Event-B Decomposition for Parallel Programs

Thai Son Hoang

Department of Computer Science
Swiss Federal Institute of Technology Ziirich (ETH Ziirich)

Dagstuhl Seminar, 13th-18th September, 2009

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog.

Outline

© Motivation
© Example. FindP Program
© Formal Development

@ Decomposition

© Related Work

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 2/ 24

Motivation

Motivation

Parallel programs.

Event-B for discrete transition systems.

e Work on “interference-free” (by S. Owicki and D. Gries).

Work on Rely/Guarantee (by C. Jones)

Example: FindP program.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 3 /24

Example. FindP Program

Overview

ARRAY -P|-P| P

FindP Program

Finding the first index k of an array ARRAY/, if there is one, such that
ARRAY (k) satisfied some property P. Otherwise, return M + 1.

@ The program use two parallel processes
to check two parts PART1 and PART?2 of the array separately.

@ Each process publishes the first index that it finds.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 4 /24

Example. FindP Program

FindP with Parallel Processes

Main programs

index1, index2 := min(PART1), min(PART 2);
publishl, publish2 := M + 1, M + 1,

processl || process2;

k := min({publishl, publish2})

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 5/ 24

Example. FindP Program

FindP with Parallel Processes

index1, index2 := min(PART1), min(PART 2);
publishl, publish2 := M + 1, M + 1,

processl || process2;

k := min({publishl, publish2})

Process: processl

while index1 < min({publishl, publish2}) do
if ARRAY (index1) = TRUE then
publishl := index1
else
index1 := the-next-index-in-PART1
end
end

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 5/ 24

Example. FindP Program

Unfolding

Process: processl

1: (read) readl := publish2;
2: if index1 < min({publishl, read1}) then
if ARRAY (index1) = TRUE then
(found) publishl := index1 || goto 3(end);
else
(inc) index1 := next-in-PART1 || goto 1(read);
end
else
(not__found) goto 3(end)
end
3: (end)

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09

Example. FindP Program

|deas for Decomposition

@ Specify the program globally.

@ Decomposing the program into different processes:
main, processl, process?2.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 7/ 24

Formal Development

The Context

1 2 3 M

FIF|T

constants: M, ARRAY

axioms:
axm0_1: MeN;
axm0_2: ARRAY €1..M — BOOL

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09

Formal Development

The Specification

The state and events

1 2 3 200 M
F FI|T s F
invariants:
variables: result inv0 1: result€Z

init
begin
result :€ 7
end

Hochichule Zirch
chnalogy Zurich

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 9 /24

Formal Development

The Specification

The state and events

1 2 3 200 M
FIr]T| - |F
. invariants:
variables: result inv0_1: result €7
final
any k where
init kel..M+1
begin Vjj€1l.. k—1= ARRAY(j) = FALSE
result :€ 7 k # M+ 1= ARRAY (k) = TRUE
end then
v/ result 1= k
&= end

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 9 /24

Formal Development

The Refinement

The published values of two processes

variables:

..., finishl, finish2, publishl, publish2

init
begin

finishl := FALSE

finish2 := FALSE

publishl := M + 1

publish2 := M + 1
end

Thai Son Hoang (ETH-Ziirich)

Event-B Decomp. for Parallel Prog.

Dagstuhl, 13-18/09/09

10 / 24

Formal Development

The Final Event

(abs_)final
any k where
kel. M+1

Vj-j €1..k—1= ARRAY(j) = FALSE
k # M + 1= ARRAY (k) = TRUE
then
result := k
end

(conc_)final
refines (abs)final
when
finish1 = TRUE
finish2 = TRUE

with
k = min({publishl, publish2}
then
v/ result := min({publishl, publish2})

= d
U en

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog.

Dagstuhl, 13-18/09/09

11 / 24

Formal Development

The Invariants

invariants:
publishl # M + 1 = finishl1 = TRUE
publishl # M + 1 = publishl € PART1
publishl # M + 1 = ARRAY (publishl) = TRUE
publishl # M + 1= (Vi-i € PART1 A i < publishl = ARRAY (i) = FALSE)
finishl = TRUE A publishl = M + 1=
(Vi-i € PART1 A i < publish2 = ARRAY (i) = FALSE)

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 12 / 24

Formal Development

The Abstract Events for processl.

found 1
any k where
finishl = FALSE
k € PART1
ARRAY (k) = TRUE
Vi-i € PART1A i < k= ARRAY (i) = FALSE

publishl = M + 1

then
finishl := TRUE
publishl := k
end
not found 1
when

finishl = FALSE
Vi-i € PART1 A i < publish2 = ARRAY (i) = FALSE

then
? finishl := TRUE
&= end

Dagstuhl, 13-18/09/09 13 / 24

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog.

Decomposition

Overview

decomp. decomp.

