Proof Rules for Invariance and Liveness Properties

Thai Son Hoang

Chair of Information Security, Department of Computer Science Swiss Federal Institute of Technology Zürich (ETH Zürich)

3rd February 2011, Ascona Meeting

Discrete Transition Systems (Recall)

Given the following transition system S

```
system S
variables \overline{v} \in \overline{T}
initially init(\overline{v})
events
     \operatorname{evt}_i \ \widehat{=} \ G_i(\overline{v}) \longrightarrow \overline{v} := \overline{f}_i(\overline{v})
```

- \overline{v} denotes the vector of variables v_1, \ldots, v_n .
- init(v̄) is the initialisation.
- $G_i(\overline{v})$ is the guard of event evt_i.
- evt_i is said to be enabled in some state s if $G_i(\overline{v})$ holds in s.

• $\overline{v} := \overline{f}_i(\overline{v})$ is the action of event evt_i.

Executions and Traces (of States)

Executions
$$\alpha = s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \xrightarrow{a_3} \dots$$

Traces $\sigma = s_0, s_1, s_2, s_3, \dots$

 $\mathcal{T}(S)$ denotes the set of all traces of system S.

Example

system Counter events

$$\text{variables } c \in \mathbb{Z} \qquad \text{ inc } \ \widehat{=} \ \ c \neq 5 \longrightarrow c := c+1$$

$$\sigma_{Counter}: \langle 0 \rangle, \langle 1 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 4 \rangle, \langle 5 \rangle, \langle 4 \rangle, \langle 3 \rangle, \langle 4 \rangle, \langle 5 \rangle, \dots$$

Outline

- 1 The Language of Temporal Logic
- Proof Principles
- Second State

 Example. Reader and Writer
- 4 Conclusions

Temporal Formulas

Temporal formulas to be interpreted over traces.

- A (basic) state formula $Q(\overline{v})$ is any first-order logic formula, e.g. $0 \le c$, $\neg (c = 0) \land c < 2$, $\forall m \cdot m \ne 0 \Rightarrow m \le c$.
- The basic formulas can be extended by combining the Boolean operators (¬, ∧, ∨, ⇒) with temporal operators:
 - ■: always
 - : eventually
 - until
- Example of extended formulas:
 - □ *c* ∈ 0 .. 5
 - □ c < 6
 - $\Diamond c = 2$
 - $\Box \Diamond c = 2$

- c < 2 1/l c = 2
- \Box ($c \leq 2 \ \mathcal{U} \ c = 2$)
- $(\Box c \in 0..5) \land (\Diamond c = 2)$

Length and Suffixes of Traces

Let σ : s_o, s_1, \ldots be any non-empty trace.

- The length of σ denoted by $I(\sigma)$.
 - Finite trace $\sigma : s_0, \ldots, s_k : I(\sigma) = k + 1$.
 - Infinite trace: $I(\sigma) = \infty$.
- For $0 \le k < I(\sigma)$, k-suffix of σ is defined as

$$\sigma^{(k)} = s_k, s_{k+1}, \ldots$$

Interpretation

 $\sigma \vDash \phi$ means that a trace σ satisfies formula ϕ

- For state formula ϕ , $\sigma \vDash \phi$ if all only if s_0 satisfies ϕ .
- Boolean operators are interpreted in the natural way, e.g.

$$\sigma \vDash \phi_1 \land \phi_2$$
 if and only if $\sigma \vDash \phi_1$ and $\sigma \vDash \phi_2$.

Temporal operators are interpreted as follows.

$$\sigma \vDash \Box \phi$$
 if and only if $\forall k \cdot 0 \le k < l(\sigma), \ \sigma^{(k)} \vDash \phi$
 $\sigma \vDash \Diamond \phi$ if and only if $\exists k \cdot 0 \le k < l(\sigma), \ \sigma^{(k)} \vDash \phi$
 $\sigma \vDash \phi_1 \ \mathcal{U} \ \phi_2$ if and only if $\exists k \cdot 0 \le k < l(\sigma)$ such that $\sigma^{(k)} \vDash \phi_2$ and $\forall i \cdot 0 \le i < k, \ \sigma^{(i)} \vDash \phi_1$

Interpretation

Intuition

For the simple cases, when ϕ , ϕ_1 , ϕ_2 are state predicates.

