2 〉)− ux · (E ))× p2 +

· · · +

[x0 : = x ] (ux · (E ÷ 〈Qw
n 〉)− ux · (E ))× pn
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≡ simple substitution and arithmetic 2

[x0 : = x ] u x · (E )× p0 +

[x0 : = x ] u x · (E ÷ 〈Qw
1 〉)× p1 +

[x0 : = x ] u x · (E ÷ 〈Qw
2 〉)× p2 +

· · · +
[x0 : = x ] u x · (E ÷ 〈Qw

n 〉)× pn

≡ definition of probabilistic specification substitution

[1 | x : 1]E × p0 +

[1 | v : 〈Q1〉]E × p1 +
[1 | v : 〈Q2〉]E × p2 +
· · · +
[1 | v : 〈Qn〉]E × pn

≡ multi-way probabilistic choice substitution
(1 | x : 1) @p0

(1 | v : 〈Q1〉) @p1

(1 | v : 〈Q2〉) @p2

· · ·
(1 | v : 〈Qn〉) @pn

E

≡ definition of multiple terminating probabilistic specification substitutionv :

{p1, 〈Q1〉}
{p2, 〈Q2〉}
· · ·
{pn , 〈Qn〉}

E

Because E is arbitrary, therefore

v :

{p1, 〈Q1〉}
{p2, 〈Q2〉}
· · ·
{pn , 〈Qn〉}

v T .

2We have defined

p0 = 1−
nX

i=1

pi .
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6.3.2 Examples

We consider a particular program which is the refinement for Prog. (6.5).

Let
T =̂ coinA : = Head

1
2
⊕  coinA, coinB : = Tail ,Head

1
2
⊕

coinA, coinB : = Tail ,Tail


According to the fundamental theorem in previous section, we need to prove

that

1 | (coinA, coinB) : 1 v T (6.13)
1
3
| (coinA, coinB) : 〈coinA = Head〉 v T (6.14)

1
4
| (coinA, coinB) : 〈coinA = Tail ∧ coinB = Head〉 v T (6.15)

1
4
| (coinA, coinB) : 〈coinA = Tail ∧ coinB = Tail〉 v T (6.16)

Proof. For (6.13), clearly, T terminates and makes changes to variables coinA

or coinB only.

We prove (6.14) by using the probabilistic fundamental theorem in Sec. 5.3.2.

Consider the post-expectation 〈coinA = Head〉.

[coinA0, coinB0 : = coinA, coinB ] [T ] 〈coinA = Head〉
≡ definition of T

[coinA0, coinB0 : = coinA, coinB ]
coinA : = Head

1
2
⊕ coinA, coinB : = Tail ,Head

1
2
⊕

coinA, coinB : = Tail ,Tail


 〈coinA = Head〉

≡ probabilistic choice substitution
there are no coinA0 and coinB0 in T

1
2× [coinA : = Head ]〈coinA = Head〉

+
(
1− 1

2

)
×

coinA, coinB : = Tail ,Head
1
2
⊕

coinA, coinB : = Tail ,Tail

〈coinA = Head〉
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≡ simple substitution and arithmetic

1
2× 〈Head = Head〉

+ 1
2×

 coinA, coinB : = Tail ,Head
1
2
⊕

coinA, coinB : = Tail ,Tail

〈coinA = Head〉

≡ probabilistic choice substitution and embedded predicate

1
2× 1

+ 1
2×

 1
2× [coinA, coinB : = Tail ,Head ]〈coinA = Head〉
+(

1− 1
2

)
× [coinA, coinB : = Tail ,Tail ] 〈coinA = Head〉


≡ simple substitution and arithmetic

1
2 + 1

2 ×
(

1
2 × 〈Tail = Head〉 + 1

2 × 〈Tail = Head〉
)

≡ 1
2 + 1

2 ×
(

1
2 × 0 + 1

2 × 0
)

embedded predicate

≡ 1
2 . arithmetic

We already proved that
1
3

V [coinA0, coinB0 : = coinA, coinB ] [T ] 〈coinA = Head〉 ,

hence by the probabilistic fundamental theorem, (6.14) holds.

Proofs of (6.15) and (6.16) are similarly trivial and will not be mentioned here.

Hence in order to prove the refinement of multiple probabilistic specification

substitutions, we can separate and prove the refinement for each pair of pre- and

post-expectation independently (using the probabilistic fundamental theorem de-

scribed in Sec. 5.3.2).

6.4 Case Study: The Duelling Cowboys

In this section, we show how multiple probabilistic specification substitutions can

be applied in order to specify systems with probabilistic properties. Moreover, we

show that we can prove the refinement of such systems to executable code using

the corresponding fundamental theorem.
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6.4.1 Example of Two Duelling Cowboys

The description of the problem is as follows. There are two cowboys X and Y

fighting a duel. They take turns to shoot at each other. In each shot, the probability

for X to hit his opponent is 2
3 , whereas the probability for Y is 1

2 . Assuming that

X has the advantage of shooting first, what are the (least) survival probabilities for

both cowboys? We start with some informal reasonings of the problem, and follow

by formalising the system in pB.

Informal Reasoning

We reason about the probability of X first. Let the probability that X survives the

shooting when he has the chance to go first be pXY (X ). Here, the subscript XY

indicates that there are two cowboys, X and Y , and X is going to shoot first. We

have the equation

pXY (X ) =
2
3
× 1 +

1
3
× pYX (X ) , (6.17)

where pYX (X ) is the chance that X survives the game if Y gets the chance to

shoot X first. This is because with probability 2
3 , X is successful and he survives

the game (with probability 1). With probability 1
3 , he misses the shot and Y now

has the turn to shoot. With similar reasoning, we have:

pYX (X ) =
1
2
× 0 +

1
2
× pXY (X ) . (6.18)

Solving the set of equations (6.17) and (6.18) for pXY (X ) and pYX (X ), we have

pXY (X ) is 4
5 . So the probability that cowboy X survives the duel is at least 4

5 (since

there is no non-determinism in this game, this will be in fact the exact probability).

With similar reasoning, the least probability that cowboy Y survives the shoot-

ing is 1
5 . This is in fact the complement of probability of X since the duelling is

deterministic.

Formal Development of Two Duelling Cowboys

We use multiple probabilistic specification substitutions to specify the two duelling

cowboy system. Let s be the cowboy surviving the duel, so that the specification

is as shown in Fig. 6.4.1 on the following page. (We use the term “post-hoc” here
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s←− TwoCowboyXY =̂ s :
{ 4

5 , 〈s = X 〉}
{ 1

5 , 〈s = Y 〉}

Figure 6.1: “Post-hoc” specification of Two Duelling Cowboys

because for the sake of our example we have in fact derived the specification from

the implementation of the problem, albeit informally.)

The operation (namely TwoCowboyXY) has no inputs and has one output rep-

resenting the cowboy surviving the duel. Here, we use the pGSL form for the

operation 3. The operation specifies that (according to the meaning of multiple

probabilistic specification substitutions) the probability that cowboy X survives

the game is (at least) 4
5 , and that the probability for Y is (at least) 1

5 .

The implementation of the two duelling cowboys can be seen in Fig. 6.2. The

implementation uses two local variables: t to record the cowboy whose turn it is

to shoot, and n for the number of cowboys still alive (so that n is either 1 or 2).

The game starts with cowboy X having the turn to shoot first, and both cowboys

are alive initially.

Then they start shooting at each other in turn. This is implemented by a WHILE

loop, with the guard indicating that both cowboys are alive. The body of the loop

is a conditional substitution. The first branch of the IF clause models the case

where cowboy X shoots: with probability 2
3 X is successful and he will be the

only surviving cowboy (and n decreases accordingly); otherwise, Y will have the

turn to shoot. The ELSE branch is complementary in the obvious way for Y . We

leave the details about expectations of the loops for later reasoning.

We reason about the termination of the loop first: in fact the loop is almost-

certain to terminate (in the sense described in Sec. 3.2.1). The chosen variant is the

number of surviving cowboys, n , which is either 1 or 2 (i.e. bounded above by 2).

