

Event-B Modelling Method Developing Control Systems

Event-B Modelling Method

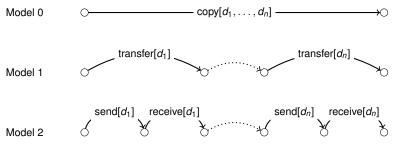
- A modelling language for discrete transition systems.
- Mathematical language of first-order logic and some typed set theory.
- Incremental development process using refinement.
- Consistency of models: discharging proof obligations.
- Correct-by-construction systems.
- Supported by the RODIN Platform.

Event-B Modelling Method Developing Control Systems Summary Event-B Models

Signal Control using Event-B

ETH

McMaster University, 16/11/10


Event-B Modelling Method Developing Control Systems

Refinement

- A way to introduce more concrete details into the formal model.
- The concrete model must be consistent with the abstract model.
- Analogies with a microscope or a parachute.
- The view of the system gets more accurate.
- Allow to observe the system with a finer time grain.

vent-B Modelling Method

Example. File Transfer

- Model 0: the file is copied in one-shot.
- Model 1: the file is transfered piece-by-piece.
- Model 2: each transfer is done via a pair of send/receive actions.

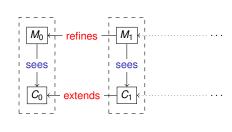
EFFF Bigereischer Technische Hichschule Zürich Swiss Technisken Eine ef Techninger Zurich		Information Security
Thai Son Hoang (ETH-Zürich)	Signal Control using Event-B	McMaster University, 16/11/10 6 / 32

Event-B Modelling Method Developing Control Systems Summary

Applications

Event-B can be used to model:

- distributed systems,
- concurrent systems,
- sequential programs,
- electronic circuits,
- control systems,
- etc.


hai Son Hoang (ETH-Zürich)

ETH Biggeräskische Technische Hochschule Zürich

Event-B Modelling Method Developing Control Systems Summary

Event-B Refinement

Consistency: The concrete model only exhibits behaviours allowed by the abstract model. • Event-wise reasoning: • Guard strengthening: concrete guards are stronger than abstract guards.

• Simulation: The abstract event can simulate the concrete event.

Event-B Modelling Method A Requirements Do Developing Control Systems A Modelling Guidelin Summary Formal Developmen

Outline

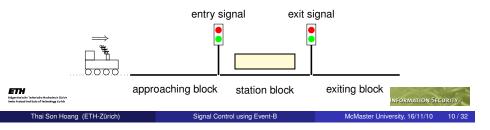
Event-B Modelling Method

2 Developing Control Systems

- A Requirements Document
- A Modelling Guideline
- Formal Development

3 Summary

EXERCISED Flockschulz Zurich Sens Teoloral Institute of Technology Earlish		Information Secu	IRITY
Thai Son Hoang (ETH-Zürich)	Signal Control using Event-B	McMaster University, 16/11/10	9/32


Event-B Modelling Method Developing Control Systems Summary Summary Formal Development

ENV 1	A train occupies no more than one block.
ENV 2	Each signal is either green or red.
ENV 3	Trains are assumed to stop at red signals.
ENV 4	The signals automatically change

from green to red when some train passes by.

Train Control at a Stations

- Joint work with Simon Hudon.
- A station has a single track.
- The track is one way:
 - the train enters the station block via the approaching block.
 - the train exits the station block via the exiting block.
- There are two signals located at the two ends of the station.
- The signals turn to red automatically when a train passes by.
- The system controls when to turn the signals to green.

Event-B Modelling Method A Requirements Document Developing Control Systems A Modelling Guideline Summary Formal Development

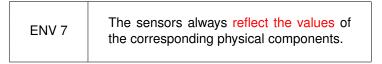
Safety Requirement

• The system guarantees that there is no collision between trains.

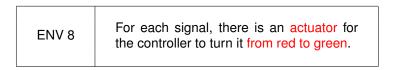
Event-B Modelling Method A Requirements Documer Developing Control Systems A Modelling Guideline Summary Formal Development

Train Schedule

ai Son Hoang (ETH-Zürich


ETH

- Each train is associated with a predefined route plan.
- The plan specifies either the train to stop or pass through.

