
Event-B Decomposition for Parallel Programs
— Extended Abstract —?

Thai Son Hoang and Jean-Raymond Abrial

Deparment of Computer Science,
Swiss Federal Institute of Technology Zurich (ETH-Zurich),

CH-8092, Zurich, Switzerland
htson@inf.ethz.ch, jrabrial@neuf.fr

Abstract. We present here an approach for developing a parallel program com-
bining refinement and decomposition techniques. This involves in the first step
to abstractly specify the aim of the program, then subsequently introduce shared
information between sub-processes via refinement. Afterwards, decomposition is
applied to separate the resulting model into sub-models for different processes.
These sub-models are later independently developed using refinement. Our ap-
proach aids the understanding of parallel programs and reduces the complexity in
their proofs of correctness.
Keywords: Event-B, parallel programs, decomposition, refinement.

1 Introduction

There are a number of methods for proving the correctness of parallel programs [4].
Our main contribution is an approach applying the technique of refinement and decom-
position in Event-B [1]. The approach contains four steps as follows.

1. Starts with an abstract specification in-one-shot giving the purpose of the program.
2. Refines this abstract specification by introducing details about the shared variables.
3. Decomposes the model in the previous step to split the model into several (abstract)

sub-models for processes.
4. Refines each sub-model in the previous step independently.

In the last step, each sub-model can be seen as a new abstract specification, hence
application of steps 2, 3 and 4 can be repeated again. The novelty of our approach is in
step 2 where we specify shared information between processes. This information has
dual purpose. Firstly, it contains the necessary guarantee condition from each process
to establish the final result. Secondly, it also gives the condition for which each process
can rely on in further development. This decision, i.e. to have this step early in our
development, takes advantage of decomposition technique and results in simpler models
and reduces the complexity of proving programs. This is the main advantage of our
method over existing approaches. More information on related work is in Section 4.

? Part of this research was carried out within the European Commission ICT project 214158
DEPLOY (http://www.deploy-project.eu/index.html).

http://www.deploy-project.eu/index.html

2

2 The Event-B Modelling Method

A development in Event-B [3] is a set of formal models. Event-B has a semantics based
on transition systems and simulation between such systems, described in [2]. We will
not describe in detail, just high-lights some important points for Event-B semantics.

Event-B models are organised in terms of the two basic constructs: contexts and
machines. Contexts specify the static part of a model whereas machines specify the
dynamic part. Contexts may contain carrier sets, constants, axioms, and theorems.

Machines specify behavioural properties of Event-B models. Machines may contain
variables, invariants, theorems, events, and variants. Variables v define the state of a
machine. They are constrained by invariants I(v). Possible state changes are described
by events. Each event is composed of a guard G(t, v) (the conjunction of one or more
predicates) and an action S(t, v), where t are the parameters of the event. Proof obliga-
tions serve to verify certain properties of machines. Given a machine, we need to prove
the following obligations:

– Invariant preservation: invariants hold whenever variables change their values.
– Feasibility: For an event the action is feasible whenever the guard is enable.

Machine refinement provides a means to introduce details about the dynamic prop-
erties of a model [3]. A machine CM can refine another machine AM . We call AM the
abstract machine and CM the concrete machine. The state of the abstract machine is
related to the state of the concrete machine by a gluing invariant J(v, w), where v are
the variables of the abstract machine and w are the variables of the concrete machine.

Each event ea of the abstract machine is refined by one or more concrete events
ec. Somewhat simplified, we say that ec refines ea if the guard of ec is stronger than
the guard of ea (guard strengthening), and the gluing invariant J(v, w) establishes a
simulation of ec by ea (simulation).

In the course of refinement, new events are often introduced into a model. New
events must be proved to refine the implicit abstract event SKIP, which does nothing.
Moreover, it may be proved that new events do not collectively diverge. In other words,
the new events cannot take control forever and hence one of the old events can occur.

2.1 Shared Variable Decomposition

The idea of decomposition is to split a large model into smaller sub-models which can
be handled more comfortably than the whole: one should be able to refine these sub-
models independently. More precisely, if one starts from an initial (large) model, say
M, decomposition allows us to separate this model into several sub-models M1 · · ·Mi.
These sub-models can then be refined independently yielding N1 · · ·Ni. The correctness
of the decomposition technique guarantees that the model N, obtained by re-composing
N1 · · ·Ni, is a refinement of the original model M. This process is illustrated in the
following diagram:

Decomposition Refinement Re-composition

M →

8<: M1 → N1

· · ·
Mi → Ni

9=; → N

3

Generation of sub-models using shared variable decomposition Given a certain
model M with events e1(a), e2(a, c), e3(b, c), e4(b),1 we would like to decompose M
into two separate models: M1 dealing with events e1 and e2; and M2 dealing with events
e3 and e4. By giving the above event partition, we must also perform a certain variable
distribution. This distribution can be derived directly from the information about the
partitioning of events and the set of variables that they access.