Moreover, because both probabilities of success for two cowboys are non-zero, it

can be easily seen that there is a non-zero chance that the variant decreases from 2

to 1 (if one of the cowboys is successful). So by the almost-certain variant rule in

Sec. 3.2.4, the loop terminates with probability one.

In order to prove the refinement, we apply the multiple probabilistic fundamen-

3Later, we will discuss the pAMN form for the substitution.
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s←− TwoCowboyXY =̂

VAR t, n IN

t : = X ; s : = X ; n : = 2 ;
WHILE n = 2 DO

IF t = X THEN

PCHOICE 2//3 OF s : = X ; n : = 1

OR t : = Y

END

ELSE

PCHOICE 1//2 OF s : = Y ; n : = 1

OR t : = X

END

END

BOUND 2

VARIANT n

INVARIANT

n ∈ 1..2

EXPECTATIONS · · ·

END

END

Figure 6.2: Implementation of Two Duelling Cowboys
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tal theorem. We need to prove that the implementation in fact refines

4
5
| s : 〈s = X 〉 (6.19)

and
1
5
| s : 〈s = Y 〉 ; (6.20)

we leave aside the fact that it terminates and makes changes to variable s only

(which is trivial and we will not reason about).

Here, we prove the refinement for (6.19) using the following expectation (prob-

abilistic invariant) for the loop:

E1 ≡ 〈s = X ∧ n = 1〉+ 〈n = 2 ∧ t = X 〉 × 4
5

+ 〈n = 2 ∧ t = Y 〉 × 2
5

.

According to Sec. 5.4.2, we have to prove that

4
5

V [s0 : = s] [TwoCowboyXY ] 〈s = X 〉 ,

which is equivalent to

4
5

V [TwoCowboyXY ] 〈s = X 〉 ,

since there are no s0 variables in the operation TwoCowboyXY. (Notice that we

mean the implementation version of the operation.)

With respect to Sec. 5.4.2 concerning the partial correctness of probabilistic

loops, we have the following information for the WHILE loop in the implementa-

tion of operation TwoCowboyXY.

• The standard invariant is I1 =̂ n ∈ 1..2 .

• The guard for the loop is G1 =̂ n = 2.

• The body of the loop is

S1 =̂ IF · · ·THEN · · ·ELSE · · ·END .

• The expectation (probabilistic invariant) is

E1 =̂ 〈s = X ∧n = 1〉+ 〈n = 2∧ t = X 〉× 4
5

+ 〈n = 2∧ t = Y 〉× 2
5

.
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• The post-condition Q1 is the constant predicate true.

• The post-expectation is B1 =̂ 〈s = X 〉.

Here, we concentrate on proving the obligations related to the expectations

only. Proving the maintenance of the standard invariant for the loop is trivial.

1. On termination, the expectation E1 is at least the post-expectation B1, i.e. if

¬G1 ∧ I1 then E1 V B1. We have

E1

≡ definition of E1

〈s = X ∧ n = 1〉+ 〈n = 2 ∧ t = X 〉 × 4
5 + 〈n = 2 ∧ t = Y 〉 × 2

5

≡ ¬G1 ∧ I1 ⇒ n = 1

〈s = X 〉+ 〈false〉 × 4
5 + 〈false〉 × 2

5

≡ 〈s = X 〉 embedded predicate and arithmetic

≡ B1 , definition of B1

which is what we needed to prove.

2. The expectation E1 is “maintained” (does not decrease) during the execution

of the loop, i.e. if G1 ∧ I1 then E1 V [S1]E1. We start the calculation from

the right-hand side:

[S1]E1

≡ [t = X =⇒ S1a [] t 6= X =⇒ S1b ]E1 definition of S1
4

≡ non-deterministic choice substitution

[t = X =⇒ S1a ]E1

min
[t 6= X =⇒ S1b ]E1

4S1a and S1b are the corresponding probabilistic choice branches in the body of the WHILE loop.

Also note that we use the pGSL form of substitution here.
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≡ 1
〈t=X 〉 × [S1a ]E1

min
1

〈t 6=X 〉 × [S1b ]E1 .

guarded substitutions

≡ details of the calculations are shown in Appendix D.1

1
〈t=X 〉 ×

4
5 min 1

〈t 6=X 〉 ×
2
5

≡ 〈t = X 〉 × 4
5 + 〈t 6= X 〉 × 2

5 arithmetic, see below

For the deferred judgement, when t = X , the value of 1
〈t 6=X 〉 is infinity and

the minimum will ignore that. The same occurs when t 6= X .

When G1 ∧ I1 holds, we have n = 2, hence

E1

≡ definition of E1

〈s = X ∧ n = 1〉+ 〈n = 2 ∧ t = X 〉 × 4
5 + 〈n = 2 ∧ t = Y 〉 × 2

5

≡ we have n = 2

〈s = X ∧ 2 = 1〉+ 〈2 = 2 ∧ t = X 〉 × 4
5 + 〈2 = 2 ∧ t = Y 〉 × 2

5

≡ logic, embedded predicates and arithmetic

〈t = X 〉 × 4
5 + 〈t 6= X 〉 × 2

5

≡ [S1]E1 . calculation above

Thus we have proved that the expectation E1 does not decrease during the

execution of the loop.

3. The expectation E1 is “established” at the beginning of the loop, i.e.

4
5

V [t : = X ; s : = X ;n : = 2]E1 .

We begin the proof from the right-hand side:
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[t : = X ; s : = X ;n : = 2]E1

≡ definition of E1

[t : = X ; s : = X ;n : = 2]
〈s = X ∧ n = 1〉+ 〈n = 2 ∧ t = X 〉 × 4

5 + 〈n = 2 ∧ t = Y 〉 × 2
5

≡ sequential and simple substitution

〈X = X ∧ 2 = 1〉+ 〈2 = 2 ∧X = X 〉 × 4
5 + 〈2 = 2 ∧X = Y 〉 × 2

5

≡ 4
5 , embedded predicate and arithmetic

which is what we needed to prove.

Hence we have proved that

(
4
5
| s : 〈s = X 〉) v TwoCowboyXY .

Similarly (but with a different expectation —probabilistic invariant— for loop), we

can prove that

(
1
5
| s : 〈s = Y 〉) v TwoCowboyXY ,

as required.

6.4.2 Example of Three Duelling Cowboys

In the previous example, we showed how the multiple probabilistic specification

substitution can be used to specify systems with probabilistic properties. We also

showed that we can implement the specification and prove the correctness of the

refinement process to code.

We extend the example further to see how the multiple probabilistic specifi-

cation substitutions fit into the framework of B, i.e. development via layers. The

example is extended to cover the case where there are three cowboys instead of just

two.

Assuming that beside X and Y , we have another cowboy Z , whose accuracy

rate is 1
3 . They shoot at each other with the turns now following the sequence

X ,Y ,Z ,X ,Y ,Z , . . .. Also, for simplicity, we assume that if all of them are alive
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then any cowboy will choose to shoot the person who gets the turn to shoot next,

e.g. X will shoot Y first, Y will shoot Z first, etc. Furthermore, if one cowboy has

died, his turn will be passed to the next one in the sequence, e.g. if X is successful

when shooting at Y , after that, it is Z who shoots. The same question is asked

now, that is what are the survival chances for the cowboys, assuming that X has

the turn to fire first.

Informal Reasoning

We reason about the probability of X first; the probabilities of Y and Z can be

calculated in a similar way. Let the (least) probability that X survives the shooting

when he has the chance to go first be pXYZ (X ). Here the subscript XYZ indicates

the sequence of shooting, as before. We have the equation

pXYZ (X ) =
2
3
× pZX (X ) +

1
3
× pYZX (X ) , (6.21)

where pZX (X ) is the (least) probability that X survives when there are only X and

Z and Z has the chance to shoot first. Similarly, pYZX (X ) is the probability that

X survives when all of them are alive and Y has the turn to fire. We calculate the

probability pZX (X ) using the technique of the previous section and find it to be 4
7 .

Hence (6.21) can be rewritten as

pXYZ (X ) =
8
21

+
1
3
× pYZX (X ) . (6.22)

Similarly, we have the equations for pYZX (X ) and pZXY (X ) as follows:

pYZX (X ) =
2
5

+
1
2
× pZXY (X ) (6.23)

pZXY (X ) =
2
3
× pXYZ (X ) . (6.24)

Solving the set of equations (6.22), (6.23) and (6.24), we have results that

pXYZ (X ) =
81
140

, pYZX (X ) =
83
140

, pZXY (X ) =
27
70

.