- σ satisfies $\square \phi$

 - if and only if all states in σ satisfy ϕ
- σ satisfies $\Diamond \phi$
- if and only if some states in σ satisfy ϕ
- σ satisfies $\phi_1 \mathcal{U} \phi_2$ if and only if
- some state s_k satisfies ϕ_2 and all the states until s_k (excluding s_k) satisfy ϕ_2

$$\sigma_{Counter}: \langle 0 \rangle, \langle 1 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 4 \rangle, \langle 5 \rangle, \langle 4 \rangle, \langle 3 \rangle, \langle 4 \rangle, \langle 5 \rangle, \dots$$

- $\sigma_{Counter} \models \Box c \in 0..5$
- $\sigma_{Counter} \models \Box c \leq 6$
- $\sigma_{Counter} \models \Diamond c = 2$
- $\sigma_{Counter} \not \models \Box \diamondsuit c = 2$

- $\sigma_{Counter} \models c < 2 \ \mathcal{U} \ c = 2$
- $\sigma_{Counter} \not\models \Box (c < 2 \ \mathcal{U} \ c = 2)$
- $\sigma_{Counter} \models (\Box c \in 0..5) \land (\diamondsuit c = 2)$

Ascona Meeting, 03/02/11

Safety v.s. Liveness

- Safety properties: something (bad) will never happen.
 - Example: invariance properties.
 - Typically expressed by a temporal formula: $\Box \phi$ or $\phi_1 \Rightarrow \Box \phi_2$.
- Liveness properties: something (good) will happen.
 - Example: termination, responsiveness.
 - Typically expressed by a temporal formula:

$$\Diamond \phi$$
 or $\Box (\phi_1 \Rightarrow \Diamond \phi_2)$.

• Extended: $\phi_1 \mathcal{U} \phi_2$ or $\Box(\phi_1 \Rightarrow \phi_2 \mathcal{U} \phi_3)$.

System Properties

- A system S satisfying property ϕ if all its traces satisfy ϕ . $S \models \phi$ if and only if $\sigma \models \phi$, for all $\sigma \in \mathcal{T}(S)$.
- ψ if and only if ψ , for all $\psi \in \mathcal{F}(\mathcal{O})$
- $S \vdash \phi$ states that $S \models \phi$ is provable.

Proof Tools (1 of 3)

System Leads from ϕ_1 to ϕ_2

Event leads from ϕ_1 to ϕ_2

- Let evt be an event of the form $G(\overline{v}) \longrightarrow \overline{v} := \overline{f}(\overline{v})$
- Let $\phi_1(\overline{\nu})$ and $\phi_2(\overline{\nu})$ be two state formulas.
- Event evt leads from $\phi_1(\overline{\nu})$ to $\phi_2(\overline{\nu})$ if

$$\phi_1(\overline{v}) \wedge G(\overline{v}) \Rightarrow \phi_2(\overline{f}(\overline{v}))$$

System leads from ϕ_1 to ϕ_2

A system S leads from ϕ_1 to ϕ_2 if every event evt in S leads from ϕ_1 to ϕ_2

• When S leads from ϕ_1 to ϕ_2 is provable, we write

Invariance Rules (1/2)

$$\frac{\vdash \mathit{init}(\overline{v}) \Rightarrow \phi}{\vdash S \, \mathsf{leads} \, \mathsf{from} \, \phi \, \mathsf{to} \, \phi} \quad \mathsf{INV}_{\mathsf{induct}}$$

