
Motivation Our Results/Contribution Summary

Probabilistic Invariants for Probabilistic
Machines

Thai Son Hoang

Department of Computer Science
Swiss Federal Institute of Technology Zürich (ETH Zürich)

(Joint work with Zhendong Jin, Ken Robinson, Annabelle McIver
and Carroll Morgan)

Formal Method Club, 16th November 2005, Manchester



Motivation Our Results/Contribution Summary

Outline

1 Motivation
Extension to the B-Method
Background

2 Our Results/Contribution
Library Example
The expectations Clause
Standard and Probabilistic Invariant: the Difference



Motivation Our Results/Contribution Summary

Extension to the B-Method

Outline

1 Motivation
Extension to the B-Method
Background

2 Our Results/Contribution
Library Example
The expectations Clause
Standard and Probabilistic Invariant: the Difference



Motivation Our Results/Contribution Summary

Extension to the B-Method

Extending the B-Method

To extend the scope of the B-Method (B) for probabilistic
machines;
To introduce the probabilistic choice substitution;
To introduce the concept of probabilistic invariant (here called
expectation);
To establish the corresponding probabilistic Abstract Machine
Notation (pAMN) for the new constructs;
To establish the proof rules for the new constructs;



Motivation Our Results/Contribution Summary

Extension to the B-Method

Extending the B-Method

To extend the scope of the B-Method (B) for probabilistic
machines;
To introduce the probabilistic choice substitution;
To introduce the concept of probabilistic invariant (here called
expectation);
To establish the corresponding probabilistic Abstract Machine
Notation (pAMN) for the new constructs;
To establish the proof rules for the new constructs;



Motivation Our Results/Contribution Summary

Extension to the B-Method

Extending the B-Method

To extend the scope of the B-Method (B) for probabilistic
machines;
To introduce the probabilistic choice substitution;
To introduce the concept of probabilistic invariant (here called
expectation);
To establish the corresponding probabilistic Abstract Machine
Notation (pAMN) for the new constructs;
To establish the proof rules for the new constructs;



Motivation Our Results/Contribution Summary

Extension to the B-Method

Extending the B-Method

To extend the scope of the B-Method (B) for probabilistic
machines;
To introduce the probabilistic choice substitution;
To introduce the concept of probabilistic invariant (here called
expectation);
To establish the corresponding probabilistic Abstract Machine
Notation (pAMN) for the new constructs;
To establish the proof rules for the new constructs;



Motivation Our Results/Contribution Summary

Extension to the B-Method

Extending the B-Method

To extend the scope of the B-Method (B) for probabilistic
machines;
To introduce the probabilistic choice substitution;
To introduce the concept of probabilistic invariant (here called
expectation);
To establish the corresponding probabilistic Abstract Machine
Notation (pAMN) for the new constructs;
To establish the proof rules for the new constructs;



Motivation Our Results/Contribution Summary

Background

Outline

1 Motivation
Extension to the B-Method
Background

2 Our Results/Contribution
Library Example
The expectations Clause
Standard and Probabilistic Invariant: the Difference



Motivation Our Results/Contribution Summary

Background

The B-Method

Abstract machines.
Variables, e.g. x , y .
Invariant, e.g. x ∈ N ∧ y ∈ N ∧ x ≤ y .
Operations, e.g.
IncX =̂

pre x < y then

x := x + 1
end

Maintaining the invariant.



Motivation Our Results/Contribution Summary

Background

The B-Method

Abstract machines.
Variables, e.g. x , y .
Invariant, e.g. x ∈ N ∧ y ∈ N ∧ x ≤ y .
Operations, e.g.
IncX =̂

pre x < y then

x := x + 1
end

Maintaining the invariant.



Motivation Our Results/Contribution Summary

Background

The B-Method

Abstract machines.
Variables, e.g. x , y .
Invariant, e.g. x ∈ N ∧ y ∈ N ∧ x ≤ y .
Operations, e.g.
IncX =̂

pre x < y then

x := x + 1
end

Maintaining the invariant.



Motivation Our Results/Contribution Summary

Background

The B-Method

Abstract machines.
Variables, e.g. x , y .
Invariant, e.g. x ∈ N ∧ y ∈ N ∧ x ≤ y .
Operations, e.g.
IncX =̂

pre x < y then

x := x + 1
end

Maintaining the invariant.



