
Qualitative Reasoning for the Dining Philosophers ?

— Extended Abstract —

Stefan Hallerstede1 and Thai Son Hoang2

1 Institut für Informatik
Heinrich-Heine-Universität Düsseldorf

halstefa@cs.uni-duesseldorf.de
2 Department of Computer Science

Swiss Federal Institute of Technology Zürich (ETH Zürich)
htson@inf.ethz.ch

Abstract. We continue our investigation of qualitative probabilistic reasoning in
Event-B. In the past we have applied it protocol verification, in particular, the
Firewire protocol. There is still some way to go to achieve a practical method
for qualitative probabilistic reasoning, especially concerning with refinement. We
describe here our attempt for a probabilistic solution to the dining philosophers
problem, in order to move further towards such a method.
Keywords: Event-B, probability, qualitative reasoning, refinement.

1 Overview

Our motivation here is construct a proof for the probabilistic solution for the Dining
Philosophers problem. The proof from McIver and Morgan [5] uses both fairness as-
sumption and probabilistic arguments. We attempt here to reason using only qualitative
reasoning, hence the fairness assumption is replaced by a probabilistic reasoning. More-
over, we want to construct a practical method for reasoning about this kind of system
which should be simple to use. We now give an overview of some important properties
of the Event-B method that we are going to use, in particular about different technique
for proving convergent of events.

1.1 The Event-B Modelling Method
A development in Event-B [2] is a set of formal models. The models are built from ex-
pressions in a mathematical language, which are stored in a repository. Event-B mod-
els are organised in terms of the two basic constructs: contexts and machines. Con-
texts specify the static part of a model whereas machines specify the dynamic part.
Contexts may contain carrier sets, constants, axioms, and theorems. Machines specify
behavioural properties of Event-B models. Machines may contain variables, invari-
ants, theorems, events, and variants. Variables v define the state of a machine. They
are constrained by invariants I(v). Possible state changes are described by events. Each
event is composed of a guard G(t, v) (the conjunction of one or more predicates) and
? Part of this research was carried out within the European Commission ICT project 214158

DEPLOY (http://www.deploy-project.eu/index.html).

http://www.deploy-project.eu/index.html

2

an action S(t, v), where t are the parameters of the event. The guard states the nec-
essary condition under which an event may occur, and the action describes how the
state variables evolve when the event occurs. An event can be represented by the term
“any t where G(t, v) then S(t, v) end”. We use the short form “when G(v) then S(v)
end” when the event does not have any parameters, and we write “begin S(v) end”
when, in addition, the event’s guard equals true. A dedicated event of the last form is
used for initialisation.

The action of an event is composed of one or more assignments of the form

x := E(t, v) (1)
x :∈ E(t, v) (2)
x :| Q(t, v, x′) , (3)

where x is a variable contained in v, E(t, v) is an expression, and Q(t, v, x′) is a pred-
icate. Assignments of the form (1) are deterministic, whereas the other two forms are
nondeterministic. In (2), x (which must be a single variable) is assigned an element of a
set. In (3), Q is a “before-after predicate”, which relates the values x (before the action)
and x′ (afterwards). (3) is the most general form of assignment and nondeterministi-
cally selects an after-state x′ satisfying Q and assigns it to x. Variables other than x are
unchanged by the above assignments. There is also a side condition on the action of
an event: the variables on the left-hand side of the assignments contained in the action
must be disjoint.

Proof obligations serve to verify certain properties of machines. Formal definitions
of all proof obligations are given in [1]. For a machine, we must prove invariant preser-
vation and feasibility of events. Invariant preservation states that invariants hold when-
ever variables change their values. Feasibility state that the action of an event must be
feasible whenever the event is enable.

Machine refinement provides a means to introduce details about the dynamic prop-
erties of a model [2]. For more details on the theory of refinement, we refer to the Action
System formalism [3], which has inspired the development of Event-B.

A machine CM can refine another machine AM . We call AM the abstract machine
and CM the concrete machine. The state of the abstract machine is related to the state
of the concrete machine by a gluing invariant J(v, w), where v are the variables of the
abstract machine and w are the variables of the concrete machine.