So the probability that X survives the duelling with three cowboys is 81
140 . (Since

the game is still deterministic, this is again the exact probability.)

With similar reasoning for Y and Z , the probability that Y survives the game

is 27
320 and the probability that Z survives is 151

448 .
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s←− ThreeCowboyXYZ =̂ s :

{ 81
140 , 〈s = X 〉}
{ 27

320 , 〈s = Y 〉}
{ 151

448 , 〈s = Z 〉}

Figure 6.3: “Post-hoc” specification of Three Duelling Cowboys

Formal Development of Three Duelling Cowboys

The specification of three duelling cowboys example can be seen in Fig. 6.3. The

specification uses the notion of multiple probabilistic specification substitutions to

define the probability for each cowboy to survive the game according to the values

calculated in the previous section.

The implementation of the system can be seen in Fig. 6.4 on the following

page. Again, we use two local variables: t to record the cowboy whose turn it is

to shoot, and n for the number of cowboys still alive. Furthermore, we use specifi-

cations that model the behaviour when the duelling happens between two cowboys

only (i.e. when one of them already been killed). Operation TwoCowboyXY is

described in the previous section. Operation TwoCowboyZX is when the duelling

happens between X and Z but Z has the chance to fire first, and similarly we have

operation TwoCowboyYZ. The specifications of operations TwoCowboyYZ and

TwoCowboyZX are as follows:

s ←− TwoCowboyYZ =̂ s :
{3

4 , 〈s = Y 〉}
{1

4 , 〈s = Z 〉}
(6.25)

and

s ←− TwoCowboyZX =̂ s :
{3

7 , 〈s = Z 〉}
{4

7 , 〈s = X 〉}
(6.26)

In the implementation, X has the advantage of shooting first, and n starts from

3. The duelling is modelled as an WHILE loop, which continues to iterate until

there is only one cowboy surviving. A conditional substitution is used to implement

different cases when each cowboy has the turn to shoot.

The first branch is for the case when X fires at Y (according to the earlier

assumption): with probability 2
3 , he is successful and the duelling happens between

him and Z , but Z has the turn to fire first; otherwise (with probability 1
3 ), X misses

the shot and Y now has the turn to shoot. Other branches which implement the

cases where Y or Z has the turn to fire are similar.
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s←− ThreeCowboyXYZ =̂

VAR t, n IN

t : = X ; s : = X ; n : = 3 ;
WHILE n = 3 DO

IF t = X THEN

PCHOICE 2//3 OF s←− TwoCowboyZX ; n : = 1

OR t : = Y

END

ELSIF t = Y THEN

PCHOICE 1//2 OF s←− TwoCowboyXY ; n : = 1

OR t : = Z

END

ELSE

PCHOICE 1//3 OF s←− TwoCowboyYZ ; n : = 1

OR t : = X

END

END

BOUND 3

VARIANT n

INVARIANT

n ∈ {1, 3}

EXPECTATIONS · · ·

END

END

Figure 6.4: Implementation of Three Duelling Cowboys
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n = 3 s = X ∧ n = 1 s = Y ∧ n = 1 s = Z ∧ n = 1

t = X 81
140 1

t = Y 83
140 0

t = Z 27
70 0

Table 6.1: Tabulation of the probabilities for Three Duelling Cowboys

In order to prove the program in Fig. 6.4 on the preceding page is a valid

implementation of the program in Fig. 6.3 on page 163, we apply the fundamental

theorem and prove that the program in Fig. 6.4 on the preceding page refines the

following programs:

81
140

| s : 〈s = X 〉 (6.27)

27
320

| s : 〈s = Y 〉 (6.28)

151
448

| s : 〈s = Z 〉 (6.29)

1 | s : 1 . (6.30)

Proving the refinement for Prog. (6.30) means that the implementation terminates

and makes changes to s only, which holds trivially. We concentrate on proving the

refinement for Prog. (6.27), since the refinements for Prog. (6.28) and Prog. (6.29)

will be similar.

We apply the rules in Sec. 5.4.2 for Prog. (6.27). We have to prove that

81
140

V [s0 : = s] [ThreeCowboyXYZ ] 〈s = X 〉 ,

which is equivalent to

81
140

V [ThreeCowboyXYZ ] 〈s = X 〉 ,

since there are no s0 variables in the operation ThreeCowboyXYZ (the implemen-

tation version of the operation).

We try to “guess” the expectation of the loop using the Tab. 6.1, which sum-

marises the probability of establishing s = X after executing the body of the loop.

In the table, we leave out those states where n = 2, since they are invalid states

during the execution of the loop 5. We also leave out the probabilities for some
5In fact, they are hidden inside the sub-operations which model the duelling between pairs of

cowboys.
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invalid states in the table, e.g. when t = X ∧ s = Y ∧ n = 1. The table can be

read as follows. If we are in the state where n = 3 and t = X , i.e. all cowboys

are alive and it is X ’s turn to fire, there will be another iteration of the loop, and

the probability that s = X afterwards is 81
140 (according the informal reasoning).

Similarly, we have other probabilities when n = 3 ∧ t = Y and n = 3 ∧ t = Z .

Moreover, if we are in the state where n = 1∧s = X ∧ t = X , the loop terminates

and the probability of establishing s = X is 1. Clearly, that probability is 0 when

s = Y or s = Z . Putting all these together, we have the guessed expectation for

the loop is

E2 =̂

81
140 × 〈n = 3 ∧ t = X 〉 +
83
140 × 〈n = 3 ∧ t = Y 〉 +
27
70 × 〈n = 3 ∧ t = Z 〉 +

〈s = X ∧ n = 1〉 .

With respect to Sec. 5.4.2 about the partial correctness of probabilistic loop, we

have further information for the WHILE loop in the implementation of operation

ThreeCowboyXY as follows.

• The standard invariant is I2 =̂ n ∈ {1, 3} .

• The guard for the loop is G2 =̂ n = 3.

• The body of the loop is

S2 =̂ IF · · ·ELSIF · · ·THEN · · ·ELSE · · ·END .

• The post-condition Q2 is the constant predicate true.

• The post-expectation is B2 =̂ 〈s = X 〉.

We concentrate on proving the “maintenance” of E2 during the execution of

the loop, since it will show how the (inner) multiple probabilistic specification

substitutions interact. The other proofs are similar to the previous example. We

need to prove that

E2 V [S2]E2 ,

under the assumption that G2∧I2 holds. We begin the reasoning from the left-hand

side as follows:
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E2

≡ 81
140 × 〈n = 3 ∧ t = X 〉 +
83
140 × 〈n = 3 ∧ t = Y 〉 +
27
70 × 〈n = 3 ∧ t = Z 〉 +

〈s = X ∧ n = 1〉

definition of E2

≡ 81
140 × 〈3 = 3 ∧ t = X 〉 +
83
140 × 〈3 = 3 ∧ t = Y 〉 +
27
70 × 〈3 = 3 ∧ t = Z 〉 +

〈s = X ∧ 3 = 1〉

G2 ⇒ n = 3

≡ logic, embedded predicate and arithmetic

81
140 × 〈t = X 〉+ 83

140 × 〈t = Y 〉+ 27
70 × 〈t = Z 〉 .