Moreover, in each sub-model, we need to have a number of external events to sim-
ulate how shared variables are handled in the non-decomposed model. These events are
abstract versions of the corresponding internal events and use only the shared variables.
In our example, M1 will have an external event corresponding to e3 (beside the internal
events e1 and e2. Symmetrically, M2 will have an external event corresponding to e2.
Similar to shared variables, external events cannot be further refined.

We also present a practical construction of the external event given its original event.
This is illustrated below for an external event (ext)e2 in sub-model M2. Intuitively, this
event is the projection of the original event, i.e. e2, on the state of the sub-model M2.

e2

any t where
G(t, a, c)

then
a, c :| Q(t, a, c, a′, c′)

end

(ext)e2

any t, a where
G(t, a, c)

then
c :| ∃a′ ·Q(t, a, c, a′, c′)

end

More detail on shared variable decomposition in Event-B can be found in [1].

3 Example. The FindP Program

Our running example is a standard problem in the literature for parallel programs. The
purpose of the FindP program is to find the first index k of an array ARRAY , if there
is one, satisfies some property P . Otherwise, if this index does not exist, i.e. none of the
array elements satisfy P , the program returns M + 1, where M is the size of the array.

The pseudo-code for the main program is given below (on the left) and for each
process (presented here process1 on the right)

index1, index2 := min(P ART1), min(P ART2);
publish1, publish2 := M + 1, M + 1;
process1 || process2;
result := min({publish1, publish2})

while index1 < min({publish1, publish2}) do
if ARRAY (index1) = TRUE then publish1 := index1
else index1 := the-next-index-in-PART1-or-M+1 end

end

The machine-checked version of the development can be found on the web [5]. We
summarise our strategy for developing this program as follows.

Initial model specifies the result of the algorithm directly.
First refinement introduces the local indices of processes.
Decomposition step splits the model into sub-models corresponding to different pro-

cesses: main, process1, process2.

We continue with further refinement steps for process1; process2 should be devel-
oped in symmetrical fashion. Futher development of the main process is straightfor-
ward and is not of our interest here.
First sub-refinement introduces the local index of the process.
Second sub-refinement introduces the read value of the process.
Third sub-refinement introduces the address counter for scheduling of events.

1 Note that the variables appeared in brackets denote those that are accessed by these events.

4

4 Related Work

The problem of verifying the FindP program has been tackled using different methods,
e.g., Owicki/Gries’ interference-free [9] and Jones’ rely/guarantee approach [7].

The work of Owicki/Gries [9] extends Hoare’s deductive system for sequential pro-
grams [6] in order to prove the correctness of parallel programs. Their proofs of cor-
rectness for parallel statements centre around the notion of interference-free which is
defined as follows. Given a proof of Hoare’s triple {P} S {Q} and a statement T with
precondition pre(T), T does not interfere with {P} S {Q} if
InfFree1 {Q ∧ pre(T)} T {Q}, i.e. T maintains the post-condition Q, and
InfFree2 for any sub-statement S′ of S, {pre(S′) ∧ pre(T)} T {pre(S′)}.

Within our approach, the above two conditions are verified during the development
of the model at various refinement levels. At the abstract level before decomposing, S
and T are some events of the models and the post-condition Q are just some invariants.
For example, S are some events belonging to process1 and T are events belonging to
process2, Q are the invariants that state the outcome of process1, e.g. inv1 1–inv1 5.
We have to prove that these invariants are maintained by any events T and this cor-
responds to condition InfFree1. Furthermore, during the sub-refinement of a process,
sub-statements S′ of S are introduced. At the same time, new invariants are added and
these invariants correspond to the preconditions pre(S′) in the proof of {P} S {Q}
using Hoare’s deductive system. Hence the condition InfFree2 is verified by proving
that events T (now becoming external events) maintain the new invariants.

