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reusable fragments.
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• B-Method based on Generalized Substitution Language (GSL) by

Abrial.

– [x := E ]R ≡ The predicate obtained after replacing all free occurrence of x

in R by E.

– [P | G ]R ≡ P&[G ]R

– [P =⇒ G ] ≡ P ⇒ [G ]R

– [skip]R ≡ R

– G‖H ≡ apply the substitutions G and H concurrently.

– [G ; H ]R ≡ [G ]([H ]R)

– [G []H ]R ≡ [G ]R&[H ]R



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.

Simple machine written in AMN:

VARIABLES xx, yy



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.

Simple machine written in AMN:

VARIABLES xx, yy

INVARIANT xx : NAT & yy : NAT



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.

Simple machine written in AMN:

VARIABLES xx, yy

INVARIANT xx : NAT & yy : NAT

INITIALISATION xx, yy := 0, 0



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.

Simple machine written in AMN:

VARIABLES xx, yy

INVARIANT xx : NAT & yy : NAT

INITIALISATION xx, yy := 0, 0

OPERATIONS



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.

Simple machine written in AMN:

VARIABLES xx, yy
INVARIANT xx : NAT & yy : NAT
INITIALISATION xx, yy := 0, 0
OPERATIONS

Increase =

BEGIN

xx := xx + 1 ‖

yy := yy + 1

test

END
END
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Introduction to pGSL

• pGSL is the extension of GSL.

• The differences between GSL and pGSL: is that predicates (functions from

state to Boolean) have been widened to functions from state to number.

• For consistency with Boolean logic, false 7→ 0, true 7→ 1. In other words, it acts

over ’expectations’ rather than predicates.

• Notationally, we have kept the predicate syntax as much as possiple.

• Example of an expression in pGSL:

(yy + 1 ∈ N ∧ expectation((yy + 1)− 2× xx ))× frac(1, 2)
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New pB construct

• pGSL: Probabilistic choice substitution S p⊕ T .

• pAMN:

PCHOICE p OF
S

OR
T

END
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Example of probabilistic Number

A machine that has two counting devices on it. The machine has one operation

namely Increase. When invoking this operation

• the first device increases its value probabilistically. Half of the time, it increases

the value by 1. The other half of the time, it keeps the value the same.

• the second device increases its value deterministically by 1.

And we expect that the value on the second device is always twice the value on

the first device.



Example of probabilistic Number (Cont.)

Using pAMN, below is the Increase operation:

Increase =

BEGIN

PCHOICE 1/̂2 OF

xx := xx + 1

OR

skip

END ‖

yy := yy + 1

END



Example of probabilistic Number (Cont.)

Specification of probabilistic Number is shown below (in pAMN notation).

MACHINE pNumber
SEES Real TYPE, Bool TYPE
VARIABLES xx, yy
INVARIANT

xx : NAT & yy : NAT &

expectation(yy - 2 ∗ xx)

INITIALISATION
xx, yy := 0, 0



OPERATIONS
Increase =

BEGIN

PCHOICE 1/̂2 OF

xx := xx + 1

OR

skip

END ‖

yy := yy + 1

END
END
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Proof obligations generator

The rules are:

• The initialisation needs to establish the invariant on the assumption of the

context of the machine.

• The operations need to maintain the invariant.
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Proof obligation for initialisation

Proving by using pB’s rules:

[xx , yy := 0, 0]xx ∈ N ∧ yy ∈ N ∧ expectation(yy − 2× xx )
≡ 0 ∈ N ∧ 0 ∈ N ∧ expectation(0)

We need to have precondition in the initialisation.

PRE expectation(0)

THEN
xx, yy := 0, 0

END
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Proof obligation for Increase operation

• Rule for probabilistic choice substitution.

[S p⊕ T ]R ≡ p × [S ]R + (1− p)× [T ]R

• Arithmetic with Real number.
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Modifying the B-Toolkit

• Internal structure of the B-Toolkit

1. Motif interface.

2. Theories driven processes.

• What to do

– Analyzer.

– PO generator.

– Prover.
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Case studies

• Random algorithms.

• Uncertainties in Networking
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Conclusion

• The introduction of pGSL helps the programmers handle probabilistic prop-

erties of software formally.

• The new Toolkit will assist in developing and maintaining software with

probabilistic properties.

• Further more, in the future, the Toolkit can be upgraded to support other

properties of software development.
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