Almost certain termination and Rabin's Choice-Coordination algorithm

Annabelle McIver Carroll Morgan Thai Son Hoang Zhendong Jin Ken Robinson

May 30, 2003

1 Challenge and aims

- Implement termination with probability one into the B-Toolkit.
- Specify the Choice-Coordination problem and implement Rabin's solution.
- Generate and prove the obligations for the development.

2 What is termination with probability one?

Consider the following programs:

n := 2;	n := 1;	n := 1;
WHILE $n \neq 0$ DO		WHILE $n \neq 0$ DO
n := n - 1	$n := n - 1 \parallel SKIP$	$n := n - 1_{0.5} \oplus SKIP$
END	END	END
Program A	Program B	Program C

- Program A: Absolute correctness.
- Program B: Demonic incorrectness.
- Program C: Almost-certain correctness.

Consider Program D:

$$n := 1;$$
WHILE $n \neq 0$ DO
$$n := n - 1_p \oplus SKIP$$
END
Program D

Let t be the probability of termination:

```
t = p + (1 - p) \times t
\equiv p = p \times t
\equiv t = 1 \text{ provided that } p \neq 0
```

3 Abstract probabilistic choice substitution

Program D will still terminate with probability one without knowing the actual probability p.

Consider Program E:

```
n := 1;
WHILE n \neq 0 DO
n := n - 1 \oplus SKIP
END
Program E
```

 $S \oplus T$ is the abstract probability choice substitution between S and T. The \oplus should be implemented by "concrete" probabilistic choices $_{p}\oplus$ that are bounded away from 0 and 1.

4 Proof rules for loops

```
WHILE G DO
S
END
```

with INVARIANT I and VARIANT V.

- Partial correctness condition: This can be proved using INVARIANT I. If the loop terminates, it is correct.
- \bullet Total correctness condition: The loop is partially correct and terminates. This can be proved using INVARIANT I and VARIANT V.

4.1 Original proof rules for loops

- Partial correctness condition: The INVARIANT I is maintained during the loop.
- Total correctness condition:
 - The VARIANT V is bounded below.
 - For every iteration of the loop, the VARIANT V strictly decreases.

4.2 New proof rules for loops

- Partial correctness condition: The INVARIANT I is maintained during the loop. All abstract probabilistic choices \oplus are interpreted demonically.
- Total correctness condition:
 - The VARIANT V is bounded below.
 - The VARIANT V is bounded above.
 - For every iteration of the loop, the VARIANT V decreases with a non-zero probability, i.e. treating all abstract probabilistic choices angelically.

5 Choice-Coordination problem

Originally, the prolem was explained in terms of different processes try to decided on one possible outcome.

Rabin's algorithm provides a symmetric, distributed solution for the problem.

There is a group of tourists trying to decide between going to the church (which is on the "left") and the museum (which is on the "right"). Every tourist runs the same algorithm independently.

6 Rabin's algorithm

The actual algorithm as follows:

- Each tourist carries a notepad, on which he will write various numbers. Originally, number 0 appears on all the notepads.
- There are two noticeboard outside, "left" and "right", on which various messages will be written. Originally, number 0 appears on each board.

Each tourist (with number k on his pad) will alternate between the two places. Every time he goes to a place, if the noticeboard displays "here" then he goes inside, otherwise, it will display a number (K):

- if k < K The tourist writes K on his notepad in place of k, and goes to the other place.
- if k > K The tourist writes "here" on the noticeboard (erasing K), and goes inside.
- if k = K The tourist chooses K' = K + 2, and then flips a coin: if it comes up heads, he changes the value of K' to the "conjugate" value of K'. He then writes K' on the noticeboard and on his pad before going to the other place.

This algorithm terminates with probability 1. ¹

¹Note: Conjugate(n) is n+1 if n is even, and n-1 if n is odd.

