
The Development of a Toolkit to Support Probabilistic B-Method
Thai Son Hoang

Introduction
B Method (B) is a formal development method that facilitates the refinement of specification to code. Our probabilistic B (pB) replaces Boolean predicates

by real valued probabilities in the range 0..1. This allows probabilistic uncertainty to be modelled.

Probabilistic choice

S p⊕ T

represents a choice between S and T in which S is taken with probability p and T is taken with probability 1 − p.

Questions?

? What is the expected running cost of a system?

? What is the reliability for a system given some information about its components?

Probability-one termination
What is termination with probability one?
Consider the following programs:

n := 2;

while n 6= 0 do n := n − 1 end
Program A: Absolute correctness

n := 1;

while n 6= 0 do n := n − 1 [] skip end

Program B: Demonic incorrectness

n := 1;

while n 6= 0 do n := n − 1 0.5⊕ skip end
Program C: Almost-certain correctness

Consider Program D:

n := 1;

while n 6= 0 do n := n − 1 p⊕ skip end
Program D

Let t be the probability of termination for Program D:

t = p + (1 − p) × t

≡ p = p × t

≡ t = 1 provided that p 6= 0

Abstract probabilistic choice substitution
Program D will still terminate with probability one without knowing the actual probability p, provided it is not 0 or 1.

n := 1;

while n 6= 0 do n := n − 1 ⊕ skip end
Program E

Consider Program E, where S ⊕ T is the abstract probabilistic choice substi-

tution between S and T . The ⊕ should be implemented by ”concrete” proba-

bilistic choices p⊕ that are bounded away from 0 and 1.

Termination with probability-one proof rules for loops
For loops, we have to denote the upper bound B for the variant and prove the following:

T1 : Invariant is established P ⇒ [init ]I

T2 : Invariant is maintained during executions G ∧ I ⇒ bbSccI

T3 : Post-condition is established on termination ¬G ∧ I ⇒ Q

T4 : Variant is a natural number (bound below) I ⇒ V ∈ N ∧ V ≤ B

T5 : Variant decreases with non-zero probability G ∧ I ⇒ [n := V ]ddSee(V < n)

Where bbScc is the substitution S with the abstract choice interpreted demonically, and ddSee is the substitution S with the abstract choice interpreted angelically.

Probabilistic invariants
Example of probabilistic Library
The following illustrates a simple library in which books are lost with probability p.

StartLoan =̂

pre booksInLibrary > 0 then

booksInLibrary := booksInLibrary − 1 ‖

loansStarted := loansStarted + 1

end

EndLoan =̂

pre loansEnded < loansStarted then

booksLost := booksLost + 1 p⊕ booksInLibrary := booksInLibrary + 1 ‖

loansEnded := loansEnded + 1

end
Invariants are replaced by expectations. For this specification, the expectation is defined by expectation clause

0 V p ∗ loansEnded − booksLost .

We can conclude that the expected number of books lost is bounded above by p ∗ loansEnded .

Proof obligations
Proof obligations are similar to those for standard specifications with the exception that the invariant is now a real-value, not a Boolean. In order to prove

that the real invariant is bounded below, we have to prove the following:

P1 : The initialisation needs to establish the lower bound of the probabilistic invariant, given the context of the machine (information about sets and con-

stants): e V [Init ]I .

P2 : The operations do not decrease the expected value of the probabilistic invariant, i.e. the expected value of the invariant after the operation is at least the

expected value before the operation: I V [Op]I .

Probabilistic specification substitution
Specification substitution

v : {A,B}, where A

and B are expectations

over the state x and

v ⊆ x . B can refer to

the original state by x0.

Probabilistic specifica-

tion substitution

The semantics of the specification v : {A , B} with respect to arbitrary post-expectation C is

given by

[v : {A , B}]C =̂ A × [x0 : = x ]

(
ux ·

(
C

Bw

))
,

where Bw =̂ B × 〈w = w0〉 (w are unchanged variables in the substitution).

This definition is constructed to extend the standard case and it satisfies the fundamental theorem.

Semantics of Probabilistic specification substitution

Fundamental theorem
Assume that S =̂ v : {A , B} .

For any program T , S v T if and only if A V [x0 := x ][S ]Bw , where Bw =̂ B×〈w = w0〉.

Probabilistic specification substitution

Terminating probabilistic specification substitution
It turns out that we need to specify that the specification does in fact terminate.

Terminating specification substitution
v : {{p, 〈Q〉}}, where p is a real expres-

sion between 0 and 1 and Q is a predi-

cate over the state x and v ⊆ x . Q can

refer to the original state by x0.

Probabilistic specification substitution

The semantics of the specification v : {{p, 〈Q〉}} is given as:

v : {{p, 〈Q〉}} ≡ v : {1 , 〈Q〉} p⊕ v : {1 , 1} ,

where v : {1 , 1} is the program to specify termination.

Semantics of Probabilistic specification substitution

Fundamental theorem
Assume that S =̂ v : {{p, 〈Q〉}} .

For any program T , S v T if and only if v : {p , 〈Q〉} v T and v : {1 , 1} v T (i.e. T terminates).

Probabilistic specification substitution

Conclusion and future work
Work done
The extended B (pB) and modified B-Toolkit supports the fol-

lowing:

? Termination with probability-one;

? Probabilistic invariant;

? Probabilistic specification substitution;

? Fundamental theorem for refinement;

? Probabilistic loops.

Future work
More research needs to be done on:

? Specification with multiple expectations;

? Fundamental theorem for multiple expectation specification;

? General data refinement for probabilistic programs.

This project was supported by the Australian Research Council under the large grant A00103115.

THE UNIVERSITY OF
NEW SOUTH WALES
S Y D N E Y · A U S T R A L I A

School of Computer Science and Engineering, UNSW, Sydney, Australia
email: htson@cse.unsw.edu.au web: http://www.cse.unsw.edu.au/∼htson