Each event ea of the abstract machine is refined by one or more concrete events ec.
Let the abstract event ea and concrete event ec be:

ea =̂ any t where G(t, v) then S(t, v) end (4)
ec =̂ any u where H(u, w) then T (u, w) end . (5)

Somewhat simplified, we say that ec refines ea if the guard of ec is stronger than the
guard of ea (guard strengthening), and the gluing invariant J(v, w) establishes a sim-
ulation of ec by ea (simulation). Proving guard strengthening just amounts to proving
an implication. For simulation, under the assumption of the invariants and of the con-
crete guard H(u, w) we must show that it is possible to choose a value for the abstract
parameter t such that the abstract guard holds and the gluing invariant J(v, w) is re-
established. The possible values for the abstract parameter are given as witness in ec
with the keyword with. In the course of refinement, new events are often introduced

3

into a model. New events must be proved to refine the implicit abstract event SKIP,
which does nothing.

Moreover, it may be proved that events do not collectively diverge. In other words,
the events cannot take control forever and hence one of the other events eventually
occurs. To prove this, one gives a variant V , which maps a state w to a finite set. One
then proves that each new event strictly decreases V .

Given an event

evt
any x where

G(x, v)
then

v :| S(x, v, v′)
end

ones has to prove

Invariants and axioms
G(x, v)
`
∀v′ ·S(x, v, v′)⇒

V (v′) ⊂ V (v)

1.2 Qualitative Reasoning: Probabilistic Action
In our earlier work [4], we extend the Event-B with probabilistic action v ⊕| S(v, v′),
and the notion of probabilistic (eventually) termination of events. This extension re-
quires a slightly modification to the variant proof obligation: event might decrease the
variant V .

Given an event

evt
any x where

G(x, v)
then

v ⊕| S(x, v, v′)
end

ones has to prove

Invariants and axioms
G(x, v)
`
∃v′ ·S(x, v, v′)∧

V (v′) ⊂ V (v)

A great advantage of this approach is that the proof obligations still within first-
order predicate logic hence we do not need to extend our proof system.

2 The Dining Philosophers

We summary the dining philosophers problem as follows:

– A number of philosophers sit at a round table.
– Between each adjacent pair of philosopher is a single fork.
– In order to eat, each philosopher need two forks on both sides.
– When hungry, a philosopher might want to pick up a fork, but this might already be

taken by his neighbouring philosopher.
– There is a possibility of deadlock or livelock.

There are various solution for the problem, including some deterministic solutions, e.g.
using a waiter to break symmetry. We consider here a symmetric probabilistic solution
as described in [5]. The algorithm for each philosopher is summarised in Figure 1. The
table describes possible state changes for a particular philosopher. The only probabilis-
tic choice that the philosopher made is when deciding either to pick up the left fork first
or the right fork first.

The proofs from [5] using the fairness assumption which prove the Pseudo loop on
the left to terminate. By replacing the fairness assumption with a probabilistic one, we
attempt to verify that the Pseudo loop on the right to terminate probabilistically.
Some philosophers are hungry;
while ”No philosopher is eating” do

Schedule one of the philosopher fairly
end

Some philosophers are hungry;
while ”No philosopher is eating” do

Schedule one of the philosopher probabilistically
end

Our initial model is as follows, where h , t and e represent the set of hungry, thinking
and eating philosophers, respectively.