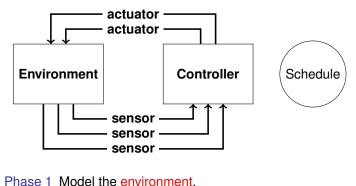

FUN 6	Each train either stops or passes through according to a predefined route plan.
-------	---

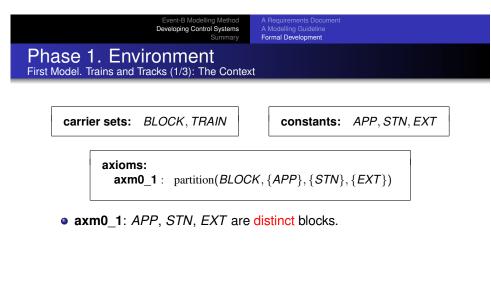
Sensors and Actuators

- There are sensors detecting if a block is occupied
- There are sensors detecting the status of the two signals.

• The controller commands the signals via actuators.

EFFFF Bilgerensische Technische Hischschule Zürich Swiss Federal Institute of Fechnology Zurich		INFORMATION SEC	URITY
Thai Son Hoang (ETH-Zürich)	Signal Control using Event-B	McMaster University, 16/11/10	14 / 32




Systems A Modelling Guideline

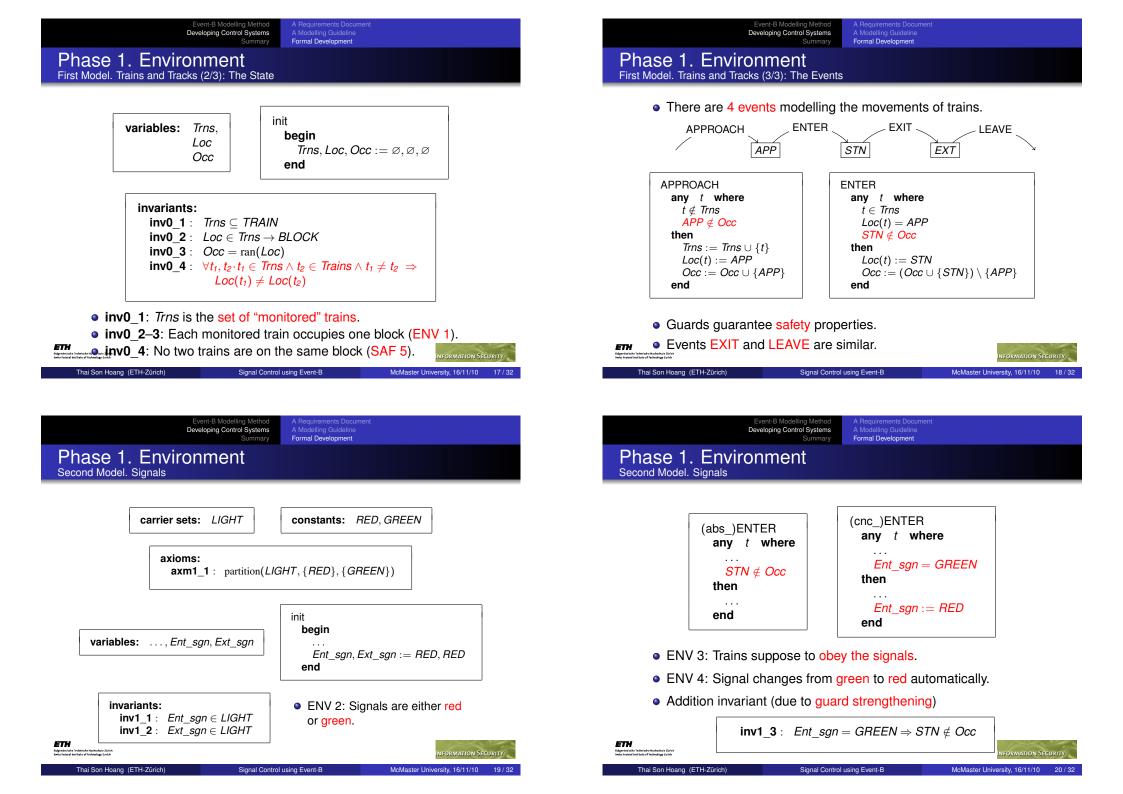
A Modelling Guideline for Developing Control Systems

Signal Control using Event-E

Signal Control using Event-B

Phase i woder the environment.

