
School of Computer Science & Engineering —
UNSW
http://www.cse.unsw.edu.au/

ARW 2001

The Development of a Toolkit to Support
the Probabilistic B Method

Thai Son Hoang

7th June 2002

http://www.cse.unsw.edu.au/


Outline



Outline

• A brief introduction to B and GSL.



Outline

• A brief introduction to B and GSL.

• Introduction to pGSL.



Outline

• A brief introduction to B and GSL.

• Introduction to pGSL.

• New pB construct .



Outline

• A brief introduction to B and GSL.

• Introduction to pGSL.

• New pB construct .

• Example of probabilistic Number.



Outline

• A brief introduction to B and GSL.

• Introduction to pGSL.

• New pB construct .

• Example of probabilistic Number.

• Conversion of B-Toolkit.



Outline

• A brief introduction to B and GSL.

• Introduction to pGSL.

• New pB construct .

• Example of probabilistic Number.

• Conversion of B-Toolkit.

• Conclusion.



Introduction to B and GSL



Introduction to B and GSL

• B-Method is a systematic development of large software systems from

reusable fragments.



Introduction to B and GSL

• B-Method is a systematic development of large software systems from

reusable fragments.

• B-Toolkit is built to illustrate all the aspects of B-Method.



Introduction to B and GSL (Cont.)

• B-Method based on Generalized Substitution Language (GSL) by

Abrial.



Introduction to B and GSL (Cont.)

• B-Method based on Generalized Substitution Language (GSL) by

Abrial.

– [x := E ]R ≡ The predicate obtained after replacing all free occurrence of x

in R by E.

– [P | G ]R ≡ P&[G ]R

– [P =⇒ G ] ≡ P ⇒ [G ]R

– [skip]R ≡ R

– G‖H ≡ apply the substitutions G and H concurrently.

– [G ; H ]R ≡ [G ]([H ]R)

– [G []H ]R ≡ [G ]R&[H ]R



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.

Simple machine written in AMN:

VARIABLES xx, yy



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.

Simple machine written in AMN:

VARIABLES xx, yy

INVARIANT xx : NAT & yy : NAT



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.

Simple machine written in AMN:

VARIABLES xx, yy

INVARIANT xx : NAT & yy : NAT

INITIALISATION xx, yy := 0, 0



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.

Simple machine written in AMN:

VARIABLES xx, yy

INVARIANT xx : NAT & yy : NAT

INITIALISATION xx, yy := 0, 0

OPERATIONS



Introduction to B and GSL (Cont.)

• The developer write programs (machines) using Abstract Machine Notation

(AMN) into the B-Toolkit.

Simple machine written in AMN:

VARIABLES xx, yy
INVARIANT xx : NAT & yy : NAT
INITIALISATION xx, yy := 0, 0
OPERATIONS

Increase =

BEGIN

xx := xx + 1 ‖

yy := yy + 1

test

END
END



Introduction to pGSL



Introduction to pGSL

• pGSL is the extension of GSL.



Introduction to pGSL

• pGSL is the extension of GSL.

• The differences between GSL and pGSL: is that predicates (functions from

state to Boolean) have been widened to functions from state to number.



Introduction to pGSL

• pGSL is the extension of GSL.

• The differences between GSL and pGSL: is that predicates (functions from

state to Boolean) have been widened to functions from state to number.

• For consistency with Boolean logic, false 7→ 0, true 7→ 1. In other words, it acts

over ’expectations’ rather than predicates.



Introduction to pGSL

• pGSL is the extension of GSL.

• The differences between GSL and pGSL: is that predicates (functions from

state to Boolean) have been widened to functions from state to number.

• For consistency with Boolean logic, false 7→ 0, true 7→ 1. In other words, it acts

over ’expectations’ rather than predicates.

• Notationally, we have kept the predicate syntax as much as possiple.



Introduction to pGSL

• pGSL is the extension of GSL.

• The differences between GSL and pGSL: is that predicates (functions from

state to Boolean) have been widened to functions from state to number.

• For consistency with Boolean logic, false 7→ 0, true 7→ 1. In other words, it acts

over ’expectations’ rather than predicates.

• Notationally, we have kept the predicate syntax as much as possiple.

• Example of an expression in pGSL:

(yy + 1 ∈ N ∧ expectation((yy + 1)− 2× xx ))× frac(1, 2)



New pB construct



New pB construct

• pGSL: Probabilistic choice substitution S p⊕ T .



New pB construct

• pGSL: Probabilistic choice substitution S p⊕ T .

• pAMN:

PCHOICE p OF
S

OR
T

END



Example of probabilistic Number



Example of probabilistic Number

A machine that has two counting devices on it. The machine has one operation

namely Increase. When invoking this operation



Example of probabilistic Number

A machine that has two counting devices on it. The machine has one operation

namely Increase. When invoking this operation

• the first device increases its value probabilistically. Half of the time, it increases

the value by 1. The other half of the time, it keeps the value the same.



