
Tunnelling from CSP to B
and Back

Driving the B-Toolkit Animator through a
Tunnel

Thai Son Hoang & Ken Robinson
The University of New South Wales, Sydney, Australia

Helen Treharne, Steve Schneider & Neil Evans
Royal Holloway, University of London

One Day Workshop on B
Royal Holloway, University of London

14th July 2003

Revision: 1.0, July 11, 2003

1. EPSRC Project - Animating CSP

Architecture of CSP ‖ B specifications

CSP for describing flow of control—how the B machine is to be
driven.

1

P P1 2

M2M1

• Each B machine has a different
CSP controller

• Kinds of CSP Event:

– between a B machine and its
controller where CSP events
are operation calls.
e!v?x matches x ←− e(v).

– communications between
controllers

– external for a controller

1.1. Controller language

The CSP controller language for driving the B machines is se-
quential. It is made up of the following clauses:

P ::=a → P | d !v{E (v)} → P | c?x 〈E (x)〉 → P |
e!v?x{E (x)} → P | e!v?x 〈E (x)〉 → P |
P1 2 P2 | P1 u P2 | ux |E(x) P |
if b then P1 else P2 | S (p)

• assumptions are given as {E (x)}. The process diverges if
E (x) fails.

• guards are given as 〈E (x)〉. Inputs of x which fail E (x) are
blocked.

1.2. Joint Animation of CSP and B

Given the preceding proposal to drive B through CSP, it would
be useful to be able to drive the B-Toolkit animator from a
CSP animator. To achieve this we have constructed a “tunnel”
that interfaces to the B-Toolkit animator and to some external
program that could be driven by a CSP animator, for example.

2

2. What is a Tunnel?

A tunnel consists of two channels—implemented by pipes—for
connecting the B-Toolkit animator as a server to a client. The
two channels consist of:

• an input channel, through which the animator receives ma-
chine operation names and arguments from the client and
passes them to the B-Toolkit animator;

• an output channel, through which the results of machine
operations are delivered to the client.

3. The Role of the Tunnel

The tunnel was devised initially to allow communication between
a CSP animator and the B-Toolkit animator. However, the tun-
nel has been implemented as a general communication mecha-
nism between the B-Toolkit animator and some external tool,
so it enables general animator-to-animator communication.

Since B machines contain no operation control flow it is essential
that the client source assumes a control role.

4. Understanding the Tunnel

B-Toolkit server end

channel tunnelIn : STRING

channel tunnelOut : STRING

channel B-Animator : RESULTS

Tunnel = tunnelIn ?op -> tunnelIn ?args

-> B-Animator(op,args)? result -> tunnelOut! result

-> Tunnel

The real communication is via characters using a protocol to
determine end of construct. Values of arguments and results
are communicated as name, value pairs: name <-- value.

3

CSP client end

Suppose a fragment of CSP essentially needs to run the B op-
eration result <-- op(args) then the communication is handled
as follows:

tunnelIn! op -> tunnelIn! args -> tunnelOut? result

4.1. Communication from the client tool

In order to communicate with the tunnel from the CSP, or other,
animator a communication link will need to be created between
the other animator and the two pipes created by the tunnel. The
tunnel itself is integrated with the B-Toolkit and nothing extra
needs to be done with that end.

5. Using the Tunnel

Establishing the other end There are options in Options/Animator

Tunnel: on/off will enable/disable operation of the anima-
tor using the tunnel;

Tunnel driver: the command for executing the tunnel client:
for example, a communication link to a CSP animator.

Animation selection If the Tunnel option is on then the anima-
tion selection menu will contain Tunnel allowing the anima-
tor to be run in tunnel server mode.

5.1. B-Toolkit Animator Communication

The following table describes the animator communications and
identifies those handled by the tunnel and those handled by man-
ual interaction through the standard GUI.

4

Machine parameters manual
Context manual

Script initialisation manual
Operation selection tunnel

Operation arguments tunnel
Non-determinism resolution manual

Outputs tunnel

5.2. Bank System Architecture

Queues

CounterCtrl QueuesCtrl

queryQueueEmpty
leaveQueue

joinQueue

com3

com1

retrieveCustomer

canJoinResponse

enterBank

report

leaveBank

6. Exploring traces

One possible CSP animator is provided by ProBE (Formal Sys-
tems). ProBE provides the capability of exploring multiple traces,
but that raises some problems for the B animator. Consider the
following fragment of B:

5

MACHINE Simple

VARIABLES xx,yy

INVARIANT xx : NAT & yy : NAT

INITIALISATION xx := 0 || yy := 0

OPERATIONS

op1 xx:=1 || yy :=1;

incop xx := xx + 1 || yy := yy +1
and the following fragment of CSP:

P = a →(op1→ b → incop → P)

2

(incop → P)

• Option 1

– Exploring traces linearly

– Need to ensure consistency of B when we jump back to
the beginning of a branch. We can do this by undoing
the operation calls.

• Option 2

– Extend the underlying B animator to keep a complex
history of the state.

7. Ongoing - Dealing with outputs

• Linking the outputs of a B operation and controlling how
the CSP animator should behave is not trivial.

• E.g. If the B operation outputs a value joinQueue from the
Bank how do we represent this in ProBE?

6

– Should it offer the two possibilities in the branch and
then after the tunnel retrieves the result puts up a mes-
sage saying this was not a possible output and back-
track along the exploration?

– Or should we pre-run the operation before deciding
what to offer in ProBE as the next possible events?

7