Phase 2 Model the actuators.


Phase 3 Model the sensors and the controller.

Phase 4 Model the schedule.

ETH

McMaster University, 16/11/10

CHANGE_ENTER_SIGNAL
when
Ent_sgn = RED
STN ∉ Occ
then
Ent_sgn := GREEN
end

• Recall: invariant inv1_3

inv1_3 : $Ent_sgn = GREEN \Rightarrow STN \notin Oc$	сс
--	----

• Similar for events EXIT and CHANGE_EXIT_SIGNAL.

Similar for events EX	IT and CHANGE_EXIT_	SIGNAL.
ETH Bigrafachadar Schafteder Michaelus Zarich Swis Steinel Weittele of Teobracy: Zarich		Information Security
Thai Son Hoang (ETH-Zürich)	Signal Control using Event-B	McMaster University, 16/11/10 21 / 32
	delling Method A Requirements Documer ontrol Systems A Modelling Guideline	π
Phase 2. Actuators	Summary Formal Development	
(abs_)CHANGE_ENTER_SI when <i>Ent_sgn</i> = <i>RED</i> <i>STN ∉ Occ</i> then <i>Ent_sgn</i> := <i>GREEN</i> end	when act_ent_ then Ent_sgn	GE_ENTER_SIGNAL <u>sgn</u> = TRUE := GREEN <u>sgn</u> := FALSE
 Additional invariant 		
inv2_3 :	$act_ent_sgn = TRUE \Rightarrow$ $Ent_sgn = RED \land STI$	N∉ Occ
• ENV 8: The signals is	s changed accordingly to	the actuators.
• Similar for event CHA	NGE_EXIT_SIGNAL.	Information Security

variables: ..., act_ent_sgn, act_ext_sgn

invariants: inv2_1 : act_ent_sgn ∈ BOOL inv2_2 : act_ext_sgn ∈ BOOL

init begin	
act_e end	ent_sgn, act_ext_sgn := FALSE, FALSE

ESERE Biggrafshafe Todalische Hadwahule Zurich Swis Felmid Institute of Technology Zurich		Information Sec	
Thai Son Hoang (ETH-Zürich)	Signal Control using Event-B	McMaster University, 16/11/10	22 / 32

Event-B Modelling Method A Re Developing Control Systems A Mu Summary Form

Summary Formal Development

Phase 2. Actuators

ctrl_change_enter_signal
when
act_ent_sgn = FALSE
Ent_sgn = RED
STN ∉ Occ
then
<pre>act_ent_sgn := TRUE</pre>
end

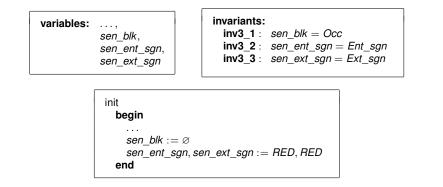
• Take into account the following invariant

inv2_3 : $act_ent_sgn = TRUE \Rightarrow$ $Ent_sgn = RED \land STN \notin Occ$

Signal Control using Event-B

Similar for events

Thai Son Hoang (ETH-Zürich)

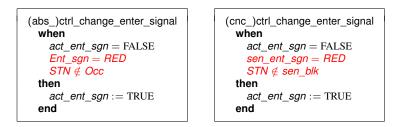

ETH ctrl_change_exit_signal and ctrl_change_both_signal.

McMaster University, 16/11/10 23 / 32

Event-B Modelling Method A Requ Developing Control Systems A Mode

ns A Modelling Guideling Formal Development

Phase 3. Sensors and Controller

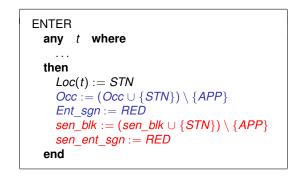


- *sen_blk*: Sensors detecting if a block is occupied.
- *sen_ent_sgn*, *sen_ext_sgn*: Sensors detecting status of signals.
- Invariants: Sensors reflect the status of components (ENV 7).

