Almost certain termination and Rabin’s Choice-Coordination
algorithm

Annabelle Mclver
Carroll Morgan
Thai Son Hoang

Zhendong Jin
Ken Robinson

May 30, 2003

1 Challenge and aims

e Implement termination with probability one into the B-Toolkit.
e Specify the Choice-Coordination problem and implement Rabin’s solution.
e Generate and prove the obligations for the development.

2 What is termination with probability one?

Consider the following programs:

n:=2; n:=1; n:=1;

WHILE n # 0 DO | WHILE n # 0 DO WHILE n # 0 DO
ni=n-—1 n:=n-1[|SKIP n:=n—1¢5®SKIP

END END END

Program A | Program B | Program C

e Program A: Absolute correctness.
e Program B: Demonic incorrectness.

e Program C: Almost-certain correctness.

Consider Program D:

n:=1;

WHILE n # 0 DO
n:=n—-1,0SKIP

END

Program D

Let ¢ be the probability of termination:

t=p+(1—-p) xt
p=pxt
t = 1 provided that p #0

3 Abstract probabilistic choice substitution

Program D will still terminate with probability one without knowing the actual probability p.
Consider Program E:
n:=1;
WHILE n # 0 DO
n:=n—1®&SKIP
END
Program E

S @& T is the abstract probability choice substitution between S and 7. The & should be imple-
mented by ”concrete” probabilistic choices ,@® that are bounded away from 0 and 1.

4 Proof rules for loops

WHILE G DO
S
END

with INVARIANT I and VARIANT V.
e Partial correctness condition: This can be proved using INVARIANT I. If the loop termi-
nates, it is correct.

e Total correctness condition: The loop is partially correct and terminates. This can be proved
using INVARIANT [and VARIANT V.

4.1 Original proof rules for loops

e Partial correctness condition: The INVARIANT I is maintained during the loop.
e Total correctness condition:

— The VARIANT V is bounded below.
— For every iteration of the loop, the VARIANT V strictly decreases.

4.2 New proof rules for loops

e Partial correctness condition: The INVARIANT T is maintained during the loop. All abstract
probabilistic choices @ are interpreted demonically.

e Total correctness condition:

— The VARIANT V is bounded below.
— The VARIANT V is bounded above.

— For every iteration of the loop, the VARIANT V decreases with a non-zero probability,
i-e. treating all abstract probabilistic choices angelically.

5 Choice-Coordination problem

Originally, the prolem was explained in terms of different processes try to decided on one possible
outcome.

Rabin’s algorithm provides a symmetric, distributed solution for the problem.

There is a group of tourists trying to decide between going to the church (which is on the "left”)
and the museum (which is on the "right”). Every tourist runs the same algorithm independently.

6 Rabin’s algorithm
The actual algorithm as follows:
e FEach tourist carries a notepad, on which he will write various numbers. Originally, number
0 appears on all the notepads.
e There are two noticeboard outside, “left” and “right”, on which various messages will be

written. Originally, number 0 appears on each board.

Each tourist (with number k on his pad) will alternate between the two places. Every time he
goes to a place, if the noticeboard displays “here” then he goes inside, otherwise, it will display a
number (K):

e if k < K — The tourist writes K on his notepad in place of k, and goes to the other place.

e if K > K — The tourist writes “here” on the noticeboard (erasing K), and goes inside.

e if k = K — The tourist chooses K’ = K + 2, and then flips a coin: if it comes up heads, he
changes the value of K' to the “conjugate” value of K'. He then writes K’ on the noticeboard
and on his pad before going to the other place.

This algorithm terminates with probability 1. !

I Note: Conjugate(n) is n + 1 if n is even, and n — 1 if n is odd.

7 The specification

MACHINE Rabin (maxtotal)
CONSTRAINTS maxtotal < 2147/83646

OPERATIONS

lin , rin +— Decide (lout , rout) =
PRE lout € N A rout € N A lout + rout < maztotal THEN
CHOICE lin := lout + rout || rin := 0
OR rin := lout + rout || lin:=0
END
END

END

8 The refinement using bags

We will use bags to model the tourists inside and outside the two places. In the first refinement
we will only be concerned with the number of items in each bag.

REFINEMENT RabinR

REFINES Rabin

SEES FBag-ctz

INCLUDES [lin . FBag , rin . FBag , lout . FBag , rout . FBag

OPERATIONS

lin , rin +— Decide (lout , rout) =
BEGIN
ANY flinbag , frinbag , floutbag , froutbag WHERE
flinbag € Bag A frinbag € Bag A floutbag € Bag A froutbag € Bag A
dom (flinbag) € F (N) A dom (frinbag) € F (N) A
dom (floutbag) € F (N') A dom (froutbag) e F (N) A
floutbag = {} A froutbag = {} A
(bagSize (flinbag) = 0 V bagSize (frinbag) = 0) A
bagSize (flinbag) + bagSize (frinbag) = lout + rout
THEN
lin . SetToBag (flinbag) || rin . SetToBag (frinbag) ||
lout . SetToBag (floutbag) || rout . SetToBag (froutbag)
END ;
lin <— lin . Size || rin <— rin . Size
END

