
Generic Instantiation and Tool Support

Thai Son Hoang

Institute of Information Security, ETH Zurich, Switzerland

Rodin Workshop 2013, Turku, Finland
11th June 2013

(joint work between ETH Zurich and Hitachi Ltd.)

Tackling the complexity of systems modelling

Abrial and Hallerstede (2007)
. . . modeling a large and complex computer system results in
a large and complex model. . . . proofs will be more and more
difficult to perform as models become inevitably larger and
larger.

. . . We present three techniques, refinement, decomposition,
and instantiation, that we consider indispensable for
modeling large and complex systems.

Refinement, Decomposition, and Instantiation
Current Status

• Refinement: An integral part of Event-B

• Decomposition: Shared-event / shared-variable decomposition

• Generic instantiation:
• R. Silva and M. Butler: Supporting Reuse of Event-B

Developments through Generic Instantiation. (ICFEM 2009)
• Ulyana Tikhonova at. al. (Rodin Workshop 2013) (this morning)

Refinement, Decomposition, and Instantiation
Current Status

• Refinement: An integral part of Event-B

• Decomposition: Shared-event / shared-variable decomposition

• Generic instantiation:
• R. Silva and M. Butler: Supporting Reuse of Event-B

Developments through Generic Instantiation. (ICFEM 2009)
• Ulyana Tikhonova at. al. (Rodin Workshop 2013) (this morning)

Generic Instantiation

C0 C1 Cnextends extends

M0 M1 Mnrefines refines

sees sees sees

• The development is parameterised by S and c

• Reuse model: Instantiating to S = E(T) and c = F (T ,d)

B(T ,d) ⇒ A(E(T),F (T ,d))

Generic Instantiation

(Generic) Sets S, constants c
Axioms A(S, c)

M0 M1 Mnrefines refines

sees sees sees

• The development is parameterised by S and c

• Reuse model: Instantiating to S = E(T) and c = F (T ,d)

B(T ,d) ⇒ A(E(T),F (T ,d))

Generic Instantiation

(Generic) Sets S, constants c
Axioms A(S, c)

(Specific) Sets T , constants d
Axioms B(T ,d)

Instantiation: S = E(T), c = F (T ,d)

• The development is parameterised by S and c

• Reuse model: Instantiating to S = E(T) and c = F (T ,d)

B(T ,d) ⇒ A(E(T),F (T ,d))

Instantiating Sets and Constants. An Example

Generic context

sets : MESSAGE

constants : maxsize

axioms :
finite(MESSAGE)
maxsize ∈ N1

Specific context

sets : ID, INFO

axioms :
finite(ID)
finite(INFO)

• Instantiation: MESSAGE = ID × INFO, maxsize = 3

• To be proved:
finite(ID) ∧ finite(INFO) ⇒ finite(ID × INFO) ∧ 3 ∈ N1

Instantiating Sets and Constants. An Example

Generic context

sets : MESSAGE

constants : maxsize

axioms :
finite(MESSAGE)
maxsize ∈ N1

Specific context

sets : ID, INFO

axioms :
finite(ID)
finite(INFO)

• Instantiation: MESSAGE = ID × INFO, maxsize = 3

• To be proved:
finite(ID) ∧ finite(INFO) ⇒ finite(ID × INFO) ∧ 3 ∈ N1

Instantiating Sets and Constants. An Example

Generic context

sets : MESSAGE

constants : maxsize

axioms :
finite(MESSAGE)
maxsize ∈ N1

Specific context

sets : ID, INFO

axioms :
finite(ID)
finite(INFO)

• Instantiation: MESSAGE = ID × INFO, maxsize = 3

• To be proved:
finite(ID) ∧ finite(INFO) ⇒ finite(ID × INFO) ∧ 3 ∈ N1

A Generic Instantiation Tool

A Generic Instantiation Tool

M0(S, c)

Mn(S, c)

refines
Ci

A(S, c)

sees

sees

Dj
B(T , d)

GenInst
S = E(T)

c = F (T , d)

M0(E(T),F (T , d))

Mn(E(T),F (T , d))

refines

GenInstCtx
theorems

A(E(T),F (T , d))

extends

sees

sees

generates

A Generic Instantiation Tool

M0(S, c)

Mn(S, c)

refines
Ci

A(S, c)

sees

sees

Dj
B(T , d)

GenInst
S = E(T)

c = F (T , d)

M0(E(T),F (T , d))

Mn(E(T),F (T , d))

refines

GenInstCtx
theorems

A(E(T),F (T , d))

extends

sees

sees

generates

A Generic Instantiation Tool

M0(S, c)

Mn(S, c)

refines
Ci

A(S, c)

sees

sees

Dj
B(T , d)

GenInst
S = E(T)

c = F (T , d)

M0(E(T),F (T , d))

Mn(E(T),F (T , d))

refines

GenInstCtx
theorems

A(E(T),F (T , d))

extends

sees

sees

generates

Demo

The Usefulness of Generic Instantiation
The similarity between refinement and generic instantiation

The Usefulness of Refinement
The ability to perform abstraction with state variables.

The Usefulness of Generic Instantiation
The ability to perform abstraction with sets and constants

The Usefulness of Generic Instantiation
The similarity between refinement and generic instantiation

The Usefulness of Refinement
The ability to perform abstraction with state variables.

The Usefulness of Generic Instantiation
The ability to perform abstraction with sets and constants

The Usefulness of Generic Instantiation
The similarity between refinement and generic instantiation

The Usefulness of Refinement
The ability to perform abstraction with state variables.

The Usefulness of Generic Instantiation
The ability to perform abstraction with sets and constants

Train Control Example (1)

Typical modelling style using variables

trains ⊆ TRAIN_ID
head ∈ trains→ SECTION
rear ∈ trains→ SECTION
area ∈ trains→ P(SECTION)
connection ∈ trains→ (SECTION 7→ SECTION)

Train Control Example (2)

• Trains can be represented by some abstract data type
(e.g., sequence of sections SEQUENCE).

• Operations with sequences:
• Extend head: extend ∈ SEQUENCE × SECTION 7→ SEQUENCE
• Remove rear: front ∈ SEQUENCE 7→ SEQUENCE
• Disjointness: s1 7→ s2 ∈ disjoint
• Sub-sequence: s1 7→ s2 ∈ subset

• Properties of sequences

∀s1, s2, s3 ·
s1 7→ s2 ∈ subset ∧ s2 7→ s3 ∈ disjoint ⇒ s1 7→ s3 ∈ disjoint

∀s1, s2 ·s1 7→ s2 ∈ disjoint ⇒ s2 7→ s1 ∈ disjoint

Summary

• Plug-in on sourceforge:
http://sourceforge.net/projects/gen-inst/

• Instantiation enables abstraction with models’ parameters.

• Context instantiation as a part of the development?

C0 C1 Cnextends extends

M0 M1 Mnrefines refines

sees sees sees

D0

N0refines

instantiates

sees

http://sourceforge.net/projects/gen-inst/