ENERGY - Technicobe Hickobelis Zürich Swiss Freimi Institute of Hickobelis Zürich		Information Sec	
Thai Son Hoang (ETH-Zürich)	Signal Control using Event-B	McMaster University, 16/11/10	25/32

Event-B Modelling Method A Requirements Doc Developing Control Systems Summary Formal Development

Phase 3. Sensors and Controller

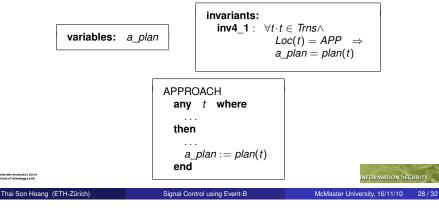

• Refinement is trivial with the invariants

McMaster University, 16/11/10

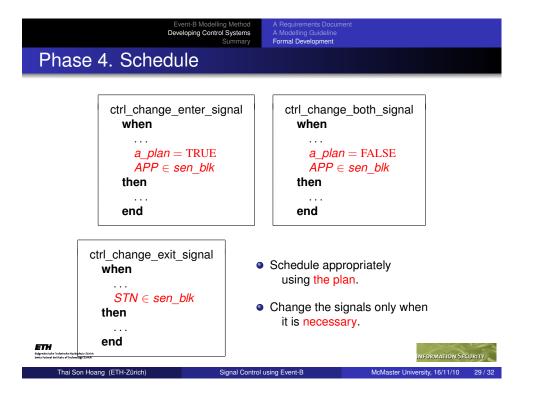
Phase 3. Sensors and Controller

- Additional assignment(s) in physical events set the value of the sensor appropriately.
- Example

ETH Bigratustar indusida Kaduduk Zilidh Weis reduni instatu el Technologi Ziridh		INFORMATION SEC	URITY
Thai Son Hoang (ETH-Zürich)	Signal Control using Event-B	McMaster University, 16/11/10	26 / 32


Event-B Modelling Method Developing Control Systems Summary

Phase 4. Schedule


• FUN 6: Every train has some predefined route plan.

constants: plan		axioms: axm4_1 : $plan \in TRAIN \rightarrow BOOL$
	-	

• Plan of the train at the approaching block.

27/32

Event-B Modelling Method A Requirements Docu Developing Control Systems Summary Formal Development

Development Summary

Phase 1 Model 0 ENV 1, SAF 5 Model 1 ENV 2, ENV 3, ENV 4 Phase 2 Model 2 ENV 8 Phase 3 Model 3 ENV 7 Phase 4 Model 4 FUN 6		Phase	Model	Requirement(s)		
Phase 2 Model 2 ENV 8 Phase 3 Model 3 ENV 7 Phase 4 Model 4 FUN 6		Phase 1	Model 0	ENV 1, SAF 5		
Phase 3 Model 3 ENV 7 Phase 4 Model 4 FUN 6			Model 1	ENV 2, ENV 3, EN	V 4	
Phase 4 Model 4 FUN 6		Phase 2	Model 2	ENV 8		
Turbuster Reduced 2006 Information Security		Phase 3	Model 3	ENV 7		
INFORMATION SECURITY		Phase 4	Model 4	FUN 6		
	ntitute of Technology Zurich	711 77 1 1				

event-B Modelling Metho

Summary. Developing Control System

- Start with model of the problem: the environment with various constraints.
- Step-by-step introduce:
 - Actuators (output of the controller).
 - Sensors (input of the controller) and the controller.

Summary

- Schedule the controller appropriately.
- Important features of the approach:
 - Safety properties are introduced early in terms of the environment: Safety properties are maintained by refinement.
 - Scheduling details in later phase of the development: Separation of concerns between safety properties and schedule.

Event-B Modelling Method Developing Control Systems Summary

Summary. Event-B Modelling Method

- A modelling method for discrete transition systems.
- Mathematical language of first-order logic and set theory.
- Step-wise refinement to reduce development complexity.
- Correct by construction.
- Can be used to model a wide range of applications.

Eith Bidgerässische Technische Hichschule Zürich Swiss Federal Institute of Technology Zurich