Motivation Our Results/Contribution Summary

Background

The B-Method

Abstract machines.
Variables, e.g. x , y .
Invariant, e.g. x ∈ N ∧ y ∈ N ∧ x ≤ y .
Operations, e.g.
IncX =̂

pre x < y then

x := x + 1
end

Maintaining the invariant.



Motivation Our Results/Contribution Summary

Background

The Generalised Substitution Language

The semantics of B machine is given by the Generalised Substitution
Language (GSL) where substitutions are predicate transformers.

Summary

[x := E ] Q The predicate obtained after re-
placing all free occurrences of x in
Q by E .

[skip] Q Q .
[S [] T ] Q [S] Q ∧ [T ] Q .
[P|S] Q P ∧ [S] Q .
[P =⇒ S] Q P ⇒ [S] Q .
[@x · S ] Q ∀x · [S ] Q .



Motivation Our Results/Contribution Summary

Background

The Generalised Substitution Language

The semantics of B machine is given by the Generalised Substitution
Language (GSL) where substitutions are predicate transformers.

Summary

[x := E ] Q The predicate obtained after re-
placing all free occurrences of x in
Q by E .

[skip] Q Q .
[S [] T ] Q [S] Q ∧ [T ] Q .
[P|S] Q P ∧ [S] Q .
[P =⇒ S] Q P ⇒ [S] Q .
[@x · S ] Q ∀x · [S ] Q .



Motivation Our Results/Contribution Summary

Background

The Generalised Substitution Language

The semantics of B machine is given by the Generalised Substitution
Language (GSL) where substitutions are predicate transformers.

Summary

[x := E ] Q The predicate obtained after re-
placing all free occurrences of x in
Q by E .

[skip] Q Q .
[S [] T ] Q [S] Q ∧ [T ] Q .
[P|S] Q P ∧ [S] Q .
[P =⇒ S] Q P ⇒ [S] Q .
[@x · S ] Q ∀x · [S ] Q .



Motivation Our Results/Contribution Summary

Background

The Generalised Substitution Language

The semantics of B machine is given by the Generalised Substitution
Language (GSL) where substitutions are predicate transformers.

Summary

[x := E ] Q The predicate obtained after re-
placing all free occurrences of x in
Q by E .

[skip] Q Q .
[S [] T ] Q [S] Q ∧ [T ] Q .
[P|S] Q P ∧ [S] Q .
[P =⇒ S] Q P ⇒ [S] Q .
[@x · S ] Q ∀x · [S ] Q .



Motivation Our Results/Contribution Summary

Background

The Generalised Substitution Language

The semantics of B machine is given by the Generalised Substitution
Language (GSL) where substitutions are predicate transformers.

Summary

[x := E ] Q The predicate obtained after re-
placing all free occurrences of x in
Q by E .

[skip] Q Q .
[S [] T ] Q [S] Q ∧ [T ] Q .
[P|S] Q P ∧ [S] Q .
[P =⇒ S] Q P ⇒ [S] Q .
[@x · S ] Q ∀x · [S ] Q .



Motivation Our Results/Contribution Summary

Background

The Generalised Substitution Language

The semantics of B machine is given by the Generalised Substitution
Language (GSL) where substitutions are predicate transformers.

Summary

[x := E ] Q The predicate obtained after re-
placing all free occurrences of x in
Q by E .

[skip] Q Q .
[S [] T ] Q [S] Q ∧ [T ] Q .
[P|S] Q P ∧ [S] Q .
[P =⇒ S] Q P ⇒ [S] Q .
[@x · S ] Q ∀x · [S ] Q .



Motivation Our Results/Contribution Summary

Background

The probabilistic GSL

How probabilistic GSL extends Generalised Substitution Language
1 Adding probabilistic choice substitution S p⊕ T .
2 Substitutions act as expectation transformers.

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to
Expectations (functions from state to non-negative real).

For consistency with Boolean logic, we use embedded
predicates, 〈false〉 = 0, and 〈true〉 = 1.
Generalised version of⇒: the notion of “everywhere no more
than”: B1 V B2.
Notationally, we have kept predicates as much as possible.



Motivation Our Results/Contribution Summary

Background

The probabilistic GSL

How probabilistic GSL extends Generalised Substitution Language
1 Adding probabilistic choice substitution S p⊕ T .
2 Substitutions act as expectation transformers.

