
Outline

Contents

1 Motivation

1.1 Extension to the B-Method
Extending the B-Method

• To extend the scope of the B-Method (B) for probabilistic machines;

• To introduce the probabilistic choice substitution;

• To introduce the concept of probabilistic invariant (here called expectation);

• To establish the corresponding probabilistic Abstract Machine Notation (pAMN) for the new constructs;

• To establish the proof rules for the new constructs;

1.2 Background
The B-Method

• Abstract machines.

• Variables, e.g. x, y.

• Invariant, e.g. x ∈ N ∧ y ∈ N ∧ x ≤ y.

• Operations, e.g.

IncX =̂
pre x < y then

x := x + 1
end

• Maintaining the invariant.

The Generalised Substitution Language
The semantics of B machine is given by the Generalised Substitution Language (GSL) where substitutions are

predicate transformers.

Summary
[x := E]Q The predicate obtained after replacing all free occurrences

of x in Q by E.
[skip]Q Q .
[S [] T]Q [S]Q ∧ [T]Q .
[P |S]Q P ∧ [S]Q .
[P =⇒ S]Q P ⇒ [S]Q .
[@x · S]Q ∀x · [S]Q .

The probabilistic GSL

How probabilistic GSL extends Generalised Substitution Language

1. Adding probabilistic choice substitution S p⊕ T .

2. Substitutions act as expectation transformers.

Expectations replace predicates
Predicates (functions from state to Boolean) are widened to Expectations (functions from state to non-negative

real).

• For consistency with Boolean logic, we use embedded predicates, 〈false〉 = 0, and 〈true〉 = 1.

• Generalised version of⇒: the notion of “everywhere no more than”: B1 V B2.

• Notationally, we have kept predicates as much as possible.

pGSL Syntax and Semantics

Summary
[x := E]B The expectation obtained after replacing all free occur-

rences of x in B by E

[skip]B B

[S p⊕ T]B p × [S]B
+ (1−p) × [T]B

[S [] T]B [S]B min [T]B
[@y · P =⇒ S]B min (y) · (P | [S]B)

Examples

Example 1

[x := y 1
3
⊕ x := 2× y]x2

≡ 1
3 × [x := y] x2 + 2

3 × [x := 2× y] x2 probabilistic choice

≡ 1
3 × y2 + 2

3 × (2× y)2 simple subsitutions

≡ 3× y2 . arithmetic

Example 2

[x := y 1
3
⊕ x := 2× y] 〈x = 2〉

≡ probabilistic choice
1
3 × [x := y] 〈x = 2〉 + 2

3 × [x := 2× y] 〈x = 2〉
≡ 1

3 × 〈y = 2〉 + 2
3 × 〈2× y = 2〉 simple subsitutions

≡ 1
3 × 〈y = 2〉 + 2

3 × 〈y = 1〉 . arithmetic

2

2 Our Results/Contribution

2.1 Library Example
Aims

We will take the well-known “library” example, and use that as a basis for developing a probabilistic version. Our
aims are:

• To introduce and show how probabilistic invariants capture some probabilistic properties and;

• To highlight some of the unexpected and subtle issues that can arise.

Standard Library

machine StandardLibrary (totalBooks)

variables booksInLibrary , loansStarted , loansEnded

invariant

booksInLibrary ∈ N ∧ loansStarted ∈ N ∧ loansEnded ∈ N ∧
loansEnded ≤ loansStarted ∧
booksInLibrary + loansStarted − loansEnded = totalBooks

initialisation

booksInLibrary := totalBooks ‖ loansStarted := 0 ‖ loansEnded := 0

Standard Library (cont.)

operations

StartLoan =̂
pre booksInLibrary > 0 then

booksInLibrary := booksInLibrary − 1 ‖
loansStarted := loansStarted + 1

end ;

EndLoan =̂
pre loansEnded < loansStarted then

booksInLibrary := booksInLibrary + 1 ‖
loansEnded := loansEnded + 1

end

end

Probabilistic Library

Lose operation?
Arrange so that Lose is invoked, with some probability.

3

Lose =̂
pre booksInLibrary > 0 then

booksInLibrary := booksInLibrary − 1
end

Problem
The problem with this is that we have no way in B of modelling a probabilistically invoked operation.

Solution
An alternative, in probabilistic B, is to model operations with probabilistic effects.

The pchoice clause
The pchoice construct is the probabilistic Abstract Machine Notation counterpart of the operator p⊕, i.e.

pchoice p of
S

or
T

end

corresponds to S p⊕ T .

Probabilistic EndLoan operation

EndLoan =̂
pre loansEnded < loansStarted then

pchoice pp of
booksLost := booksLost + 1

or
booksInLibrary := booksInLibrary + 1

end ‖
loansEnded := loansEnded + 1

end

2.2 The expectations Clause
Reconstruct the invariants

Standard invariant
booksInLibrary + booksLost + loansStarted − loansEnded = totalBooks

Probabilistic invariant

EXPECTATIONS

0 V pp × loansEnded − booksLost

4

The expectations clause
Each predicate in the expectations clause defines a real-valued function from the state and the lower bound of that

function. Each has the form:
e V V , (1)

where

• V is an expression over program variables,

• e is the lower bound that must be established by the initialisation.