4

Action Before After
Becomes hungry t h
Decides h l 0.5⊕ r
Picks first left fork (if left fork available) l L
Picks first right fork (if right fork available) r R
Eats by pick up right (if right fork available) L E
Drops left fork (if right fork not available) L h
Eats by pick up left (if left fork available) R E
Drops right fork (if left fork not available) R h
Thinks E t

t thinking
h hungry
l left first
r right first
L hold left only
R hold right only
E eating

(holding both forks)

hE t

L l

rR

Fig. 1. Actions of a philosophers

variables: h, t, e
invariants:

partition(P, h, t, e)

init
begin

h, t :| partition(P, h′, t′) ∧ h′ 6= ∅
e := ∅

end

eats
any p where

p ∈ h
then

e := e ∪ {p}
h := h \ {p}

end

thinks
any p where

p ∈ e
then

t := t ∪ {p}
e := e \ {p}

end

getsHungry
any p where

p ∈ t
then

h := h ∪ {p}
t := t \ {p}

end

Our idea for developing the algorithm is as follows. Using refinement, we introduce the
details of the approach with different set of philosophers, e.g. holding forks, picking
forks. As a result, more events are introduced into the development. Our termination is
established by the following arguments:

– Prove that events other than eats are (probabilistic) convergent.
– System is deadlock-free.

We formalise the lexicographic variant as presented in [5] in our Event-B development.
The decrement of the variant can be split into different phases depending on the state of
the system, where phase A is when no philosophers holding forks; phase BL (resp. BR)
is when there are some philosophers holding left forks (resp. right forks); and phase Ci

is when there are some philosophers holding left forks and some philosophers hold
right forks. In particular, the convergent proof in phase BL and BR using probabilistic
termination argument as mentioned earlier in Section 1.2.

AGFED@ABC BLGFED@ABC

BRGFED@ABC
Cn
GFED@ABC Cn−1GFED@ABC C0

GFED@ABC44jjjjjj

**TTTTTT
**TTTTTT

44jjjjjj
// //

We focus now on the probabilistic convergent argument in phases Ci. In particular, we
have the events of the following forms:

chooseLeft
any p where

p ∈ l
. . .

then
. . .

end

dropLeft
any p where

p ∈ L
. . .

then
. . .

end

. . .

5

The difficulty here is that the probabilistic choice is associated with the parameter p for
the philosophers. In particular, our reasoning must take into account all the actions that
a philosopher can do. For our probabilistic termination argument, we have to prove the
following: There exists a philosopher such that he can always act, and any action that
he made decreases the variant. At the moment, our proof obligations cannot express the
above condition, hence we need to extend the proof obligation rule.

evti
any t where

Gi(t, v)
then

v :| Qi(t, v, v′)
end

variant: V

witness: W (t, v)

– Sketch of probabilistic termination witness for t, say W (t, v).

– Sketch of the proof obligations.
1. Existent of witness: I(v)⇒ (∃t·W (t, v)).

2. Given the witness, at least one probabilistic event is enable.
I(v) ∧W (t, v)⇒G1(t, v) ∨ . . . ∨Gn(t, v)

3. For any probabilistic event evti, it decreases the variant V : I(v) ∧W (t, v) ∧
Gi(t, v) ∧Qi(t, v, v′)⇒ V (v′) ⊂ V (v)

3 Conclusions

We sketch here an extension to our qualitative reasoning for proving probabilistic ter-
mination of an algorithm for the dining philosophers problem. Our proposed extension
includes a new interpretation for probabilistic choice between events’ parameters and
new proof obligations which are practical for having tool support.

Moreover, for future work, because of the fact that refinement can reduce non-
determinism, qualitative termination is not necessary preserved through refinement in
general. We need to have additional proof obligation(s) for preserving qualitative ter-
mination, however, any approach should be simple and usable.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Design. CUP, 2009. To appear.
2. J-R. Abrial and S. Hallerstede. Refinement, Decomposition and Instantiation of Discrete

Models: Application to Event-B. Fundamentae Informatica, 2006.
3. R-J Back. Refinement Calculus II: Parallel and Reactive Programs. In Stepwise Refinement

of Distributed Systems, 1989.
4. S. Hallerstede and T.S. Hoang. Qualitative probabilistic modelling in event-b. In J. Davies

and J. Gibbons, editors, IFM, volume 4591 of LNCS, pages 293–312. Springer, 2007.
5. A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic Systems.

Springer, 2005.

	Qualitative Reasoning for the Dining Philosophers --- Extended Abstract ---
	Hallerstede and Hoang