For the right-hand side, the reasoning can be seen as follows:

[S2]E2

≡ definition of S2
6

[t = X =⇒ S2a [] t = Y =⇒ S2b [] t = Z =⇒ S2c ]E2

≡ guarded substitution

1
〈t=X 〉 × [S2a ]E2

min
1

〈t=Y 〉 × [S2b ]E2

min
1

〈t=Z 〉 × [S2c ]E2

Considering [S2a ]E2, we have

6S2a , S2b and S2c are corresponding probabilistic choice branches in the body of the WHILE

loop.
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[S2a ]E2

≡ definition of S2a[
(s ←− TwoCowboyZX;n : = 1) 2

3
⊕ t : = Y

]
E2

≡ probabilistic choice substitutions

2
3 × [s ←− TwoCowboyZX;n : = 1] E2

+ (
1− 2

3

)
× [t : = Y ] E2

≡ details of the calculations are in Appendix D.2

2
3 × [s ←− TwoCowboyZX] 〈s = X 〉+ 83

420

≡ specification of TwoCowboyZX

2
3 ×

[
s :
{3

7 , 〈s = Z 〉}
{4

7 , 〈s = X 〉}

]
〈s = X 〉+ 83

420

≡ multiple probabilistic specification substitution

2
3 ×

[
(1 | s : 〈s = Z 〉) @ 3

7

(1 | s : 〈s = X 〉) @ 4
7

]
〈s = X 〉+ 83

420

≡ multi-way probabilistic choice substitution

2
3 ×

(
3
7 × [1 | s : 〈s = Z 〉] 〈s = X 〉

+ 4
7 × [1 | s : 〈s = X 〉] 〈s = X 〉

)
+ 83

420

≡ probabilistic specification substitutions

2
3 ×

(
3
7 × 1× [s0 : = s] u s · (〈s = Z 〉 ÷ 〈s = X 〉)

+4
7 × 1× [s0 : = s] u s · (〈s = X 〉 ÷ 〈s = X 〉)

)
+ 83

420

≡ the first min is 0 when s = X
the second min is 1 when s = X

2
3 ×

(
3
7 × [s0 : = s] 0

+ 4
7 × [s0 : = s] 1

)
+ 83

420

≡ 81
140 . simple substitutions and arithmetic
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With similar calculations, we have

[S2b ]E2 ≡
83
140

,

and

[S2b ]E2 ≡
27
70

.

So we have overall

[S2]E2

≡ calculation above(
1

〈t=X 〉 ×
81
140

)
min

(
1

〈t=Y 〉 ×
83
140

)
min

(
1

〈t=Z 〉 ×
27
70

)
≡ 81

140 × 〈t = X 〉+ 83
140 × 〈t = Y 〉+ 27

70 × 〈t = Z 〉 arithmetic of min

≡ E2 .

Thus we have proved that

E2 V [S2]E2 ,

which means that the expectation E2 does not decrease during the execution of the

loop. With other trivial proofs, we can conclude that the implementation refines

Prog. (6.27). Similarly, using different expectations for loop, we can prove that

the implementation also refines Prog. (6.28) and Prog. (6.29). According to the

multiple probabilistic fundamental theorem, it is valid implementation of the three

duelling cowboy specification in Fig. 6.3 on page 163.

6.5 Proposed Changes to the B-Toolkit

The work proposed in this section has not yet been implemented in the pB-Toolkit.

This can be regarded future work arising from this dissertation.

First of all, we need to introduce the pAMN construct that corresponds to the

multiple probabilistic specification substitution

v :

{p1, 〈Q1〉}
{p2, 〈Q2〉}
· · ·
{pn , 〈Qn〉}

.
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We can take similar approach as in the previous chapter by using the PRE and

ANY clauses. The difference between multiple probabilistic specification substitu-

tion and (single) probabilistic specification substitution is that we need to “glue”

the pre- and post-expectation pairs of the former together. We propose a solution

for that by giving labels for each pair of pre- and post-expectations when writing

pAMN version of the multiple probabilistic specification substitution. The follow-

ing code

PRE
i1 : expectation(p1) ∧
i2 : expectation(p2) ∧
· · · ∧
in : expectation(pn) THEN
ANY v ′ WHERE

i1 : expectation(embedded(Q1[x0,v/x ,v ′])) ∧
i2 : expectation(embedded(Q2[x0,v/x ,v ′])) ∧
· · · ∧
in : expectation(embedded(Qn[x0,v/x ,v ′]))

THEN
v : = v ′

END
END

corresponds to

v :

{p1, 〈Q1〉}
{p2, 〈Q2〉}
· · ·
{pn , 〈Qn〉}

,

where ij are the set of labels. The advantage of using PRE and ANY clauses is

that the analyser can parse these expectations as normal predicates (pre- and post-

condition). The labels only come into the play when generating proof obligations,

which are then used to give the semantics for the multiple probabilistic specifi-

cation substitution. This extension can be based on the modifications which are

made to incorporate (single) probabilistic specification substitution as described in

the previous chapter.

Secondly, the proof obligation generation for the refinement process will need

to have some modifications that reflect the fundamental theorem as shown in Sec. 6.3.

Again, this can be based on generating the obligations for each pair of pre- and
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post-expectation separately, i.e. just generating the same obligations as for proba-

bilistic specification substitution many times.

Moreover, we might have some other difficulties when the implementation con-

tains loops. That is because, for each pre- and post-expectation, we have to use

different expectations for loop. In general, our probabilistic loop will have many

different expectations. We need to match those expectation with the correct pair

of pre- and post-expectation, so we take the approach of labelling these expecta-

tions. The EXPECTATIONS clause in the loop will be extended to have labels

corresponding to the labels in the specification, which will look like this:

EXPECTATIONS
i1 : E1;
i2 : E2;
· · ·
in : En ;

In this way, the proof obligation generator can generate the obligations for each

pre- and post-expectation pair separately and pick up the right expectation that

should be used for loop.

Because we generate the obligations for each pair of pre- and post-expectation

separately, we will repeatedly reason about loops. This results in having to prove

the termination of the loop many times, proving the maintenance of the standard

invariant of the loop repeatedly, and also the precondition of called operations more

than once. This does not effect the correctness of the loop, and, in practice, it

is unnecessary to do so. Further investigation needs to be done and this can be

regarded as future work.

6.6 Conclusions and Future Work

In this chapter, we extended the concept of (single) probabilistic specification sub-

stitutions to cover systems that can only be described by multiple expectations.

The work in this chapter allows us to formally specify and implement such sys-

tems. A practical method based on the fundamental theorem has been developed

as the backbone for developing these systems. We choose to use the example of

Duelling Cowboys to illustrate that the new specification and fundamental theorem

have been accommodated successfully to the framework of developing systems in

layers.
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Building the Toolkit to support multiple probabilistic specification substitution

and the corresponding fundamental theorem is regarded as future work arising from

this dissertation. The modifications should be similar to those that have been done

for the (single) probabilistic specification substitutions in previous chapter. Some

issues related to this have been discussed in Sec. 6.5.

The example of Two Duelling Cowboys has been used in [49] where the authors

discussed the correctness of probabilistic loops in a similar way to what we have

done here.

The example of Three Duelling Cowboys can be varied so that it can have some

non-deterministic behaviour in terms of firing sequence or the choice of target for

each cowboys. This can lead to different probabilities of surviving the game, but

the reasonings are similar to the example that is shown here. For example, instead

of choosing to shoot at the cowboy next in the sequence, the cowboy can fire at

the cowboy with higher accuracy rate, or the choice can be non-deterministic. The

firing sequence can be alternated, for example, the cowboy who survives the last

shot will have the chance to shoot.

Moreover, we derived the specification post-hoc, i.e. “backwards”, from the

actual implementation of the problem. In practice, we can start with symbolic

probabilities in the specification. By reasoning about proof obligations of the im-

plementation, we can drive the relationship and the actual values for those symbolic

probabilities in the specification.

For loops, we can find the expectation (probabilistic invariant) of loops by tab-

ulating the probabilities for different states. This technique can be used when state

base is finite and usually simple.

In this chapter, we have the same frame for all pair of pre- and post-expectations.

In the case where the frames are different, we can “standardise” for them to have

the same frame. Notice that the following specifications are always the same:

p | v : 〈Q〉

and

p | (v ,w) : 〈post ∧ w = w0〉 ,

where v ,w are disjoint subsets of state variables. So for every pair of pre- and

post-expectations in a multiple probabilistic specification substitution, we can use

the above technique to have the same frame for all of them.
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The question of completeness for probabilistic specification substitution needs

to be further investigated. Here, the multiple probabilistic specification substitution

only deals with systems where the post-expectations are standard and disjoint. Es-

pecially when post-expectations are numerical expressions, the intuitive meaning

of the systems with such set of post-expectations is not clear, and this is regarded

as a possible direction for further research.





Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation discusses the extension of the standard B-Method into the prob-

abilistic domain. The backbone of the new methods is pGSL—an extension of

the standard GSL— in which expectations (functions from state to real) replace

predicates (functions from state to Boolean) in the original semantics.

In Chap. 3, we proposed a method for proving systems with probability-one

termination. The new method is called qB and supports developments from spec-

ifications to implementations, in which the implementations can be proved to ter-

minate with probability-one (almost-certain to terminate). The reasoning in qB is

still based on Boolean logic, which is the main advantage of this work since most

of the theoretical basis of standard B can be reused. This method can be applied to

distributed systems where probability is used in order to break the symmetry effec-

tively. We provided the basis for consistently developing systems of this kind from

specifications to implementations. This will guarantee the final generated code is

correct (with respect to probability-one correctness).

In Chap. 4, the work is taken further in order to accommodate full probabilistic

reasoning (not just probability-one termination). We proposed the new concept of

probabilistic machines with probabilistic invariants. We gave the intuitive meaning

of the new concept, specified the rule for generating proof obligations to main-

tain probabilistic invariants and highlighted some unexpected results which are the

main differences between standard and probabilistic domains.

175
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In Chap. 5, the extension is widened to cover the concept of stepwise refine-

ment. We introduced probabilistic specification substitutions and the fundamental

theorem to refine these specifications to code. We separated the standard and prob-

abilistic reasoning so that most of the Boolean reasoning in the standard B-Toolkit

could be reused. The extra probabilistic reasoning is supported by extending the

library of proof rules to deal with real numbers. We also investigated some subtle

issues that occurred, and introduced the terminating version of probabilistic speci-

fication substitutions to tackle these problems. Using the terminating probabilistic

specification substitution allows us to develop systems in layers, which is one of

the key techniques within the B-Method.

In Chap. 6, we extended probabilistic specification substitutions for systems

with multiple expectations. The fundamental theorem is also developed for the

new substitutions, in order to refine such specifications to code.

In conclusion, with those methods that we proposed in this dissertation, sys-

tems with probabilistic properties can be developed formally from specifications to

implementations. We also modified the B-Toolkit to support the work. The mod-

ified B-Toolkit is used in order to assist with generating and proving obligations

about the correctness of systems that are developed within the new methods.

7.2 Future work

In this dissertation, we provide the framework for probabilistic B-Method which

can be used to develop probabilistic systems formally. Moreover, we concentrated

on the practical purpose of building a supporting toolkit. This section suggests

some future directions.

7.2.1 Tool Support for Multiple Expectation Systems

The B-Toolkit can be modified to support the multiple probabilistic specification

substitution and the corresponding fundamental theorem. This includes the support

for syntax and semantics of new constructs, and proof obligation generation to

maintain the correctness of systems which used these constructs.

The main issues related to this can be seen in Sec. 6.5. This work can be

based on those modifications which have been already done for (single) proba-

bilistic specification substitutions.
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7.2.2 Completeness of Probabilistic Specification Substitutions

The probabilistic specification substitution introduced in Chap. 5 is incomplete.

We proposed the multiple probabilistic specification substitution in order to be able

to (abstractly) specify more probabilistic systems based on a set of pre- and post-

expectations that they conform to. The question is “Is the multiple probabilistic

specification substitution complete or not”? Can the multiple probabilistic specifi-

cation substitution be use to describe every programs in pGSL? If it is incomplete,

what is the set of programs that the multiple probabilistic specification substitution

covers? By answering these questions can give us a better understanding of the

scope of our method, i.e. which problems we can or cannot model.

7.2.3 Composition of Probabilistic Machines

In B, machines can be composed to model larger system. The meaning of the

large machine is given by the meaning of the sub-machines and the way they are

composed. With our proposal of probabilistic invariants for probabilistic machines

in Chap. 4, probabilistic properties of systems can be described by the new kind of

invariants. However, the meaning of these invariants when machines are composed

needs to be investigated further.

7.2.4 Data Refinement

The refinement described in Chap. 5 and Chap. 6 is algorithmic refinement, i.e.

they are not the general data refinement which is usually used in B (algorithmic

refinement is a special case of data refinement).

In general, the data refinement rule (for both standard and probabilistic context)

is described in second-order logic. Fortunately, in the case of the standard context,

there is an equivalent form of the data refinement rule in first-order logic [20]; it

is called Gries’ rule. This is the main reason why the B-Toolkit can generate and

discharge proof obligations in first-order logic.

In the probabilistic context, there are no equivalent first-order rules for data

refinement (in general). The reason for that is the lack of conjunctivity of proba-

bilistic programs. The conjunctivity is replaced by the sub-conjunctivity property

[49]. Still, this is not enough to guarantee an equivalent form of data refinement
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rule in first-order logic. The paper by Schneider et. al. [61] discusses the refine-

ment for a case study in pAMN, but the reasoning remains purely at the program

level, not at the expectation level.

The lack of a first-order refinement rule will prevent the integration of proba-

bilistic data refinement into pB, which is supported by the (first-order) B-Toolkit, in

general. However, in some special cases, we can establish an equivalent first-order

rule. In these cases, we can separate the probabilistic and standard constructs and

reason about them separately. The data refinement representing the standard con-

text can be reasoned about using Gries’ rule. The probabilistic construct keeps the

structural (algorithmic) refinement but within a small state base and the probabilis-

tic data refinement can be proved by considering all the possible states. This will

be a possible future direction for integrating probabilistic data refinement into pB.

Moreover, we have introduced probabilistic choice substitutions which can ap-

pear in the specification. However, how to refine the probabilistic choice substitu-

tion in a way which is consistent with the data refinement concept in pB remains

as future work.

7.2.5 Probabilistic Event-B

With the extension from (classical) B to Event-B, naturally, there is a possibility

for extending Event-B to “probabilistic Event-B”. The paper by Morgan et. al. [46]

discusses about this possibility and some (early) challenges for having probability

within Event-B.

The key for this work will be the balance between theoretical reasoning and

having a practical supporting tool. Treating the full reasoning for probability, with

abstraction and refinement, is complicated, and usually unnecessary in practice.

The solution seems to depend on the capability of separating (as much as possible)

the standard and probabilistic constructs and reasoning about them separately.

7.2.6 Animation

One of the advantages of the B-Toolkit over other B’s supporting tools is the an-

imator. The animator is used to verify specifications against user’s requirements.

It is important to have the specification is consistent with the user’s requirement,

since the specification is the first step for formal development [31, 36]. It is also
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true in pB that we need to be confident about the correctness of the specification.

Verifying a probabilistic specification is not the same as in the standard con-

text, where the correctness can be checked at every state. What does it mean to

have a “correct” probabilistic substitution? For every probabilistic system, you

need to have “enough” tests in order to do any meaningful statistical reasoning for

this. Moreover, for our probabilistic systems, we need to “execute” the systems by

calling a sequence of operations. There will be questions on how the sequence is

chosen (on-the-fly or before). Should we “re-run” this sequence repeatedly in order

to have some distribution of outputs, or how long the sequence should be in order to

have real meaningful probabilistic effects? Furthermore, this seems to be related to

confidence intervals in probability theory, e.g. we only can say something similar

to “with the confidence level of 95%, the system is correct”.

Another alternative to animation is model checking. Some tools have been

built to model check B specifications, notably the ProB [35, 36, 34]. Extension

to ProB will be a possible direction for future research. There are even existing

tools for model-checking probabilistic systems such as PRISM [55]. But the scope

of PRISM is for more general systems in the form of Markov chains and Markov

decision processes.
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Appendix A

Root Contention

A.1 Specification: FirewireResolve.mch

MACHINE FirewireResolve

SETS
STATUS = { short signal , long signal }

OPERATIONS
xx , yy←− Resolve =̂

CHOICE

xx := short signal ‖ yy := long signal

OR

xx := long signal ‖ yy := short signal

END

END
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A.2 Implementation: FirewireResolveI.imp

IMPLEMENTATION FirewireResolveI

REFINES FirewireResolve

SEES
Firewire AbstractChoice , Bool TYPE

OPERATIONS
xx , yy←− Resolve =̂

VAR tempx , tempy , bb IN

tempx := short signal ;

tempy := short signal ;

WHILE tempx = tempy DO

bb←− Firewire AbstractChoice ;

IF bb = TRUE THEN

tempx := short signal

ELSE

tempx := long signal

END ;

bb←− Firewire AbstractChoice ;

IF bb = TRUE THEN

tempy := short signal

ELSE

tempy := long signal

END BOUND 1

VARIANT prob ( tempx = tempy )

INVARIANT tempx ∈ STATUS ∧ tempy ∈ STATUS

END ;

xx := tempx ; yy := tempy

END

END



Appendix B

Rabin’s Choice Coordination
Algorithm

B.1 Finite Bag: FBag.mch

MACHINE FBag

SEES

FBag ctx machine contain the general definitions about bags.