Ml Mi

refines

Ny

Thai Son Hoang (ETH- Event-B Decomp. for Parallel Prog.

Decomposition

Overview

M

decomp. decomp.

Ml Mi

refines

Ny

comp.

Thai Son Hoang (ETH- Event-B Decomp. for Parallel Prog.

Decomposition

Shared Variables Decomposition in Event-B

(Also called A-Style decomposition)
@ Sub-models shared variables.
@ The set of internal events of sub-models are disjoint.

@ Each models having a set of external events
to model the effect of these events on shared variables.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 15 / 24

Decomposition

An Example (1)

@ Assume model M has the following events:
el(a)v eg(a,c), e3(b,c), e4(b)'

@ Events partition:
o Mi: e, es.
-] Mz: €3, €4.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog.

Decomposition

An Example (1)

@ Assume model M has the following events:
el(a)v eg(a,c), e3(b,c), e4(b)'

@ Events partition:
o Mi: e, es.
-] Mz: €3, €4.

@ Variables distribution (calculated from events partition):

o Mj: Private variable a, shared variable c.
o Ma: Private variable b, shared variable c.

@ Result:

e Ms: Internal events e;(a), ez(a, c), external event (ext)es(c).
e Ma: Internal events e3(b, c), es(c), external event (ext)ex(c).

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09

Decomposition

An Example (2)

e1(a)

e2(a, C) refines—— (exti)eg(c)

(exti)e3(c) refines—— e3(b, C)

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 17 / 24

Decomposition

Constructing External Events

(ext_)es is the projection of e

on the state containing only external variables c.

More precisely ...

Mi(a, c)

€2
any t where
G(t,a,c)
then
a,c:| Q(t,a,c,a,c)

7% end

MQ(b7 C)

(ext_)ea

any t,a where
G(t,a,c)

then
c:|3a-Q(t,a,c,a,c)
end

Thai Son Hoang (ETH-Ziirich)

Event-B Decomp. for Parallel Prog.

Dagstuhl, 13-18/09/09

18 / 24

Decomposition

Back to FindP

Decomposition Ideas

main: final
processl: not found 1 and found 1.

process2: not found 2 and found 2.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog.

Decomposition

Refinement Strategy for processl

Constraints during refinement
@ Shared variables and external events cannot be refined.

o External events must preserve the newly introduced invariants.

© 1st Ref.: Introducing the local index of the array.
@ 2nd Ref.: Introducing the read value.

© 3rd Ref.: Introducing the address counter for sequencing the events.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 20 / 24

Related Work

Related Work (1)

o Notion “Interference-free” from Owicki-Gries.
Consider a proof of {P}S{Q} and a statement T with precondition
pre(T), T does not interfere with {P}S{Q} if
Infl {Q A pre(T)}T{Q}.

Inf2 Let S’ be any statement within S, then
{pre(S") A pre(T)} T{pre(S')}

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 21 / 24

Related Work

Related Work (1)

@ Notion “Interference-free” from Owicki-Gries.

Consider a proof of {P}S{Q} and a statement T with precondition
pre(T), T does not interfere with {P}S{Q} if

Infl {Q A pre(T)}T{Q}.

Inf2 Let S’ be any statement within S, then
{pre(S") A pre(T)} T{pre(S')}

e Comparing the work:

S is an internal event of processl.
T is an external event of processl.

The condition Infl is proved at the level before decomposing.
S’ is introduced during the refinement of S.

pre(S’) are the invariants introduced during refinement.

The condition Inf2 is proved during refinement:

external event preserves invariants.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 21 / 24

Related Work

Related Work (2)

o Rely/Guarantee method from Jones.

o Extending the Hoare's triple to include the Rely/Guarantee
conditions R and G, i.e. {P,R}S{G, Q}.

o An example rule for parallel composition

RV G =R
RV G = R
GVG=G
{P,R1}5:1{G1, @1}
{P, R2}52{ G2, @2}

{P,R}51[|52{G, Q@ A Q2}

PAR-I

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 22 / 24

Related Work

Related Work (3)

The rely/guarantee condition are relations over the two states.

A pair of external/internal events

o External event: Rely condition.
o Internal event: Guarantee condition.

e = relation of rely/guarantee conditions becomes event refinement.

@ The generated pair of external/internal events
satisfies the rules for parallel composition.

However, this generated external events might be too “concrete”.

In the FindP example, the external events just need to guarantee to
decrease the published value monotonically.

2

@ User-defined external events.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09

Appendix For Further Reading

For Further Reading |

@ C. Jones.
Splitting atoms safely,.

Theor. Comput. Sci. 2007.

@ S. Owicki and D.Gries.
An Axiomatic Proof Technique for Parallel Programs |.
Acta Inf. 6, 1976.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 24 / 24

	Motivation
	Example. FindP Program
	Formal Development
	Decomposition
	Related Work
	Appendix
	Appendix
	For Further Reading