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to
Expectations (functions from state to non-negative real).

For consistency with Boolean logic, we use embedded
predicates, 〈false〉 = 0, and 〈true〉 = 1.
Generalised version of⇒: the notion of “everywhere no more
than”: B1 V B2.
Notationally, we have kept predicates as much as possible.



Motivation Our Results/Contribution Summary

Background

The probabilistic GSL

How probabilistic GSL extends Generalised Substitution Language
1 Adding probabilistic choice substitution S p⊕ T .
2 Substitutions act as expectation transformers.

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to
Expectations (functions from state to non-negative real).

For consistency with Boolean logic, we use embedded
predicates, 〈false〉 = 0, and 〈true〉 = 1.
Generalised version of⇒: the notion of “everywhere no more
than”: B1 V B2.
Notationally, we have kept predicates as much as possible.



Motivation Our Results/Contribution Summary

Background

The probabilistic GSL

How probabilistic GSL extends Generalised Substitution Language
1 Adding probabilistic choice substitution S p⊕ T .
2 Substitutions act as expectation transformers.

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to
Expectations (functions from state to non-negative real).

For consistency with Boolean logic, we use embedded
predicates, 〈false〉 = 0, and 〈true〉 = 1.
Generalised version of⇒: the notion of “everywhere no more
than”: B1 V B2.
Notationally, we have kept predicates as much as possible.



Motivation Our Results/Contribution Summary

Background

The probabilistic GSL

How probabilistic GSL extends Generalised Substitution Language
1 Adding probabilistic choice substitution S p⊕ T .
2 Substitutions act as expectation transformers.

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to
Expectations (functions from state to non-negative real).

For consistency with Boolean logic, we use embedded
predicates, 〈false〉 = 0, and 〈true〉 = 1.
Generalised version of⇒: the notion of “everywhere no more
than”: B1 V B2.
Notationally, we have kept predicates as much as possible.



Motivation Our Results/Contribution Summary

Background

The probabilistic GSL

How probabilistic GSL extends Generalised Substitution Language
1 Adding probabilistic choice substitution S p⊕ T .
2 Substitutions act as expectation transformers.

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to
Expectations (functions from state to non-negative real).

For consistency with Boolean logic, we use embedded
predicates, 〈false〉 = 0, and 〈true〉 = 1.
Generalised version of⇒: the notion of “everywhere no more
than”: B1 V B2.
Notationally, we have kept predicates as much as possible.



Motivation Our Results/Contribution Summary

Background

pGSL Syntax and Semantics

Summary

[x := E ]B The expectation obtained after re-
placing all free occurrences of x in
B by E

[skip]B B
[S p⊕ T ]B p × [S]B

+ (1−p) × [T ]B
[S [] T ]B [S]B min [T ]B
[@y · P =⇒ S ]B min (y) · (P | [S ]B)



Motivation Our Results/Contribution Summary

Background

pGSL Syntax and Semantics

Summary

[x := E ]B The expectation obtained after re-
placing all free occurrences of x in
B by E

[skip]B B
[S p⊕ T ]B p × [S]B

+ (1−p) × [T ]B
[S [] T ]B [S]B min [T ]B
[@y · P =⇒ S ]B min (y) · (P | [S ]B)



Motivation Our Results/Contribution Summary

Background

pGSL Syntax and Semantics

Summary

[x := E ]B The expectation obtained after re-
placing all free occurrences of x in
B by E

[skip]B B
[S p⊕ T ]B p × [S]B

+ (1−p) × [T ]B
[S [] T ]B [S]B min [T ]B
[@y · P =⇒ S ]B min (y) · (P | [S ]B)