FBag ctx

VARIABLES

State contains one variable.

bag

INVARIANT

bag is modelled as partial function from natural number to natural number (def-

inition of Bag). The domain of bag is a finite set. Each element in the bag has

an index mapped to.

bag ∈ Bag ∧

dom ( bag ) ∈ � ( 
 )

INITIALISATION

Initially, the bag is empty.

bag := {}
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OPERATIONS

Operation: SetToBag

Requirements: Set the contents of bag to input bb.

Precondition: bb is a finite bag.

SetToBag ( bb ) =̂

PRE

bb ∈ Bag ∧

dom ( bb ) ∈ � ( 
 )

THEN

bag := bb

END ;

Operation: Takelem

Requirements: Take one element ee from the bag. By finding the index for

element (using ANY clause). Remove the mapping from bag.

Precondition: The element ee is in the bag.

Takelem ( ee ) =̂

PRE

ee ∈ ran ( bag )

THEN

ANY nn

WHERE

nn ∈ dom ( bag ) ∧ bag ( nn ) = ee

THEN

bag := { nn } � bag

END

END ;
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Operation: Addelem

Requirements: Adding element ee to the bag. Choose a free index nn, and

adding the element to the bag according to new index.

Precondition: The element ee is a natural number.

Addelem ( ee ) =̂

PRE

ee ∈ 


THEN

ANY nn

WHERE

nn ∈ 
 ∧ nn 6∈ dom ( bag )

THEN

bag := bag <+ { nn 7→ ee }

END

END ;

Operation: Anyelem

Requirements: Choose any element from the bag.

Precondition: The bag is not empty.

ee←− Anyelem =̂

PRE

bagSize ( bag ) 6= 0

THEN

ee :∈ ran ( bag )

END ;
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Operation: Size

Requirements: Return the size of the bag.

Precondition: There are no preconditions.

ss←− Size =̂

ss := bagSize ( bag )

END
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B.2 Context of Finite Bag: FBag ctx.mch

MACHINE FBag ctx

SEES

Getting the general math information from Math machine.

Math

DEFINITIONS

Bag is defined as a partial function from natural number (indexes) to natural

number (element of the bag).

Bag =̂ 
� 
 ;
The size of a bag is the cardinality.

bagSize ( b ) =̂ card ( b ) ;
maximum element in the bag which is the maximum number of the range of

the bag or 0 if the bag is empty.

maxInBag ( b ) =̂ max0 ( ran ( b ) ) ;
Define the number of elements in a bag b that greater than n.

bagGreat ( b , n ) =̂ card ( b � { xx | xx ∈ 
 ∧ xx ≥ n } )

END
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B.3 Specification: Rabin.mch

Simple abstract specification of the Rabin Choice Coordination problem. The pa-

rameter maxtotal is the maximum total number allowed. The constraint on it is that

maxtotal is less than the max integer allowed in B.

MACHINE Rabin ( maxtotal )

CONSTRAINTS
maxtotal ≤MaxScalar

SEES
Scalar TYPE

OPERATIONS

Operation: Decide

Requirements: Given two number lout and rout, which corresponding to the

number of people outside the two places left and right respectively. The opera-

tion arranges those set of people to be either inside the right or left (lin or rin)

Precondition: The total number of the people is not over the maxtotal.

lin , rin←− Decide ( lout , rout ) =̂

PRE

lout ∈ 
 ∧ rout ∈ 
 ∧

lout + rout ≤ maxtotal

THEN

CHOICE

lin := lout + rout ‖

rin := 0

OR

rin := lout + rout ‖

lin := 0

END

END

END
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B.4 Refinement: RabinR.ref

Refinement of the Choice Coordination problem using the definition of bags.

REFINEMENT RabinR

REFINES Rabin

SEES

Getting the global knowledge about bags.

FBag ctx

INCLUDES

Including for instances of bag to represent four sets of people: inside the left

(lin), inside the right (rin), outside the left (lout) and outside the right (rout).

lin . FBag , rin . FBag , lout . FBag , rout . FBag

OPERATIONS

Operation: Decide

Requirements: Refinement of operation Decide. Here, the number is repre-

sented by the cardinality of the bags. Using the non-deterministic clause to

choose the final value of the four bags accordingly: There will be no one out-

side the two places (floutbag and froutbag are empty) and either all people end

up on the left or on the right inside.

The value of the output will be the size of the bags after having the final values.

lin , rin←− Decide ( lout , rout ) =̂

BEGIN

ANY flinbag , frinbag , floutbag , froutbag

WHERE

flinbag ∈ Bag ∧ frinbag ∈ Bag ∧ floutbag ∈ Bag ∧ froutbag ∈ Bag ∧

dom ( flinbag ) ∈ � ( 
 ) ∧ dom ( frinbag ) ∈ � ( 
 ) ∧

dom ( floutbag ) ∈ � ( 
 ) ∧ dom ( froutbag ) ∈ � ( 
 ) ∧

floutbag = {} ∧ froutbag = {} ∧

( bagSize ( flinbag ) = 0 ∨ bagSize ( frinbag ) = 0 ) ∧
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bagSize ( flinbag ) + bagSize ( frinbag ) = lout + rout

THEN

lin . SetToBag ( flinbag ) ‖ rin . SetToBag ( frinbag ) ‖

lout . SetToBag ( floutbag ) ‖ rout . SetToBag ( froutbag )

END ;

lin←− lin . Size ‖

rin←− rin . Size

END

END

B.5 Implementation: RabinRI.imp

Implementation of the Rabin’s solution to the Choice Coordination problem.

IMPLEMENTATION RabinRI

REFINES RabinR

SEES

Seeing the information about Boolean, bags and some maths definitions.

Bool TYPE , FBag ctx , Math , tourist AbstractChoice

Importing a machine that contains the state and a step change of the algorithm.

IMPORTS RabinChoice ( maxtotal )

OPERATIONS

Operation: Decide

Requirements: Implementation of operation Decide. Setup the basic four bags

(represent four sets of people accordingly). While there are some people outside

then continue update the pad of those people until all of them are inside the two

places.
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lin , rin←− Decide ( lout , rout ) =̂

VAR

sizelout , sizerout , bb

IN

InitState ( lout , rout ) ;

sizelout←− loutSize ;

sizerout←− routSize ;

WHILE

sizelout 6= 0 ∨ sizerout 6= 0

DO

bb←− tourist AbstractChoice ;

UpdatePad ( bb ) ;

sizelout←− loutSize ;

sizerout←− routSize BOUND 9 × total

VARIANT

In here the variant is decrease according to the 0-1 law of termination.

rEqual ( LL , RR ) × 3 × total + 3 × total − (

3 × ( bagSize ( linbag ) + bagSize ( rinbag ) ) +

( bagGreat ( loutbag , LL ) + bagGreat ( routbag , LL ) ) +

( bagGreat ( loutbag , RR ) + bagGreat ( routbag , RR ) ) )

INVARIANT

bagSize ( loutbag ) = sizelout ∧

bagSize ( routbag ) = sizerout ∧

total = lout + rout

END ;
Getting the size of the inside bags after the arrangement.

lin←− linSize ;

rin←− rinSize

END

END
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B.6 Support the Implementation: RabinState.mch

Specification of the algorithm state. There is one parameter to specify the maxi-

mum number of people allowed.

MACHINE RabinState ( maxtotal )

CONSTRAINTS
maxtotal ≤MaxScalar

SEES

Getting the global information about bags and maths definitions.