Counter $\vdash \Box c \in 0..5$

```
system Counter events
```

variables
$$c\in\mathbb{Z}$$

inc
$$\hat{=}$$
 $c \neq 5 \longrightarrow c := c + 1$

initially
$$c = 0$$
 dec $\hat{=}$ $c > 3 \longrightarrow c := c - 1$

- Initialisation: $\vdash c = 0 \implies c \in 0...5$
- inc: $c \in 0..5 \land c \neq 5 \Rightarrow c+1 \in 0..5$
- dec: $c \in 0...5 \land c > 3 \Rightarrow c 1 \in 0...5$

Invariance Rules (1/2)

$$\frac{\vdash \mathit{init}(\overline{v}) \Rightarrow \phi}{\vdash S \, \mathsf{leads} \, \mathsf{from} \, \phi \, \mathsf{to} \, \phi}$$
$$S \vdash \Box \phi$$
 INV_{induct}

Counter $\vdash \Box c \in 0..5$

```
system Counter events
```

initially
$$c = 0$$
 dec $\hat{=}$ $c > 3 \longrightarrow c := c - 1$

• Initialisation:
$$\vdash c = 0 \implies c \in 0..5$$

• inc:
$$c \in 0...5 \land c \neq 5 \Rightarrow c+1 \in 0...5$$

• dec:
$$c \in 0...5 \land c > 3 \Rightarrow c - 1 \in 0...5$$

Eidgenössische Technische mochsonuse zunen Swiss Federal Institute of Technology Zurich INFORMATION SECURITY

Invariance Rules (1/2)

Counter $\vdash \Box c \in 0..5$

system Counter events variables
$$c \in \mathbb{Z}$$
 inc $\widehat{=}$ $c \neq$

variables
$$c \in \mathbb{Z}$$
inc $\hat{=}$ $c \neq 5 \longrightarrow c := c+1$ initially $c = 0$ dec $\hat{=}$ $c > 3 \longrightarrow c := c-1$

- Initialisation: $\vdash c = 0 \implies c \in 0..5$
- inc: $c \in 0..5 \land c \neq 5 \Rightarrow c+1 \in 0..5$
- dec: $c \in 0 ... 5 \land c > 3 \Rightarrow c 1 \in 0 ... 5$

12 / 29

Invariance Rules (2/2)

$$\begin{array}{c} \vdash \phi_2 \Rightarrow \phi_1 \\ \hline \mathcal{S} \vdash \Box \phi_2 \\ \hline \mathcal{S} \vdash \Box \phi_1 \end{array} \quad \textbf{INV}_{\textbf{theorem}}$$

Counter $\vdash \Box c \leq 6$

Choose ϕ_2 to be $c \in 0...5$

 $\bullet \vdash c \in 0...5 \Rightarrow c \leq 6$

• Counter $\vdash \Box c \in 0..5$

Invariance Rules (2/2)

$$\begin{array}{c|c} \vdash \phi_2 \Rightarrow \phi_1 \\ \hline S \vdash \Box \phi_2 \\ \hline S \vdash \Box \phi_1 \end{array} \quad \text{INV}_{\text{theorem}}$$

Counter \vdash □ *c* \le 6

Choose ϕ_2 to be $c \in 0 ... 5$.

$$\bullet \vdash c \in 0..5 \Rightarrow c \leq 6$$

• Counter
$$\vdash \Box c \in 0...5$$

Invariance Rules (2/2)

$$\begin{array}{c|c} \vdash \phi_2 \Rightarrow \phi_1 \\ \hline S \vdash \Box \phi_2 \\ \hline S \vdash \Box \phi_1 \end{array} \quad \text{INV}_{\text{theorem}}$$

Counter \vdash □ *c* \le 6

Choose ϕ_2 to be $c \in 0 ... 5$.