If a standard invariant, I , was written as an expectation, we would write:

true⇒ I , (2)

but that is simply I , so nothing would appear to be achieved. We will see that there is significant difference for the
probabilistic invariant.

Importantly, although e V V is invariant, it is not used as a standard predicate invariant.

(Recall) Maintenance of standand invariant
We wish to interpret the conditions on initialisation and operations in the context of expections: true ⇒ I for

standard programs; and e V V for probabilistic programs.

Standard program:

true ⇒ [Init] I

I ⇒ [OpX] I
I ⇒ [OpY] I, (3)

then we are assured that
true⇒ [Init; Op?; Op?; . . . ; Op?] I (4)

What do expectations guarantee?
Probabilistic program:

e V [Init]V

V V [OpX]V
V V [OpY]V, (5)

then we are assured that
e V [Init; Op?; Op?; . . . ; Op?]V (6)

Proof obligations for probabilistic machines

Standard machines

N1: The initialisation needs to establish the invariant, i.e. [Init]I .

N2: The operations need to maintain the invariant, i.e. I ⇒ [Op]I .

Probabilistic machines

P1: The initialisation needs to establish the lower bound of the probabilistic invariant.

e V [Init]V .

5

P2: The operations do not decrease the expected value of the probabilistic invariant, i.e. the expected value of the
invariant after the operation is at least the expected value before the operation

V V [Op]V .

What the invariant means
For standard machines, the trace of the values of the expectations of the standard invariant is true, true, . . . , true,

and is not remarkable.
For probabilistic machines, the trace of the values of the expectations of the probabilistic invariant is e0, e1, . . . , en,

where e0 V e1 V . . . V en. That is,

the trace of expectations must form a monotonically increasing chain, no matter how the nondeterminism
is resolved.

For those interested in an experimental view here is another story.

Over a large number of tests of the machine, carried out by an adversary, who can choose to resolve
demonic choice within operations any way they wish, and who can choose to invoke operations in any
order, we will observe that the average value of V is at least the stated value.

2.3 Standard and Probabilistic Invariant: the Difference
StockTake operation

There are some consequences of our use of expectations that are surprising if the difference between Boolean and
probabilistic invariants is not fully appreciated.

StockTake

totalCost←− StockTake =̂
begin

totalCost := cost × booksLost ‖
booksInLibrary := booksInLibrary + booksLost ‖
loansStarted := loansStarted − loansEnded ‖
loansEnded := 0 ‖
booksLost := 0

end

StockTake operation breaks the probabilistic invariant
For the probabilistic invariant we require V V [StockTake]V . Consider the right-hand side of that inequality

(considering the effect of variables loansEnded and booksLost only):

[StockTake]V

≡ [loansEnded, booksLost := 0, 0]V

≡ [loansEnded, booksLost := 0, 0]

(pp ∗ loansEnded− booksLost)

≡ 0 .

This requires us to prove
pp ∗ loansEnded− booksLost V 0 , (7)

which we cannot prove in this context.

6

What went wrong?
The problem is a consequence of us naively carrying forward from standard machines the idea that initialisation is

always applicable. With standard invariants the lower bound is true, which is also the upper bound.
It is not normally the case with probabilistic invariants that the lower bound is the upper bound. If it were then

there would be no difference between standard and probabilistic machines.
Consider the following scenario. A malevolent library administrator wishes to show that library loan system is

“broken”: that the rate of book loss is higher than the advertised claim of pp. If the administrator adopts a policy of
running StockTake whenever booksLost is large relative to pp ∗ loansEnded, then the library managers will indeed
see that system is “broken”.

Fixing StockTake: Capturing long-term behaviour

New fix variable
We introduce a new variable called fix as follows: initially, fix is given the value 0; fix is unchanged in StartLoan
and EndLoan operations; and in the StockTake operation, we modify fix to maintain the information about the
number of booksLost related to pp× loansEnded, which is crucial for the expectation:

fix := pp× loansEnded− booksLost + fix . (8)

New expectations
V ′ =̂ pp× loansEnded− booksLost + fix . (9)

Summary
We have extended standard Abstract Machine Notation (to probabilistic Abstract Machine Notation) and the seman-
tics of B’s machine to enable the concept of a probabilistic machine, which supports the following probabilistic B
constructs:

1. probabilistic invariants or expectations;

2. probabilistic choice;

• Future work

– Probabilistic Event-B.

References
[1] C. Morgan and A. McIver. Abstraction, Refinement and Proof for Probabilistic Systems. Springer-Verlag, 2004.

[2] T.S. Hoang, Z. Jin, K. Robinson, C. Morgan and A. McIver. Probabilistic Invariant for Probabilistic Machines.
Proceedings of the 3rd International Conference of B and Z Users, volume 2651 of LNCS, 2003.

7