Motivation Our Results/Contribution Summary

Background

Examples

Example 1

[x := y 1
3
⊕ x := 2× y ]x2

≡ 1
3 × [x := y ] x2 + 2

3 × [x := 2× y ] x2 probabilistic choice

≡ 1
3 × y2 + 2

3 × (2× y)2 simple subsitutions
≡ 3× y2 . arithmetic

Example 2

[x := y 1
3
⊕ x := 2× y ] 〈x = 2〉

≡ probabilistic choice
1
3 × [x := y ] 〈x = 2〉 + 2

3 × [x := 2× y ] 〈x = 2〉
≡ 1

3 × 〈y = 2〉 + 2
3 × 〈2× y = 2〉 simple subsitutions

≡ 1
3 × 〈y = 2〉 + 2

3 × 〈y = 1〉 . arithmetic



Motivation Our Results/Contribution Summary

Background

Examples

Example 1

[x := y 1
3
⊕ x := 2× y ]x2

≡ 1
3 × [x := y ] x2 + 2

3 × [x := 2× y ] x2 probabilistic choice

≡ 1
3 × y2 + 2

3 × (2× y)2 simple subsitutions
≡ 3× y2 . arithmetic

Example 2

[x := y 1
3
⊕ x := 2× y ] 〈x = 2〉

≡ probabilistic choice
1
3 × [x := y ] 〈x = 2〉 + 2

3 × [x := 2× y ] 〈x = 2〉
≡ 1

3 × 〈y = 2〉 + 2
3 × 〈2× y = 2〉 simple subsitutions

≡ 1
3 × 〈y = 2〉 + 2

3 × 〈y = 1〉 . arithmetic



Motivation Our Results/Contribution Summary

Library Example

Outline

1 Motivation
Extension to the B-Method
Background

2 Our Results/Contribution
Library Example
The expectations Clause
Standard and Probabilistic Invariant: the Difference



Motivation Our Results/Contribution Summary

Library Example

Aims

We will take the well-known “library” example, and use that as a basis
for developing a probabilistic version. Our aims are:

To introduce and show how probabilistic invariants capture some
probabilistic properties and;
To highlight some of the unexpected and subtle issues that can
arise.



Motivation Our Results/Contribution Summary

Library Example

Standard Library

machine StandardLibrary ( totalBooks )

variables booksInLibrary , loansStarted , loansEnded

invariant

booksInLibrary ∈ N ∧ loansStarted ∈ N ∧ loansEnded ∈ N ∧
loansEnded ≤ loansStarted ∧
booksInLibrary + loansStarted − loansEnded = totalBooks

initialisation

booksInLibrary := totalBooks ‖ loansStarted := 0 ‖ loansEnded := 0



Motivation Our Results/Contribution Summary

Library Example

Standard Library

machine StandardLibrary ( totalBooks )

variables booksInLibrary , loansStarted , loansEnded

invariant

booksInLibrary ∈ N ∧ loansStarted ∈ N ∧ loansEnded ∈ N ∧
loansEnded ≤ loansStarted ∧
booksInLibrary + loansStarted − loansEnded = totalBooks

initialisation

booksInLibrary := totalBooks ‖ loansStarted := 0 ‖ loansEnded := 0



Motivation Our Results/Contribution Summary

Library Example

Standard Library

machine StandardLibrary ( totalBooks )

variables booksInLibrary , loansStarted , loansEnded

invariant

booksInLibrary ∈ N ∧ loansStarted ∈ N ∧ loansEnded ∈ N ∧
loansEnded ≤ loansStarted ∧
booksInLibrary + loansStarted − loansEnded = totalBooks

initialisation

booksInLibrary := totalBooks ‖ loansStarted := 0 ‖ loansEnded := 0



Motivation Our Results/Contribution Summary

Library Example

Standard Library

machine StandardLibrary ( totalBooks )

variables booksInLibrary , loansStarted , loansEnded

invariant

booksInLibrary ∈ N ∧ loansStarted ∈ N ∧ loansEnded ∈ N ∧
loansEnded ≤ loansStarted ∧
booksInLibrary + loansStarted − loansEnded = totalBooks

initialisation

booksInLibrary := totalBooks ‖ loansStarted := 0 ‖ loansEnded := 0



Motivation Our Results/Contribution Summary

Library Example

Standard Library (cont.)

operations

StartLoan =̂

pre booksInLibrary > 0 then

booksInLibrary := booksInLibrary − 1 ‖
loansStarted := loansStarted + 1

end ;

EndLoan =̂

pre loansEnded < loansStarted then

booksInLibrary := booksInLibrary + 1 ‖
loansEnded := loansEnded + 1

end

end



Motivation Our Results/Contribution Summary

Library Example

Probabilistic Library

Lose operation?

Arrange so that Lose is invoked, with some probability.