- \bullet \vdash $c \in 0..5 \Rightarrow c \leq 6$
- Counter $\vdash \Box c \in 0..5$

Proof Tools (2 of 3)

Convergence

- Let ϕ be a state formula.
- A trace is said to be convergent when φ holds if it does not end with an infinite sequences of states satisfying φ.
- System S is said to be convergent when φ holds if all its traces are convergent when φ holds.
- When the above fact is provable, we denote it as

$$\vdash S \downarrow \phi$$

Technique

- For system *S* with events $\operatorname{evt}_i = G_i(\overline{v}) \longrightarrow \overline{v} := \overline{f}_i(\overline{v})$
- Give a integer variant $V(\overline{v})$
- S converges when φ holds if for all events evt_i of S
 - $\phi(\overline{v}) \wedge G_i(\overline{v}) \Rightarrow V(\overline{v}) \in \mathbb{N}$
 - $\phi(\overline{v}) \wedge G_i(\overline{v}) \Rightarrow V(\overline{f}_i(\overline{v})) < V(\overline{v})$

Proof Tools (3 of 3)

Deadlock-freeness

- Let ϕ be a state formula.
- System S is deadlock-free when φ holds if there exists an enabled event of S when φ holds.
- When the above fact is provable, we denote it as
 - \vdash *S* is deadlock-free when ϕ holds
- This is guaranteed by proving the following.

$$\phi(\overline{v}) \Rightarrow G_1(\overline{v}) \vee \ldots \vee G_n(\overline{v})$$

Liveness Rules (1/3)

Always Eventually

$$\begin{array}{c|c} \vdash \mathcal{S} \downarrow \neg \phi \\ \vdash \mathcal{S} \text{ is deadlock-free when } \neg \phi \text{ holds} \\ \hline \mathcal{S} \vdash \Box \diamondsuit \phi \end{array} \quad \textbf{LIVE}_{\Box \diamondsuit}$$

Counter $\vdash \sqcap \diamondsuit c > 2$

• Convergence: Using variant V = 5 - c. • $5 - c \in \mathbb{N}$ (using invariant $c \in 0 ... 5$) • inc: $\neg c \ge 2 \land c \ne 5 \Rightarrow 5 - (c + 1) < 5$ • dec: $\neg c \ge 2 \land c > 3 \Rightarrow 5 - (c - 1) < 5$

Liveness Rules (1/3)

Always Eventually

$$\frac{\vdash \mathcal{S} \downarrow \neg \phi}{\vdash \mathcal{S} \text{ is deadlock-free when } \neg \phi \text{ holds}} \quad \text{LIVE}_{\Box \diamondsuit}$$

Proof Rules

Counter $\vdash \Box \diamondsuit c \ge 2$

- Convergence: Using variant V = 5 c.
 - 5 $-c \in \mathbb{N}$ (using invariant $c \in 0...5$)
 - inc: $\neg c \ge 2 \land c \ne 5 \Rightarrow 5 (c+1) < 5 c$
 - dec: $\neg c \ge 2 \land c > 3 \Rightarrow 5 (c 1) < 5 c$
- Deadlock-free: $\neg c \ge 2 \Rightarrow c \ne 5 \lor c > 3$

Liveness Rules (1/3)

Always Eventually

$$\begin{array}{c|c} \vdash \mathcal{S} \downarrow \neg \phi \\ \hline \vdash \mathcal{S} \text{ is deadlock-free when } \neg \phi \text{ holds} \\ \hline \mathcal{S} \vdash \Box \diamondsuit \phi \end{array} \quad \textbf{LIVE}_{\Box} \diamondsuit$$

Counter $\vdash \Box \diamondsuit c \ge 2$

- Convergence: Using variant V = 5 c.
 - 5 $-c \in \mathbb{N}$ (using invariant $c \in 0...5$)
 - inc: $\neg c \ge 2 \land c \ne 5 \Rightarrow 5 (c+1) < 5 c$
 - dec: $\neg c \ge 2 \land c > 3 \Rightarrow 5 (c 1) < 5 c$
- Deadlock-free: $\neg c \ge 2 \Rightarrow c \ne 5 \lor c > 3$

