
What are the interfaces

• Modelling Interface: Entering the Event-B
models.

• Proving Interface: Interactive proving the obli-
gations.

Outline

Contents

1 Current State 1

1.1 Modelling Interface 1
1.2 Proving Interface 2
1.3 Justi�cations 2

2 Next 6 months 2

2.1 Modelling Interface 2
2.2 Proving Interface 3

1 Current State

1.1 Modelling Interface

Modelling Interface - Functionality

• Follow the standard Eclipse layout.

• There are several views:

� Project Explorer: Tree-structured views
of the projects.

� Content Outline:

∗ Re�ects the structure;

∗ provides quick navigation

for the current editing editing component.

• and the Event-B Editor:

� Multi-page,

� Form editor.

Event-B Editor

• Old editor: Table/Tree Editor.

� Too di�erent from classical Text Editor.

� No support for multi-line editing.

� Elements can be added but not at-
tributes.

• Current developing editor: Text-like Editor.

� More familiar with users.

� Supporting multi-line editting.

� Extension (both elements and attributes)
is easy.

Event-B Editor Screen-shot

1.2 Proving Interface

Proving Interface - Functionality

• Follows standard Eclipse layout.

• Based on Click'N'Prove with improvements.

• There are several views:

� Proof Tree: Tree-structured views of the
current proof.

� Proof Control: Issues proof command to
discharge the obligation.

� Proof Information: Shows related infor-
mation to the current proof.

� Search Hypothesis: Shows set of searched
hypotheses.

� Obligation Explorer: Shows the tree-like
view of all proof obligations.

• and a Proof Editor.

� Displays the current state of the proof:
goal and hypotheses.

� Issues proof commands either directly or
indirectly on the formula.

Proving Interface - Extensions

�Proof commands� can be added to the proving
interface.

• Globally: added to the Proof Control View.

• Goal: Directly / Indirectly in the predicate.

• Hypothesis: Directly / Indirectly in the predi-
cate.

1

1.3 Justi�cations

Justi�cations

• Correctness

� Using Model-View-Controller pattern.

� Unit tests for underlying model.

� Tree structure is based on database lay-
out.

• E�ciency

� Editor is designed for e�ciency updates
in common cases.

� Lazy loading of extensions

� Sharing UI resources: icons, etc.

• Maintenance

� Extension loading is encapsulated.

� Restrict possible extensions.

∗ Declarative.

∗ Very little coding.

2 Next 6 months

2.1 Modelling Interface

Modelling Interface - High priority

• Finishing the new editor.

• Displaying unde�ned attributes.

• Error markers.

• User Documents.

• Plug-in Developer's Guideline.

• Copy/Paste.

• Undo/Redo.

Modelling Interface - Low priority

• Re-factoring.

• Content assist.

• Search elements.

• Quick �xes for errors.

• Project Explorer (using Common Navigator
Framework)

• Hierarchy View.

• Improving icons.

2.2 Proving Interface

Proving Interface

• Keep hypotheses order (High priority).

• Display forward reasoning (Low priority).

2

	Current State
	Modelling Interface
	Proving Interface
	Justifications

	Next 6 months
	Modelling Interface
	Proving Interface