Lose =̂

pre booksInLibrary > 0 then

booksInLibrary := booksInLibrary − 1
end

Problem
The problem with this is that we have no way in B of modelling a
probabilistically invoked operation.

Solution
An alternative, in probabilistic B, is to model operations with
probabilistic effects.



Motivation Our Results/Contribution Summary

Library Example

Probabilistic Library

Lose operation?

Arrange so that Lose is invoked, with some probability.

Lose =̂

pre booksInLibrary > 0 then

booksInLibrary := booksInLibrary − 1
end

Problem
The problem with this is that we have no way in B of modelling a
probabilistically invoked operation.

Solution
An alternative, in probabilistic B, is to model operations with
probabilistic effects.



Motivation Our Results/Contribution Summary

Library Example

Probabilistic Library

Lose operation?

Arrange so that Lose is invoked, with some probability.

Lose =̂

pre booksInLibrary > 0 then

booksInLibrary := booksInLibrary − 1
end

Problem
The problem with this is that we have no way in B of modelling a
probabilistically invoked operation.

Solution
An alternative, in probabilistic B, is to model operations with
probabilistic effects.



Motivation Our Results/Contribution Summary

Library Example

The pchoice clause

The pchoice construct is the probabilistic Abstract Machine Notation
counterpart of the operator p⊕, i.e.

pchoice p of

S
or

T
end

corresponds to S p⊕ T .



Motivation Our Results/Contribution Summary

Library Example

Probabilistic EndLoan operation

EndLoan =̂

pre loansEnded < loansStarted then

pchoice pp of

booksLost := booksLost + 1
or

booksInLibrary := booksInLibrary + 1
end ‖
loansEnded := loansEnded + 1

end



Motivation Our Results/Contribution Summary

The expectations Clause

Outline

1 Motivation
Extension to the B-Method
Background

2 Our Results/Contribution
Library Example
The expectations Clause
Standard and Probabilistic Invariant: the Difference



Motivation Our Results/Contribution Summary

The expectations Clause

Reconstruct the invariants

Standard invariant
booksInLibrary + booksLost + loansStarted − loansEnded =
totalBooks

Probabilistic invariant

EXPECTATIONS

0 V pp × loansEnded − booksLost



Motivation Our Results/Contribution Summary

The expectations Clause

Reconstruct the invariants

Standard invariant
booksInLibrary + booksLost + loansStarted − loansEnded =
totalBooks

Probabilistic invariant

EXPECTATIONS

0 V pp × loansEnded − booksLost



Motivation Our Results/Contribution Summary

The expectations Clause

The expectations clause

Each predicate in the expectations clause defines a real-valued
function from the state and the lower bound of that function. Each has
the form:

e V V , (1)

where
V is an expression over program variables,
e is the lower bound that must be established by the initialisation.

If a standard invariant, I, was written as an expectation, we would
write:

true⇒ I , (2)

but that is simply I, so nothing would appear to be achieved. We will
see that there is significant difference for the probabilistic invariant.
Importantly, although e V V is invariant, it is not used as a standard
predicate invariant.



Motivation Our Results/Contribution Summary

The expectations Clause

The expectations clause

Each predicate in the expectations clause defines a real-valued
function from the state and the lower bound of that function. Each has
the form:

e V V , (1)

where
V is an expression over program variables,
e is the lower bound that must be established by the initialisation.

If a standard invariant, I, was written as an expectation, we would
write:

true⇒ I , (2)

but that is simply I, so nothing would appear to be achieved. We will
see that there is significant difference for the probabilistic invariant.
Importantly, although e V V is invariant, it is not used as a standard
predicate invariant.



Motivation Our Results/Contribution Summary

The expectations Clause

The expectations clause

Each predicate in the expectations clause defines a real-valued
function from the state and the lower bound of that function. Each has
the form:

e V V , (1)

where
V is an expression over program variables,
e is the lower bound that must be established by the initialisation.

If a standard invariant, I, was written as an expectation, we would
write:

true⇒ I , (2)

but that is simply I, so nothing would appear to be achieved. We will
see that there is significant difference for the probabilistic invariant.
Importantly, although e V V is invariant, it is not used as a standard
predicate invariant.



Motivation Our Results/Contribution Summary

The expectations Clause

(Recall) Maintenance of standand invariant

We wish to interpret the conditions on initialisation and operations in
the context of expections: true⇒ I for standard programs; and e V V
for probabilistic programs.