16 / 29

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Liveness Rules (2/3)

$$\begin{array}{c|c} \vdash S \text{ leads from } \phi_1 \land \neg \phi_2 \text{ to } \phi_1 \lor \phi_2 \\ \hline S \vdash \Box \diamondsuit (\neg \phi_1 \lor \phi_2) \\ \hline S \vdash \Box (\phi_1 \Rightarrow \phi_1 \, \mathcal{U} \, \phi_2) \end{array} \quad \textbf{LIVE}_{\mathcal{U}}$$

Counter
$$\vdash \Box (c < 2 \Rightarrow (c < 2 \ \mathcal{U} \ c = 2))$$

• Counter leads from $c < 2 \land \neg c = 2$ to $c < 2 \lor c = 2$ equivalently Counter leads from c < 2 to $c \le 2$

• dec: $c < 2 \land c > 3 \Rightarrow c - 1 < 2$

• Eventually: $\Box \diamondsuit (\neg c < 2 \lor c = 2)$, equivalent to $\Box \diamondsuit c \ge 2$

Liveness Rules (2/3)

Counter $\vdash \Box (c < 2 \Rightarrow (c < 2 \ \mathcal{U} \ c = 2))$

- Counter leads from $c < 2 \land \neg c = 2$ to $c < 2 \lor c = 2$, equivalently Counter leads from c < 2 to $c \le 2$
 - inc: $c < 2 \land c \neq 5 \implies c + 1 \leq 2$
 - dec: $c < 2 \land c > 3 \implies c 1 \le 2$
- Eventually: $\Box \Diamond (\neg c < 2 \lor c = 2)$, equivalent to $\Box \Diamond c \ge 2$

Liveness Rules (2/3)

$$\begin{array}{c|c} \vdash S \text{ leads from } \phi_1 \land \neg \phi_2 \text{ to } \phi_1 \lor \phi_2 \\ \hline S \vdash \Box \diamondsuit (\neg \phi_1 \lor \phi_2) \\ \hline S \vdash \Box (\phi_1 \Rightarrow \phi_1 \, \mathcal{U} \, \phi_2) \end{array} \quad \textbf{LIVE}_{\mathcal{U}}$$

Counter $\vdash \Box (c < 2 \Rightarrow (c < 2 \ \mathcal{U} \ c = 2))$

- Counter leads from $c < 2 \land \neg c = 2$ to $c < 2 \lor c = 2$, equivalently Counter leads from c < 2 to $c \le 2$
 - inc: $c < 2 \land c \neq 5 \Rightarrow c+1 \leq 2$
 - dec: $c < 2 \land c > 3 \implies c 1 \le 2$
- Eventually: $\Box \Diamond (\neg c < 2 \lor c = 2)$, equivalent to $\Box \Diamond c \geq 2$

Proof Rules

Liveness Rules (3/3)

Response

$$\begin{array}{c|c} S \vdash \Box(\phi_1 \Rightarrow \phi_3) \\ \hline S \vdash \Box(\phi_3 \Rightarrow (\phi_3 \, \mathcal{U} \, \phi_2)) \\ \hline S \vdash \Box(\phi_1 \Rightarrow \Diamond \, \phi_2) \end{array} \quad \text{LIVE}_{\text{response}}$$

Counter
$$\vdash \Box (c = 0 \Rightarrow \Diamond c = 2)$$

Choose $\phi_3 = c < 2$

Liveness Rules (3/3)

Response

$$\begin{array}{c|c} S \vdash \Box(\phi_1 \Rightarrow \phi_3) \\ \hline S \vdash \Box(\phi_3 \Rightarrow (\phi_3 \cup U \phi_2)) \\ \hline S \vdash \Box(\phi_1 \Rightarrow \Diamond \phi_2) \end{array} \quad \text{LIVE}_{\text{response}}$$

Counter
$$\vdash \Box (c = 0 \Rightarrow \Diamond c = 2)$$

Choose
$$\phi_3 = c < 2$$

$$\bullet \ \square \ (c < 2 \ \Rightarrow \ (c < 2 \ \mathcal{U} \ c = 2))$$

Liveness Rules (3/3)

