Outline

e o Motivation
Event-B Decomposition for Parallel Programs

© Example. FindP Program
Thai Son Hoang

© Formal Development

Department of Computer Science
Swiss Federal Institute of Technology Ziirich (ETH Ziirich)

Dagstuhl Seminar, 13th-18th September, 2009 e Decomposition

© Related Work

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 1/24 Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 2 /24

Motivation
Example. FindP Program

Motivation Overview

o Parallel programs. 1 2 3 M

ARRAY |-P|-P|P | - |P

@ Event-B for discrete transition systems.

e Work on “interference-free” (by S. Owicki and D. Gries).

FindP Program

Finding the first index k of an array ARRAY, if there is one, such that

® Work on Rely/Guarantee (by C. Jones) ARRAY (k) satisfied some property P. Otherwise, return M + 1.

o Example: FindP program. @ The program use two parallel processes

to check two parts PART1 and PART?2 of the array separately.

@ Each process publishes the first index that it finds.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 3 /24 Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 4 /24

Example. FindP Program Example. FindP Program

FindP with Parallel Processes Unfolding
index1, index2 := min(PART1), min(PART 2); 1: (read) readl := publish2;
g:’:é’z:sll’ pﬁbls:fcgsz’_/’ tLM+1; 2: if index1 < min({publishl, read1}) then
k := min({publishl, publish2}) if ARRAY(mdeXl) = TRUE then
(found) publishl := index1 || goto 3(end);
el
rocess. process (inc) index1 := next-in-PART1 || goto 1(read);
while index1 < min({publishl, publish2}) do end
if ARRAY (index1) = TRUE then else
publishl := index1
else (not_found) goto 3(end)
index1 := the-next-index-in-PART1 end
end 3: (end)
end 4
Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 5/ 24 Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 6 /24

Example. FindP Program
Formal Development

The Context

|deas for Decomposition

® Specily the program globally

@ Decomposing the program into different processes: 1 2 3 M
main, processl, process?2.

FIF{T| - F|

constants: M, ARRAY

axioms:
axm0 1: McN;
axm0_2: ARRAY €1..M — BOOL

2

&

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 7/ 24 Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 8 /24

Formal Development Formal Development

The Refinement

The Specification

The state and events

The published values of two processes

1 2 3 ce M variables: ..., finishl, finish2, publishl, publish2
FIF|T] - |F
init
begin
invariants: cee
variables: result inv0 1: result € Z finishl := FALSE
- finish2 := FALSE

publishl := M + 1

final publish2 := M + 1
any k where i
init kel.M+1 ’
begin Vj-j €1..k —1= ARRAY(j) = FALSE
result :€ 7 k # M+ 1= ARRAY (k) = TRUE

end then
:% result := k ;\%
@ end . @

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 9 /24 Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 10 / 24

Formal Development Formal Development

The Final Event The Invariants

o

any k where
kel.M+1
Vj-j €1l..k—1= ARRAY(j) = FALSE
k # M + 1= ARRAY (k) = TRUE

invariants:
publishl # M + 1 = finishl1 = TRUE
publishl # M + 1 = publishl € PART1

ULy ok publishl # M + 1 = ARRAY (publishl) = TRUE
;es” = publishl # M +1=> (Vi-i € PART1 A i < publishl = ARRAY (i) = FALSE)
en finishl = TRUE A publishl = M + 1=>

(Vi-i € PART1 A i < publish2 = ARRAY (i) = FALSE)

(conc_)final
refines (abs_)final
when
finish1 = TRUE
finish2 = TRUE
with
k = min({publishl, publish2}

2 then
R result := min({publishl, publish2})

@ end

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 11 / 24 Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 12 / 24

Formal Development
Decomposition

The Abstract Events for processl. Overview

found 1
any k where
finishl = FALSE
k € PART1
ARRAY (k) = TRUE
Vi-i € PART1 A i < k= ARRAY (i) = FALSE
publishl = M + 1

then
finishl := TRUE
publishl := k
end

not found 1

when
finishl = FALSE N
Vi-i € PART1 A i < publish2 = ARRAY (i) = FALSE
? then 7
il finishl := TRUE L
@ end ety @

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 13 / 24 Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 14 / 24

Decomposition Decomposition

Shared Variables Decomposition in Event-B An Example (1)

@ Assume model M has the following events:
e1(a), e2(2,), es(b,c), ea(b).