Standard program:

true ⇒ [Init] I

I ⇒ [OpX] I
I ⇒ [OpY] I, (3)

then we are assured that

true⇒ [Init; Op?; Op?; . . . ; Op?] I (4)



Motivation Our Results/Contribution Summary

The expectations Clause

(Recall) Maintenance of standand invariant

We wish to interpret the conditions on initialisation and operations in
the context of expections: true⇒ I for standard programs; and e V V
for probabilistic programs.

Standard program:

true ⇒ [Init] I

I ⇒ [OpX] I
I ⇒ [OpY] I, (3)

then we are assured that

true⇒ [Init; Op?; Op?; . . . ; Op?] I (4)



Motivation Our Results/Contribution Summary

The expectations Clause

What do expectations guarantee?

Probabilistic program:

e V [Init] V

V V [OpX] V
V V [OpY] V , (5)

then we are assured that

e V [Init; Op?; Op?; . . . ; Op?] V (6)



Motivation Our Results/Contribution Summary

The expectations Clause

Proof obligations for probabilistic machines

Standard machines

N1: The initialisation needs to establish the invariant, i.e. [Init ]I .
N2: The operations need to maintain the invariant, i.e. I ⇒ [Op]I .

Probabilistic machines
P1: The initialisation needs to establish the lower bound of the

probabilistic invariant.
e V [Init ]V .

P2: The operations do not decrease the expected value of the
probabilistic invariant, i.e. the expected value of the invariant
after the operation is at least the expected value before the
operation

V V [Op]V .



Motivation Our Results/Contribution Summary

The expectations Clause

Proof obligations for probabilistic machines

Standard machines

N1: The initialisation needs to establish the invariant, i.e. [Init ]I .
N2: The operations need to maintain the invariant, i.e. I ⇒ [Op]I .

Probabilistic machines
P1: The initialisation needs to establish the lower bound of the

probabilistic invariant.
e V [Init ]V .

P2: The operations do not decrease the expected value of the
probabilistic invariant, i.e. the expected value of the invariant
after the operation is at least the expected value before the
operation

V V [Op]V .



Motivation Our Results/Contribution Summary

The expectations Clause

What the invariant means

For standard machines, the trace of the values of the expectations of
the standard invariant is true, true, . . . , true, and is not remarkable.
For probabilistic machines, the trace of the values of the expectations
of the probabilistic invariant is e0, e1, . . . , en, where
e0 V e1 V . . . V en. That is,

the trace of expectations must form a monotonically
increasing chain, no matter how the nondeterminism is
resolved.

For those interested in an experimental view here is another story.
Over a large number of tests of the machine, carried out by
an adversary, who can choose to resolve demonic choice
within operations any way they wish, and who can choose to
invoke operations in any order, we will observe that the
average value of V is at least the stated value.



Motivation Our Results/Contribution Summary

The expectations Clause

What the invariant means

For standard machines, the trace of the values of the expectations of
the standard invariant is true, true, . . . , true, and is not remarkable.
For probabilistic machines, the trace of the values of the expectations
of the probabilistic invariant is e0, e1, . . . , en, where
e0 V e1 V . . . V en. That is,

the trace of expectations must form a monotonically
increasing chain, no matter how the nondeterminism is
resolved.

For those interested in an experimental view here is another story.
Over a large number of tests of the machine, carried out by
an adversary, who can choose to resolve demonic choice
within operations any way they wish, and who can choose to
invoke operations in any order, we will observe that the
average value of V is at least the stated value.



Motivation Our Results/Contribution Summary

The expectations Clause

What the invariant means

For standard machines, the trace of the values of the expectations of
the standard invariant is true, true, . . . , true, and is not remarkable.
For probabilistic machines, the trace of the values of the expectations
of the probabilistic invariant is e0, e1, . . . , en, where
e0 V e1 V . . . V en. That is,

the trace of expectations must form a monotonically
increasing chain, no matter how the nondeterminism is
resolved.

For those interested in an experimental view here is another story.
Over a large number of tests of the machine, carried out by
an adversary, who can choose to resolve demonic choice
within operations any way they wish, and who can choose to
invoke operations in any order, we will observe that the
average value of V is at least the stated value.