Response

$$\begin{array}{c|c} S \vdash \Box(\phi_1 \Rightarrow \phi_3) \\ \hline S \vdash \Box(\phi_3 \Rightarrow (\phi_3 \, \mathcal{U} \, \phi_2)) \\ \hline S \vdash \Box(\phi_1 \Rightarrow \Diamond \, \phi_2) \end{array} \quad \text{LIVE}_{\text{response}}$$

Counter
$$\vdash \Box (c = 0 \Rightarrow \Diamond c = 2)$$

Choose
$$\phi_3 = c < 2$$

$$\bullet \ \Box \ (c < 2 \ \Rightarrow \ (c < 2 \ \mathcal{U} \ c = 2))$$

Example. Reader and Writer

An execution

$$\begin{array}{c|c} \langle 0,0 \rangle \xrightarrow{\textit{write}} \langle 0,1 \rangle \xrightarrow{\textit{write}} \langle 0,2 \rangle \xrightarrow{\textit{write}} \langle 0,3 \rangle \xrightarrow{\textit{read}} \langle 1,3 \rangle \xrightarrow{\textit{read}} \langle 2,3 \rangle \xrightarrow{\textit{read}} \langle 3,3 \rangle \\ & \xrightarrow{\textit{write}} \langle 3,4 \rangle \xrightarrow{\textit{write}} \langle 3,5 \rangle \xrightarrow{\textit{read}} \langle 4,5 \rangle \xrightarrow{\textit{write}} \langle 4,6 \rangle \xrightarrow{\textit{read}} \langle 5,6 \rangle \xrightarrow{\textit{write}} \langle 5,7 \rangle. \end{array}$$

Example. Reader and Writer

```
system RdWreventsvariables r, w \in \mathbb{Z}, \mathbb{Z}read \hat{=} r \neq w \longrightarrow r := r+1initially r = 0 \land w = 0write \hat{=} w < r+3 \longrightarrow w := w+1
```

An execution

$$\begin{array}{c|c} \langle 0,0 \rangle \xrightarrow{\textit{write}} \langle 0,1 \rangle \xrightarrow{\textit{write}} \langle 0,2 \rangle \xrightarrow{\textit{write}} \langle 0,3 \rangle \xrightarrow{\textit{read}} \langle 1,3 \rangle \xrightarrow{\textit{read}} \langle 2,3 \rangle \xrightarrow{\textit{read}} \langle 3,3 \rangle \\ & \xrightarrow{\textit{write}} \langle 3,4 \rangle \xrightarrow{\textit{write}} \langle 3,5 \rangle \xrightarrow{\textit{read}} \langle 4,5 \rangle \xrightarrow{\textit{write}} \langle 4,6 \rangle \xrightarrow{\textit{read}} \langle 5,6 \rangle \xrightarrow{\textit{write}} \langle 5,7 \rangle. \end{array}$$

Example. Reader and Writer

An execution

Reader's progress

The Reader will eventually read the data that the Writer wrote.

Formalisation. First attempt

• Can we prove $RdWr \models \Box \diamondsuit r = w$?

Formalisation. Second attempt

 $RdWr \models \Box(w = K \Rightarrow \Diamond r = K)$?

20 / 29

Reader's progress

The Reader will eventually read the data that the Writer wrote.

Formalisation. First attempt

- Can we prove $RdWr \models \Box \Diamond r = w$?
 - No, the Reader might always be behind the Writer (despite progressing).

Formalisation. Second attempt

 $RdWr \models \Box(w = K \Rightarrow \Diamond r = K)$?

Reader's progress

The Reader will eventually read the data that the Writer wrote.

Formalisation. First attempt

- Can we prove $RdWr \models \Box \Diamond r = w$?
 - No, the Reader might always be behind the Writer (despite progressing).

Formalisation, Second attempt

 $RdWr \models \Box(w = K \Rightarrow \Diamond r = K)$?

Reader's progress

The Reader will eventually read the data that the Writer wrote.

Formalisation. First attempt

- Can we prove $RdWr \models \Box \Diamond r = w$?
 - No, the Reader might always be behind the Writer (despite progressing).