This is somewhat not surprising, since in our approach, the role of external events
is to keep the information about the possible changes on shared variables by different
processes. During the refinement of a sub-process, we need to take into account the ef-
fect of these external events so that they do not “interfere” with the development of this
sub-process. The main advantage of our approach over the work from Owicki/Gries is
that these external events are at the abstract level rather than concrete statements as de-
fined in the interference-free conditions. This reduces the complexity of the verification
process.

Comparing to the Owicki/Gries approach, our method is closer to the rely/guarantee
approach of Jones [7]. The approach extends the notion of Hoare’s triple {P} S {Q}
to encode the rely condition R and guarantee condition G. By definition, a condition
{P,R} S {G, Q} is satisfied by S if: under the assumptions that S starts in state satisfies
the precondition P , and any external transition satisfies the rely condition R; then S
ensures that any internal transition of S satisfies the guarantee condition G, and if S
terminates then the final state satisfies postcondition Q.

We focus on an example rule for parallel composition.

PAR-I

R ∨G1⇒ R2 (RG1)
R ∨G2⇒ R1 (RG2)
G1 ∨G2⇒G (RG3)
{P, R1}S1{G1, Q1} (RG4)
{P, R2}S2{G2, Q2} (RG5)

{P, R} S1 || S2 {G, Q1 ∧Q2}

The rule is interpreted as follows. Statement S1 || S2 satisfies {P,R} S1 || S2 {G, Q1∧
Q2} if the following conditions are met. Firstly, both “global” rely condition R and
the guarantee condition of one statement ensure the rely condition of the other (RG1

5

and RG2). Secondly, both guarantee conditions of the two statements ensure the global
guarantee condition G (RG3). Lastly, S1 and S2 independently satisfy their correspond-
ing rely/guarantee condition (RG4 and RG5)

Note that both rely and guarantee conditions are relations over two states. They
are indeed similar to events in Event-B which correspond to a relations over pre-/post-
states. Moreover, the implication between rely/guarantee conditions is the same as event
refinement. Within our approach, a pair of internal/external events encodes rely/guarantee
conditions where the rely condition corresponds to the external event and the guarantee
condition corresponds to the internal event. The generation of external events guar-
antees that they are the abstractions of the corresponding internal events. In fact, our
generation of sub-models as described in Section 2.1 guarantees that the resulting sub-
models satisfy the parallel composition rule. This is the advantage of our approach over
rely/guarantee method. In fact the external events are the strongest possible condition
that the other process can rely on. In practise, the rely/guarantee conditions could be
more abstract, e.g. requires that values of some variables decrease monotonically [8].

5 Conclusion

Our approach introduces the possible interaction between processes early in the de-
velopment in order to take the advantage of decomposition. This is different from the
approach where one develops processes according to the implementation of the process
with possible cheating (e.g. one process directly looks into the value of the other pro-
cess), and subsequently refines the model until there is no more cheating. This approach
has been proposed in [2] and is used in many other examples. Applying this approach
without using decomposition, the two processes are developed together, hence the de-
velopment also has higher complexity comparing to our approach.

The key point in our development using decomposition lies in the model that is
being decomposed, where we have to abstractly specify the effect of the two future
processes on shared variables. We use the overall intended result of the program to help
us to derive the requirement on the future processes.

References
1. J-R. Abrial. Event model decomposition. Technical Report 626, ETH Zurich, May 2009.
2. J-R. Abrial. Modeling in Event-B: System and Software Design. CUP, 2009. To appear.
3. J-R. Abrial and S. Hallerstede. Refinement, decomposition and instantiation of discrete mod-

els: Application to Event-B. Fundamentae Informatica, 2006.
4. W. P. de Roever, F. S. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, and

J. Zwiers. Concurrency Verification: Introduction to Compositional and Noncompositional
Methods. Cambridge Tracts in Theoretical Computer Science. CUP, 2001.

5. T.S. Hoang. FindP development using decomposition. http://deploy-eprints.ecs.
soton.ac.uk/154/, 2009.

6. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 1969.
7. C.B. Jones. Tentative steps toward a development method for interfering programs. ACM

Trans. Program. Lang. Syst., 1983.
8. C.B. Jones. Splitting atoms safely. Theor. Comput. Sci., 2007.
9. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Inf.,

1976.

http://deploy-eprints.ecs.soton.ac.uk/154/
http://deploy-eprints.ecs.soton.ac.uk/154/

	Event-B Decomposition for Parallel Programs --- Extended Abstract ---
	Hoang and Abrial