Math , FBag ctx , Scalar TYPE

INCLUDES

This machine contains four bags representing four sets of people.

lin . FBag , rin . FBag , lout . FBag , rout . FBag

PROMOTES

Promoting the following operations from those included machines

lin . Size , rin . Size , lout . Size , rout . Size , lout . Anyelem , rout . Anyelem

VARIABLES

Additional state to the algorithm (in addition to the states of included ma-

chines): total is the total number of people, LL and RR are the numbers ap-

pearing on the board outside the two places left and right, respectively.

total , LL , RR

INVARIANT

total is always equal to the sum of the cardinalities of 4 bags.

total ∈ 
 ∧

total = bagSize ( linbag ) + bagSize ( rinbag ) +

( bagSize ( loutbag ) + bagSize ( routbag ) ) ∧

Type of LL and RR

LL ∈ 
 ∧ RR ∈ 
 ∧

The following invariant is necessary to prove the correctness of the algorithm.

The number on a tourist’s pad never exceeds the number posted at the other

place.
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maxInBag ( linbag ) ≤ RR ∧ maxInBag ( loutbag ) ≤ RR ∧

maxInBag ( rinbag ) ≤ LL ∧ maxInBag ( routbag ) ≤ LL ∧
If any tourist has gone inside, then at least one of the tourist inside there must

have a number exceeding the number posted outside.
( bagSize ( linbag ) 6= 0⇒ maxInBag ( linbag ) > LL ) ∧

( bagSize ( rinbag ) 6= 0⇒ maxInBag ( rinbag ) > RR ) ∧
This invariant is trivial and is used to prove the total correctiness of the algo-

rithm.
3 × total ≥

3 × ( bagSize ( linbag ) + bagSize ( rinbag ) ) +

( bagGreat ( loutbag , LL ) + bagGreat ( routbag , LL ) ) +

( bagGreat ( loutbag , RR ) + bagGreat ( routbag , RR ) )

INITIALISATION
Initially, there are no ones and the number posted on both place is 0.

total := 0 ‖ LL , RR := 0 , 0

OPERATIONS
Operation: InitState

Requirements: Initialise the algorithm. There are no ones inside, all the people

outside have number 0 on their pad. Total number of people is the total number

of people outside.

Precondition: Total number of people does not exceed maxtotal.

InitState ( lout , rout ) =̂

PRE lout ∈ 
 ∧ rout ∈ 
 ∧ lout + rout ≤ maxtotal THEN

lin . SetToBag ( {} ) ‖

rin . SetToBag ( {} ) ‖

lout . SetToBag ( ( 1 . . lout ) × { 0 } ) ‖

rout . SetToBag ( ( 1 . . rout ) × { 0 } ) ‖

total := lout + rout ‖

LL := 0 ‖

RR := 0

END ;
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Operation: MoveInLeft

Requirements: Move a person inside the left place with number ll on his pad.

Modify the bag rout and rin respectively.

Precondition: There is actually a person with number ll on the left and number

ll is greater than the number posted outside left place.

MoveInLeft ( ll ) =̂

PRE

ll ∈ ran ( loutbag ) ∧ ( bagSize ( linbag ) 6= 0 ∨ ll > LL )

THEN

lout . Takelem ( ll ) ‖

lin . Addelem ( ll )

END ;

Operation: MoveInRight

Requirements: Move a person inside the right place with number rr on his pad.

Modify the bag lout and lin respectively.

Precondition: There is actually a person with number rr on the right and num-

ber rr is greater than the number posted outside left place.

MoveInRight ( rr ) =̂

PRE

rr ∈ ran ( routbag ) ∧ ( bagSize ( rinbag ) 6= 0 ∨ rr > RR )

THEN

rout . Takelem ( rr ) ‖

rin . Addelem ( rr )

END ;
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Operation: MoveToLeft

Requirements: Move a person with number rr on his pad from the right to

the left and change his number to mm. The number posted outside the right is

changed to mm accordingly.

Precondition: There is actually a person with number rr on the right and num-

ber mm is greater than the number posted outside right place. There are no ones

inside the right place.

MoveToLeft ( rr , mm ) =̂

PRE

rr ∈ ran ( routbag ) ∧ mm ∈ 
1 ∧ bagSize ( rinbag ) = 0 ∧ RR ≤ mm

THEN

rout . Takelem ( rr ) ‖

lout . Addelem ( mm ) ‖

RR := mm

END ;

Operation: MoveToRight

Requirements: Move a person with number ll on his pad from the left to the

right and change his number to mm. The number posted outside the left is

changed to mm accordingly.

Precondition: There is actually a person with number ll on the left and number

mm is greater than the number posted outside left place. There are no ones

inside the left place.

MoveToRight ( ll , mm ) =̂

PRE

ll ∈ ran ( loutbag ) ∧ mm ∈ 
1 ∧ bagSize ( linbag ) = 0 ∧ LL ≤ mm

THEN

lout . Takelem ( ll ) ‖

rout . Addelem ( mm ) ‖

LL := mm

END ;
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Operation: LLVal

Requirements: Return the value of the number posted outside the left.

Precondition: There are no preconditions.

ll←− LLVal =̂

ll := LL ;

Operation: RRVal

Requirements: Return the value of the number posted outside the right.

Precondition: There are no preconditions.

rr←− RRVal =̂

rr := RR

END



Appendix C

Proof of Restricted Terminating
Fundamental Theorem

We restate the fundamental theorem Thm. 7 in Sec. 5.8 here:

Let p be an expression over x and let Q be a predicate defined over

x0, v , and satisfying ∀ x0 · (∃ v ·Q); and let T be a program written in

pGSL. For all such programs T , if

1 | v : 1 v T i.e. T terminates and
changes only variables in v

and
p | v : 〈Q〉 v T

then
{{p | v : 〈Q〉}} v T .

Proof. Let E be arbitrary expectation over x . For any x0, we have from arith-

metic that

E W ux · (E ÷ 〈w = w0〉)× 〈w = w0〉 +
(ux · (E ÷ 〈Qw 〉)− ux · (E ÷ 〈w = w0〉))× 〈Qw 〉 (C.1)

where Qw =̂ Q ∧ w = w0. We have the above inequality because the embedded

predicate 〈Qw 〉 and 〈w = w0〉 can have value only 1 or 0. And in each case, it can

be easily proved that the inequality holds, as shown below.

• If w 6= w0, the right-hand side of (C.1) is 0, hence the inequality is trivially

true.
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• If w = w0 ∧ ¬Q , the right-hand side of (C.1) is ux · (E ÷ 〈w = w0〉),
which is everywhere no more than E , given that w = w0.

• If w = w0 ∧ Q , the right-hand side of (C.1) is ux · (E ÷ 〈Qw 〉) which is

everywhere no more than E , given that Qw holds.

First, we estimate the pre-expectation of T with respect to E , for all x0 we

have:

[T ]E

W (C.1) and monotonicity of T

[T ]
(
ux · (E ÷ 〈w = w0〉)× 〈w = w0〉 +
(ux · (E ÷ 〈Qw 〉)− ux · (E ÷ 〈w = w0〉))× 〈Qw 〉

)

W sublinearity of T

ux · (E ÷ 〈w = w0〉)× [T ]〈w = w0〉 +
(ux · (E ÷ 〈Qw 〉)− ux · (E ÷ 〈w = w0〉))× [T ]〈Qw 〉 .