Formalisation. Second attempt

$$RdWr \models \Box(w = K \Rightarrow \Diamond r = K)$$
?

A Proof (1/6)

system
$$RdWr$$
eventsvariables $r, w \in \mathbb{Z}, \mathbb{Z}$ read $\widehat{=}$ $r \neq w \longrightarrow r := r+1$ initially $r = 0 \land w = 0$ write $\widehat{=}$ $w < r+3 \longrightarrow w := w+1$

EIN

Eidgenössische Technische Hochschule Zürleh
Swiss Federal Institute of Technology Zurleh

INFORMATION SECURITY

$$\begin{array}{c}
RdWr \vdash \Box (w = K \Rightarrow \Diamond r = K) \\
\hline
 & \\$$

EIN

Eidgenössische Technische Hochschule Zürleh
Swiss Federal Institute of Technology Zurleh

(1)
$$RdWr \vdash \Box(w = K \Rightarrow r \leq K)$$

$$r \leq w \Rightarrow (w = K \Rightarrow r \leq K)$$

• INV_{induct} fails, hence apply INV_{theorem} with ϕ_2 to be $r \leq w$.

$$\begin{array}{c|c} \vdash \phi_2 \Rightarrow \phi_1 \\ \hline S \vdash \Box \phi_2 \\ \hline S \vdash \Box \phi_1 \end{array} \quad \text{INV}_{\text{theorem}}$$

• INV_{induct} fails, hence apply INV_{theorem} with ϕ_2 to be $r \leq w$.

$$\begin{array}{c|c} \vdash S \text{ leads from } \phi_1 \land \neg \phi_2 \text{ to } \phi_1 \lor \phi_2 \\ \hline S \vdash \Box \diamondsuit (\neg \phi_1 \lor \phi_2) \\ \hline S \vdash \Box (\phi_1 \Rightarrow \phi_1 \, \mathcal{U} \, \phi_2) \end{array} \quad \textbf{LIVE}_{\mathcal{U}}$$

$$(2) \quad RdWr \vdash \Box(r \leq K \Rightarrow (r \leq K \ \mathcal{U} \ r = K))$$

$$\xrightarrow{\textbf{LIVE}_{\mathcal{U}}}$$

-
$$RdWr$$
 leads from $r \le K \land \neg r = K$ to $r \le K \lor r = K$ (2.1)

$$RdWr \vdash \Box \diamondsuit (\neg r \leq K \lor r = K)$$
 (2.2)

23 / 29

$$(2.1) \quad \boxed{\vdash \textit{RdWr} \text{ leads from } r \leq K \land \neg r = K \text{ to } r \leq K \lor r = K}$$

$$\frac{\text{logic}}{\vdash \textit{RdWr} \text{ leads from } r < K \text{ to } r \leq K}$$

$$\frac{\text{definition}}{r < K \land r \neq w \Rightarrow r+1 \leq K}$$

$$r < K \land w < r+1 \Rightarrow r \leq K$$

$$(2.2) \quad RdWr \vdash \Box \diamondsuit (\neg r \le K \lor r = K)$$

$$\xrightarrow{\text{logic}} \quad RdWr \vdash \Box \diamondsuit r \ge K$$

$$\xrightarrow{\text{LIVE}_{\Box} \diamondsuit} \quad \left\{ \begin{array}{c} \vdash RdWr \downarrow \neg r \ge K \\ \hline \vdash RdWr \text{ is deadlock-free when } \neg r \ge K \text{ holds} \end{array} \right. (2.2.2)$$

Use variant

$$(K - r) \times 2 + (r + 3 - w)$$

(2.2.2) definition

 $\vdash RdWr$ is deadlock-free when $\neg r > K$ holds

$$\neg r \geq K \Rightarrow r \neq w \lor w < 3 + r$$

$$(2.2.1) \qquad \begin{array}{c} \vdash RdWr \downarrow \neg r \geq K \\ \hline \vdash RdWr \downarrow r < K \end{array}$$