Example of probabilistic Number

A machine that has two counting devices on it. The machine has one operation

namely Increase. When invoking this operation

• the first device increases its value probabilistically. Half of the time, it increases

the value by 1. The other half of the time, it keeps the value the same.

• the second device increases its value deterministically by 1.



Example of probabilistic Number

A machine that has two counting devices on it. The machine has one operation

namely Increase. When invoking this operation

• the first device increases its value probabilistically. Half of the time, it increases

the value by 1. The other half of the time, it keeps the value the same.

• the second device increases its value deterministically by 1.

And we expect that the value on the second device is always twice the value on

the first device.



Example of probabilistic Number (Cont.)

Using pAMN, below is the Increase operation:

Increase =

BEGIN

PCHOICE 1/̂2 OF

xx := xx + 1

OR

skip

END ‖

yy := yy + 1

END



Example of probabilistic Number (Cont.)

Specification of probabilistic Number is shown below (in pAMN notation).

MACHINE pNumber
SEES Real TYPE, Bool TYPE
VARIABLES xx, yy
INVARIANT

xx : NAT & yy : NAT &

expectation(yy - 2 ∗ xx)

INITIALISATION
xx, yy := 0, 0



OPERATIONS
Increase =

BEGIN

PCHOICE 1/̂2 OF

xx := xx + 1

OR

skip

END ‖

yy := yy + 1

END
END



Proof obligations generator



Proof obligations generator

The rules are:

• The initialisation needs to establish the invariant on the assumption of the

context of the machine.



Proof obligations generator

The rules are:

• The initialisation needs to establish the invariant on the assumption of the

context of the machine.

• The operations need to maintain the invariant.



Proof obligation for initialisation



Proof obligation for initialisation

Proving by using pB’s rules:

[xx , yy := 0, 0]xx ∈ N ∧ yy ∈ N ∧ expectation(yy − 2× xx )
≡ 0 ∈ N ∧ 0 ∈ N ∧ expectation(0)



Proof obligation for initialisation

Proving by using pB’s rules:

[xx , yy := 0, 0]xx ∈ N ∧ yy ∈ N ∧ expectation(yy − 2× xx )
≡ 0 ∈ N ∧ 0 ∈ N ∧ expectation(0)

We need to have precondition in the initialisation.

PRE expectation(0)

THEN
xx, yy := 0, 0

END



Proof obligation for Increase operation



Proof obligation for Increase operation

• Rule for probabilistic choice substitution.

[S p⊕ T ]R ≡ p × [S ]R + (1− p)× [T ]R



Proof obligation for Increase operation

• Rule for probabilistic choice substitution.

[S p⊕ T ]R ≡ p × [S ]R + (1− p)× [T ]R

• Arithmetic with Real number.



Modifying the B-Toolkit



Modifying the B-Toolkit

• Internal structure of the B-Toolkit



Modifying the B-Toolkit

• Internal structure of the B-Toolkit

1. Motif interface.



Modifying the B-Toolkit

• Internal structure of the B-Toolkit

1. Motif interface.

2. Theories driven processes.



Modifying the B-Toolkit

• Internal structure of the B-Toolkit

1. Motif interface.

2. Theories driven processes.

• What to do

– Analyzer.



Modifying the B-Toolkit

• Internal structure of the B-Toolkit

1. Motif interface.

2. Theories driven processes.

• What to do

– Analyzer.

– PO generator.



Modifying the B-Toolkit

• Internal structure of the B-Toolkit

1. Motif interface.

2. Theories driven processes.

• What to do

– Analyzer.

– PO generator.

– Prover.



Case studies



Case studies

• Random algorithms.



Case studies

• Random algorithms.

• Uncertainties in Networking



Conclusion



Conclusion

• The introduction of pGSL helps the programmers handle probabilistic prop-

erties of software formally.



Conclusion

• The introduction of pGSL helps the programmers handle probabilistic prop-

erties of software formally.

• The new Toolkit will assist in developing and maintaining software with

probabilistic properties.



Conclusion

• The introduction of pGSL helps the programmers handle probabilistic prop-

erties of software formally.

• The new Toolkit will assist in developing and maintaining software with

probabilistic properties.

• Further more, in the future, the Toolkit can be upgraded to support other

properties of software development.


	Outline
	Introduction to B and GSL
	Introduction to B and GSL (Cont.)
	Introduction to B and GSL (Cont.)
	Introduction to pGSL
	New pB construct
	Example of probabilistic Number
	Example of probabilistic Number (Cont.)
	Example of probabilistic Number (Cont.)
	Proof obligations generator
	Proof obligation for initialisation
	Proof obligation for Increase operation
	Modifying the B-Toolkit
	Case studies
	Conclusion