Hence (since x0 is unconstrained), in particular,

[T ]E

W x0 is given a value x

[x0 : = x ]
(
ux · (E ÷ 〈w = w0〉)× [T ]〈w = w0〉 +
(ux · (E ÷ 〈Qw 〉)− ux · (E ÷ 〈w = w0〉))× [T ]〈Qw 〉

)

≡ simple substitution x0 : = x

[x0 : = x ](ux · (E ÷ 〈w = w0〉)× [T ]〈w = w0〉) +(
[x0 : = x ]

(
ux · (E ÷ 〈Qw 〉)−
ux · (E ÷ 〈w = w0〉)

))
× [x0 : = x ][T ]〈Qw 〉

≡ x0 is a fresh variable and simple substitution

[x0 : = x ] u x · (E ÷ 〈w = w0〉) × [x0 : = x ][T ]〈w = w0〉 +(
[x0 : = x ] (ux · (E ÷ 〈Qw 〉))−
ux · (E ÷ 〈w = w0〉)

)
× [x0 : = x ][T ]〈Qw 〉
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W refinement assumption

[x0 : = x ] u x · (E ÷ 〈w = w0〉)× 1 +
([x0 : = x ] (ux · (E ÷ 〈Qw 〉))− ux · (E ÷ 〈w = w0〉))× p

≡ simple substitution and arithmetic

[x0 : = x ] u x · (E ÷ 〈w = w0〉)× (1− p) +

[x0 : = x ] (ux · (E ÷ 〈Qw 〉))× p

≡ definition of probabilistic specification substitution

[1 | v : 1]E × (1− p) + [1 | v : 〈Q〉]E × p

≡ [(p | v : 〈Q〉) p⊕ (1 | v : 1)]E probabilistic choice substitution

≡ definition of restricted terminating probabilistic specification substitution

[{{p | v : 〈Q〉}}]E .

Because E is arbitrary, therefore {{p | v : 〈Q〉}} v T .



Appendix D

Appendix for Duelling Cowboys
Case Study

D.1 Two Duelling Cowboys

We have the following information:

S1a ≡ s : = X ;n : = 1) 2
3
⊕ t : = Y (D.1)

S1b ≡ s : = Y ;n : = 1) 1
2
⊕ t : = X (D.2)

E1 ≡
〈s = X ∧ n = 1〉

+ 〈n = 2 ∧ t = X 〉 × 4
5

+ 〈n = 2 ∧ t = Y 〉 × 2
5

. (D.3)

The calculations are as follows:
1

〈t=X 〉 × [S1a ]E1

min
1

〈t 6=X 〉 × [S1b ]E1

≡ Def. D.1 and Def. D.2

1
〈t=X 〉 ×

[
(s : = X ;n : = 1) 2

3
⊕ t : = Y

]
E1

min
1

〈t 6=X 〉 ×
[
(s : = Y ;n : = 1) 1

2
⊕ t : = X

]
E1
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≡ probabilistic choice substitutions

1
〈t=X 〉 ×

 2
3 × [(s : = X ;n : = 1)] E1

+ (
1− 2

3

)
× [t : = Y ] E1


min

1
〈t 6=X 〉 ×

 1
2 × [(s : = Y ;n : = 1)] E1

+ (
1− 1

2

)
× [t : = X ] E1


≡ Def. D.3

1
〈t=X 〉 ×



2
3 × [(s : = X ;n : = 1)] 〈s = X ∧ n = 1〉

+ 〈n = 2 ∧ t = X 〉 × 4
5

+ 〈n = 2 ∧ t = Y 〉 × 2
5


+(

1− 2
3

)
× [t : = Y ] 〈s = X ∧ n = 1〉

+ 〈n = 2 ∧ t = X 〉 × 4
5

+ 〈n = 2 ∧ t = Y 〉 × 2
5




min

1
〈t 6=X 〉 ×



1
2 × [(s : = Y ;n : = 1)] 〈s = X ∧ n = 1〉

+ 〈n = 2 ∧ t = X 〉 × 4
5

+ 〈n = 2 ∧ t = Y 〉 × 2
5


+(

1− 1
2

)
× [t : = X ] 〈s = X ∧ n = 1〉

+ 〈n = 2 ∧ t = X 〉 × 4
5

+ 〈n = 2 ∧ t = Y 〉 × 2
5




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≡ arithmetic, sequential and simple substitutions

1
〈t=X 〉 ×



2
3×

 〈X = X ∧ 1 = 1〉
+ 〈1 = 2 ∧ t = X 〉 × 4

5

+ 〈1 = 2 ∧ t = Y 〉 × 2
5


+

1
3×

 〈s = X ∧ n = 1〉
+ 〈n = 2 ∧Y = X 〉 × 4

5

+ 〈n = 2 ∧Y = Y 〉 × 2
5




min

1
〈t 6=X 〉 ×



1
2×

 〈Y = X ∧ 1 = 1〉
+ 〈1 = 2 ∧ t = X 〉 × 4

5

+ 〈1 = 2 ∧ t = Y 〉 × 2
5


+

1
2×

 〈s = X ∧ n = 1〉
+ 〈n = 2 ∧X = X 〉 × 4

5

+ 〈n = 2 ∧X = Y 〉 × 2
5




≡ logic

1
〈t=X 〉 ×

 2
3×
(
〈true〉+ 〈false〉 × 4

5 + 〈false〉 × 2
5

)
+

1
3×
(
〈s = X ∧ n = 1〉+ 〈false〉 × 4

5 + 〈n = 2〉 × 2
5

)


min

1
〈t 6=X 〉 ×

 1
2×
(
〈false〉+ 〈false〉 × 4

5 + 〈false〉 × 2
5

)
+

1
2×
(
〈s = X ∧ n = 1〉+ 〈n = 2〉 × 4

5 + 〈false〉 × 2
5

)


≡ embedded predicates and arithmetic

1
〈t=X 〉 ×

(
2
3 + 1

3 ×
(
〈s = X ∧ n = 1〉+ 〈n = 2〉 × 2

5

))
min

1
〈t 6=X 〉 ×

(
1
2 ×

(
〈s = X ∧ n = 1〉+ 〈n = 2〉 × 4

5

))
≡ G1 ∧ I1 ⇒ n = 2

1
〈t=X 〉 ×

(
2
3 + 1

3 ×
(
〈s = X ∧ 2 = 1〉+ 〈2 = 2〉 × 2

5

))
min

1
〈t 6=X 〉 ×

(
1
2 ×

(
〈s = X ∧ 2 = 1〉+ 〈2 = 2〉 × 4

5

))
≡ 1

〈t=X 〉 ×
4
5 min 1

〈t 6=X 〉 ×
2
5 . embedded predicates and arithmetic
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D.2 Three Duelling Cowboys

We have the following information

E2 ≡

81
140 × 〈n = 3 ∧ t = X 〉 +
83
140 × 〈n = 3 ∧ t = Y 〉 +
27
70 × 〈n = 3 ∧ t = Z 〉 +

〈s = X ∧ n = 1〉

(D.4)

The calculations are as follows (under the condition that n = 3:
2
3 × [s ←− TwoCowboyZX;n : = 1] E2

+ (
1− 2

3

)
× [t : = Y ] E2

≡ Def. D.4

2
3 × [(s ←− TwoCowboyZX;n : = 1)]

81
140 × 〈n = 3 ∧ t = X 〉 +
83
140 × 〈n = 3 ∧ t = Y 〉 +
27
70 × 〈n = 3 ∧ t = Z 〉 +

〈s = X ∧ n = 1〉


+ 1

3 × [t : = Y ]
81
140 × 〈n = 3 ∧ t = X 〉 +
83
140 × 〈n = 3 ∧ t = Y 〉 +
27
70 × 〈n = 3 ∧ t = Z 〉 +

〈s = X ∧ n = 1〉


≡ simple and sequential substitution

2
3 × [s ←− TwoCowboyZX]

81
140 × 〈1 = 3 ∧ t = X 〉 +
83
140 × 〈1 = 3 ∧ t = Y 〉 +
27
70 × 〈1 = 3 ∧ t = Z 〉 +

〈s = X ∧ 1 = 1〉



+ 1
3 ×


81
140 × 〈n = 3 ∧Y = X 〉 +
83
140 × 〈n = 3 ∧Y = Y 〉 +
27
70 × 〈n = 3 ∧Y = Z 〉 +

〈s = X ∧ n = 1〉


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≡ logic, embedded predicate and arithmetic

2
3 × [s ←− TwoCowboyZX] 〈s = X 〉

+ 1
3 ×

(
83
140 × 〈n = 3〉+ 〈s = X ∧ n = 1〉

)
≡ condition n = 3

2
3 × [s ←− TwoCowboyZX] 〈s = X 〉

+ 1
3 ×

(
83
140 × 〈3 = 3〉+ 〈s = X ∧ 3 = 1〉

)
≡ logic, embedded predicates and arithmetic

2
3 × [s ←− TwoCowboyZX] 〈s = X 〉+ 83

420 .
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