END

9 The implementation

IMPLEMENTATION RabinRI
REFINES RabinR

SEES Bool TYPE , FBag_ctz , Math
IMPORTS RabinChoice (maxtotal)

OPERATIONS

lin , rin +— Decide (lout , rout) =
VAR sizelout , sizerout 1IN
InitState (lout , rout)
sizelout <— loutSize 5 sizerout «— routSize ;
WHILE sizelout # 0 V sizerout # 0 DO
UpdatePad ;
sizelout <— loutSize § sizerout <— routSize
BOUND 9 x total
VARIANT
rEqual (LL , RR) x 8 x total + 3 X total — (
3 x (bagSize (linbag) + bagSize (rinbag)) +
(bagGreat (loutbag , LL) + bagGreat (routbag , LL)) +
(bagGreat (loutbag , RR) + bagGreat (routbag , RR)))
INVARIANT
bagSize (loutbag) = sizelout A bagSize (routbag) = sizerout A
total = lout + rout

END ;
lin <— linSize 5 rin <— rinSize
END

END

10 Supporting the implementation

MACHINE RabinChoice (maztotal)

CONSTRAINTS maztotal < 2147483646

SEES Math , Bool_ TYPE , FBag_ctx

INCLUDES RabinState (maxtotal)

PROMOTES IlinSize , rinSize , loutSize , routSize , InitState
INVARIANT

LL — RR € dom (rEqual) A
= (Congugate (LL) € ran (routbag)) A = (Conjugate (RR) € ran (loutbag))

OPERATIONS

UpdatePad =
PRE bagSize (loutbag) # 0 V bagSize (routbag) # 0 THEN
SELECT bagSize (louthag) # 0 THEN
ANY |l WHERE [l € ran (loutbag) THEN
SELECT linbag = {} All < LL THEN MoveToRight (Il , LL)
WHEN bagSize (linbag) # 0 V Il > LL THEN MovelnLeft (I1)
WHEN linbag = {} All = LL THEN
LET newLL BE newLL=LL+ 2 1IN
ACHOICE MoveToRight (Il , newLL)
OR MoveToRight (Il , Conjugate (newLL))
END
END
END
END
WHEN bagSize (routbag) # 0 THEN
ANY r WHERE 17 € ran (routbhag) THEN
SELECT bagSize (rinbag) = 0 A rr < RR THEN MoveToLeft (rr , RR)
WHEN bagSize (rinbag) # 0 V rr > RR THEN MovelnRight (rr)
WHEN bagSize (rinbag) = 0 A rr = RR THEN
LET newRR BE newRR=RR+ 2 IN
ACHOICE MoveToLeft (rr , newRR)
OR MoveToLeft (rr , Conjugate (newRR))
END
END
END
END
END
END

END

MACHINE RabinState (maztotal)
CONSTRAINTS maztotal < 2147483646
SEES
Math , FBag_ctx
INCLUDES lin . FBag , rin . FBag , lout . FBag , rout . FBag
PROMOTES
lin . Size , rin . Size , lout . Size , rout . Size , lout . Anyelem , rout . Anyelem
VARIABLES
total , LL , RR
INVARIANT

total € N A
total = bagSize (linbag) + bagSize (rinbag) +
(bagSize (loutbag) + bagSize (routbag)) A
LLe NARReNA
mazInBag (linbag) < RR A mazInBag (loutbag) < RR A
mazInBag (rinbag) < LL A maxInBag (routbag) < LL A
(bagSize (linbag) # 0 = mazInBag (linbag) > LL) A
(bagSize (rinbag) # 0 = mazInBag (rinbag) > RR) A
3 X total >
3 x (bagSize (linbag) + bagSize (rinbag)) +
(bagGreat (loutbag , LL) + bagGreat (routbag , LL)) +
(bagGreat (loutbag , RR) + bagGreat (routbag , RR))

INITIALISATION
total == 0 || LL,RR:=10,0

OPERATIONS

InitState (lout , rout) =
PRE lout € N A rout € N A lout + rout < maztotal THEN
lin . SetToBag ({}) || rin . SetToBag ({}) ||
lout . SetToBag ((1 ..lout) x {0 }) || rout. SetToBag ((1 .. rout) x {0 }) |
total := lout + rout || LL:=0 || RR:=10
END ;

MovelnLeft (1l) =
PRE [l € ran (loutbag) A (bagSize (linbag) # 0 V Il > LL) THEN
lout . Takelem (1) || lin . Addelem (1)
END ;

MovelInRight () =
PRE rr € ran (routbag) A (bagSize (rinbag) # 0 V rr > RR) THEN

rout . Takelem (rr) || rin . Addelem (rr)
END

MoveToLeft (rr, mm) =
PRE rr € ran (routbag) A mm € N; A bagSize (rinbag) = 0 A RR < mm THEN
rout . Takelem (rr) || lout . Addelem (mm) || RR := mm
END ;
MoveToRight (Il , mm) =
PRE Il € ran (loutbag) A mm € Ny A bagSize (linbag) = 0 A LL < mm THEN

lout . Takelem (Il) || rout . Addelem (mm) || LL := mm
END ;

Il « LLVal = 1[l:=LL;
rr <— RRVal = 7rr:=RR
END