Use variant:

$$(K-r)\times 2+(r+3-w)$$

 $\vdash RdWr$ is deadlock-free when $\neg r \geq K$ holds

$$\neg r \geq K \Rightarrow r \neq w \lor w < 3 + r$$

Swiss Federal Institute of Yechnology Zurich

system
$$RdWr$$
eventsvariables $r, w \in \mathbb{Z}, \mathbb{Z}$ read $\hat{=}$ $r \neq w \longrightarrow r := r + 1$ initially $r = 0 \land w = 0$ write $\hat{=}$ $w < r + 3 \longrightarrow w := w + 1$

$$(2.2.1) \qquad \frac{\vdash RdWr \quad \downarrow \quad \neg r \ge K}{\vdash RdWr \quad \downarrow \quad r < K}$$

Use variant:

$$(K-r) \times 2 + (r+3-w)$$

 $\vdash RdWr$ is deadlock-free when $\neg r \geq K$ holds

$$\neg r \geq K \Rightarrow r \neq w \lor w < 3 + r$$

Endgendssische Tech. Swiss Federal Institute of Technology Zurich

system
$$RdWr$$
eventsvariables $r, w \in \mathbb{Z}, \mathbb{Z}$ read $\hat{=}$ $r \neq w \longrightarrow r := r+1$ initially $r = 0 \land w = 0$ write $\hat{=}$ $w < r+3 \longrightarrow w := w+1$

Use variant:

$$(K-r) \times 2 + (r+3-w)$$

 $\vdash RdWr$ is deadlock-free when $\neg r \ge K$ holds

$$\neg r \geq K \Rightarrow r \neq w \lor w < 3 + r$$

bidgenossische lech Swiss Federal Institute of Yechnology Zurich

26 / 29

system
$$RdWr$$
eventsvariables $r, w \in \mathbb{Z}, \mathbb{Z}$ read $\hat{=}$ $r \neq w \longrightarrow r := r+1$ initially $r = 0 \land w = 0$ write $\hat{=}$ $w < r+3 \longrightarrow w := w+1$

Use variant:

$$(K-r)\times 2+(r+3-w)$$

 $\vdash RdWr$ is deadlock-free when $\neg r \geq K$ holds

$$\neg r \geq K \Rightarrow r \neq w \lor w < 3 + r$$

tadgenossische lech. Swiss Federal Institute of Yechnology Zurich

system
$$RdWr$$
eventsvariables $r, w \in \mathbb{Z}, \mathbb{Z}$ read $\hat{=}$ $r \neq w \longrightarrow r := r+1$ initially $r = 0 \land w = 0$ write $\hat{=}$ $w < r+3 \longrightarrow w := w+1$

Use variant:

$$(K-r)\times 2+(r+3-w)$$

 $\vdash RdWr$ is deadlock-free when $\neg r > K$ holds

$$\neg r \geq K \Rightarrow r \neq w \lor w < 3 + r$$

Swiss Federal Institute of Technology Zurich

Summary

- Proof rules for certain classes of invariance and liveness properties.
- The proof rules based on the reasoning about:
 - the system leads from ϕ_1 to ϕ_2
 - the system is convergence when ϕ holds
 - the system is deadlock-free when ϕ holds.

27 / 29

Thai Son Hoang (ETH-Zürich) Proof Rules Ascona Meeting, 03/02/11

Further Directions

- Proofs become tedious when the system becomes large.
- Refinement helps to reduce the complexity.
 - Invariance properties are maintained.
 - How about liveness?
- Concurrent systems: fairness assumptions.
 - Expect some weaker rules.
 - Interaction with refinement?

For Further Reading I

Zohar Manna and Amir Pnueli. Adequate Proof Principles for Invariance and Liveness Properties of Concurrent Programs. Science of Computer Programming 4:259-289, 1984.

Zohar Manna and Amir Pnueli. Completing the Temporal Picture. Theoretical Computer Science 81(1):97-130, 1991.