@ Sub-models shared variables. o Events partition:
] M1: €1, €2.
@ The set of internal events of sub-models are disjoint. o Maz: e, es.

) @ Variables distribution (calculated from events partition):
o Each models having a set of external events o . .
o Mj: Private variable a, shared variable c.

to model the effect of these events on shared variables. o My: Private variable b, shared variable c.

o Result:

e Mj: Internal events e;(a), e2(a, c), external event (ext)es(c).
e Ma: Internal events e3(b,), es(c), external event (ext)ez(c).

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 15 / 24 Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 16 / 24

Decomposition Decomposition

An Example (2) Constructing External Events

(ext_)ep is the projection of ep
c c on the state containing only external variables c.

More precisely ...

Ml(a7c) M2(bvc)
refines (exti)eg(c)
_ e (ext_ e
(ext_)es(c) refines any t where any t,a where
G(t,a,c) G(t,a,c)
then then
a,c:| Q(t,a,c,a, c) c:|3a"-Q(t,a,c,a,c)
g end end
Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 17 / 24 Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 18 / 24

Decomposition Decomposition

Back to FindP

Refinement Strategy for processl

Decomposition ldeas

Constraints during refinement
main: final @ Shared variables and external events cannot be refined.

@ External events must preserve the newly introduced invariants.

processl: not found 1 and found 1.

process2: not found 2 and found 2. @ 1st Ref.: Introducing the local index of the array.

@ 2nd Ref.: Introducing the read value.

© 3rd Ref.: Introducing the address counter for sequencing the events.

2
o

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 19 / 24 Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 20 / 24

Related Work

Related Work (1)

@ Notion “Interference-free” from Owicki-Gries.

Consider a proof of {P}S{Q} and a statement T with precondition
pre(T), T does not interfere with {P}S{Q} if

Infl {Q A pre(T)}T{Q}.

Inf2 Let S’ be any statement within S, then
{pre(S") A pre(T)} T{pre(S")}

e Comparing the work:

o S is an internal event of processl.

e T is an external event of processl.

o The condition Infl is proved at the level before decomposing.
o S’ is introduced during the refinement of S.

o pre(S’) are the invariants introduced during refinement.

] e The condition Inf2 is proved during refinement:

@ external event preserves invariants.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09 21 /24

Related Work

Related Work (3)

@ A pair of external/internal events

The rely/guarantee condition are relations over the two states.

o External event: Rely condition.
o Internal event: Guarantee condition.

@ = relation of rely/guarantee conditions becomes event refinement.

@ The generated pair of external/internal events
satisfies the rules for parallel composition.

@ However, this generated external events might be too “concrete”.

@ In the FindP example, the external events just need to guarantee to
decrease the published value monotonically.

—% o User-defined external events.

Thai Son Hoang (ETH-Ziirich)

Dagstuhl, 13-18/09/09 23 /24

Event-B Decomp. for Parallel Prog.

Related Work

Related Work (2)

@ Rely/Guarantee method from Jones.

o Extending the Hoare's triple to include the Rely/Guarantee
conditions R and G, i.e. {P,R}S{G, Q}.

o An example rule for parallel composition

RV G =R
RV G = R
GV G=G
{P,R1}5:1{G1, Q1}
{P, R2}5:{ G2, Q2}

{P,R}51]|52{G, @1 A Q2}

PAR-I

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog. Dagstuhl, 13-18/09/09

Appendix For Further Reading

For Further Reading |

@ C. Jones.
Splitting atoms safely,.
Theor. Comput. Sci. 2007.

@ S. Owicki and D.Gries.
An Axiomatic Proof Technique for Parallel Programs I.
Acta Inf. 6, 1976.

Thai Son Hoang (ETH-Ziirich) Event-B Decomp. for Parallel Prog.

Dagstuhl, 13-18/09/09

22 / 24

wlogy urich

24 / 24

	Motivation
	Example. FindP Program
	Formal Development
	Decomposition
	Related Work
	Appendix
	Appendix
	For Further Reading