Motivation Our Results/Contribution Summary

Standard and Probabilistic Invariant: the Difference

Outline

1 Motivation
Extension to the B-Method
Background

2 Our Results/Contribution
Library Example
The expectations Clause
Standard and Probabilistic Invariant: the Difference



Motivation Our Results/Contribution Summary

Standard and Probabilistic Invariant: the Difference

StockTake operation

There are some consequences of our use of expectations that are
surprising if the difference between Boolean and probabilistic
invariants is not fully appreciated.

StockTake

totalCost ←− StockTake =̂

begin

totalCost := cost × booksLost ‖
booksInLibrary := booksInLibrary + booksLost ‖
loansStarted := loansStarted − loansEnded ‖
loansEnded := 0 ‖
booksLost := 0

end



Motivation Our Results/Contribution Summary

Standard and Probabilistic Invariant: the Difference

StockTake operation breaks the probabilistic invariant

For the probabilistic invariant we require V V [StockTake]V .
Consider the right-hand side of that inequality (considering the effect
of variables loansEnded and booksLost only):

[StockTake]V

≡ [loansEnded , booksLost := 0, 0]V

≡ [loansEnded , booksLost := 0, 0]

(pp ∗ loansEnded − booksLost)

≡ 0 .

This requires us to prove

pp ∗ loansEnded − booksLost V 0 , (7)

which we cannot prove in this context.



Motivation Our Results/Contribution Summary

Standard and Probabilistic Invariant: the Difference

What went wrong?

The problem is a consequence of us naively carrying forward from
standard machines the idea that initialisation is always applicable.
With standard invariants the lower bound is true, which is also the
upper bound.
It is not normally the case with probabilistic invariants that the lower
bound is the upper bound. If it were then there would be no difference
between standard and probabilistic machines.
Consider the following scenario. A malevolent library administrator
wishes to show that library loan system is “broken”: that the rate of
book loss is higher than the advertised claim of pp. If the
administrator adopts a policy of running StockTake whenever
booksLost is large relative to pp ∗ loansEnded , then the library
managers will indeed see that system is “broken”.



Motivation Our Results/Contribution Summary

Standard and Probabilistic Invariant: the Difference

What went wrong?

The problem is a consequence of us naively carrying forward from
standard machines the idea that initialisation is always applicable.
With standard invariants the lower bound is true, which is also the
upper bound.
It is not normally the case with probabilistic invariants that the lower
bound is the upper bound. If it were then there would be no difference
between standard and probabilistic machines.
Consider the following scenario. A malevolent library administrator
wishes to show that library loan system is “broken”: that the rate of
book loss is higher than the advertised claim of pp. If the
administrator adopts a policy of running StockTake whenever
booksLost is large relative to pp ∗ loansEnded , then the library
managers will indeed see that system is “broken”.



Motivation Our Results/Contribution Summary

Standard and Probabilistic Invariant: the Difference

Fixing StockTake: Capturing long-term behaviour

New fix variable
We introduce a new variable called fix as follows: initially, fix is given
the value 0; fix is unchanged in StartLoan and EndLoan operations;
and in the StockTake operation, we modify fix to maintain the
information about the number of booksLost related to
pp × loansEnded , which is crucial for the expectation:

fix := pp × loansEnded − booksLost + fix . (8)

New expectations

V ′ =̂ pp × loansEnded − booksLost + fix . (9)



Motivation Our Results/Contribution Summary

Summary

We have extended standard Abstract Machine Notation (to
probabilistic Abstract Machine Notation) and the semantics of B’s
machine to enable the concept of a probabilistic machine, which
supports the following probabilistic B constructs:

1 probabilistic invariants or expectations;
2 probabilistic choice;

Future work
Probabilistic Event-B.



Appendix

For Further Reading

For further reading I

C. Morgan and A. McIver.
Abstraction, Refinement and Proof for Probabilistic Systems.
Springer-Verlag, 2004.

T.S. Hoang, Z. Jin, K. Robinson, C. Morgan and A. McIver.
Probabilistic Invariant for Probabilistic Machines.
Proceedings of the 3rd International Conference of B and Z
Users, volume 2651 of LNCS, 2003.


	Motivation
	Extension to the B-Method
	Background

	Our Results/Contribution
	Library Example
	The expectations Clause
	Standard and Probabilistic Invariant: the Difference

	Summary
	Appendix
	For Further Reading