7 The specification

8 The refinement using bags

END

We will use bags to model the tourists inside and outside the two places. In the first refinement we will only be concerned with the number of items in each bag.

```
REFINEMENT RabinR
REFINES Rabin
SEES FBag\_ctx
INCLUDES lin . FBag , rin . FBag , lout . FBag , rout . FBag
OPERATIONS
   lin, rin \leftarrow Decide ( lout, rout ) =
      BEGIN
          ANY
                   flinbag, frinbag, floutbag, froutbag WHERE
             flinbag \in Bag \land frinbag \in Bag \land floutbag \in Bag \land froutbag \in Bag \land
             dom (flinbag) \in \mathbb{F} (\mathbb{N}) \wedge dom (frinbag) \in \mathbb{F} (\mathbb{N}) \wedge
             dom (floutbag) \in \mathbb{F} (\mathbb{N}) \wedge dom (froutbag) \in \mathbb{F} (\mathbb{N}) \wedge
             floutbag = \{\} \land froutbag = \{\} \land
             (bagSize (flinbag) = 0 \lor bagSize (frinbag) = 0) \land
             bagSize (flinbag) + bagSize (frinbag) = lout + rout
         THEN
             lin . SetToBag (flinbag) || rin . SetToBag (frinbag) ||
             lout . SetToBag (floutbag) || rout . SetToBag (froutbag)
         END ;
          lin \leftarrow lin . Size \parallel rin \leftarrow rin . Size
      END
```

9 The implementation

END

```
IMPLEMENTATION RabinRI
REFINES RabinR
SEES Bool\_TYPE, FBag\_ctx, Math
IMPORTS RabinChoice (maxtotal)
OPERATIONS
   lin, rin \leftarrow Decide ( lout, rout ) =
      {f VAR} sizelout, sizerout {f IN}
         InitState ( lout , rout );
         sizelout \leftarrow loutSize; sizerout \leftarrow routSize;
         WHILE sizelout \neq 0 \lor sizerout \neq 0 DO
            UpdatePad;
            sizelout \longleftarrow loutSize; sizerout \longleftarrow routSize
         BOUND 9 \times total
         VARIANT
            rEqual\ (LL\ ,RR\ )\times 3\times total + 3\times total - (
               3 \times (bagSize(linbag) + bagSize(rinbag)) +
               (bagGreat (loutbag, LL) + bagGreat (routbag, LL)) +
               (bagGreat (loutbag, RR) + bagGreat (routbag, RR)))
         INVARIANT
            bagSize \ (\ loutbag\ ) = sizelout \ \land \ bagSize \ (\ routbag\ ) = sizerout \ \land
            total = lout + rout
         END ;
         lin \longleftarrow linSize; rin \longleftarrow rinSize
      END
```

10 Supporting the implementation

```
MACHINE RabinChoice (maxtotal)
CONSTRAINTS maxtotal < 2147483646
SEES Math, Bool\_TYPE, FBag\_ctx
INCLUDES RabinState ( maxtotal )
PROMOTES linSize, rinSize, loutSize, routSize, InitState
INVARIANT
   LL \mapsto RR \in \text{dom} ( rEqual ) \land
  \neg \; (\; \textit{Conjugate} \; (\; \textit{LL} \;) \in \mathsf{ran} \; (\; \textit{routbag} \;) \;) \; \land \neg \; (\; \textit{Conjugate} \; (\; \textit{RR} \;) \in \mathsf{ran} \; (\; \textit{loutbag} \;) \;)
OPERATIONS
   bagSize \ (loutbag) \neq 0 \lor bagSize \ (routbag) \neq 0 THEN
                     bagSize (loutbag) \neq 0 THEN
           ANY
                    ll WHERE ll \in ran (loutbag) THEN
                         linbag = \{\} \land ll < LL \text{ THEN}
                                                            MoveToRight (ll, LL)
              SELECT
              WHEN
                         bagSize (linbag) \neq 0 \lor ll > LL  THEN MoveInLeft (ll)
              WHEN
                         linbag = \{\} \land ll = LL \quad \mathbf{THEN}
                         newLL BE newLL = LL + 2 IN
                 LET
                    ACHOICE
                                 MoveToRight (ll, newLL)
                          MoveToRight ( ll , Conjugate ( newLL ) )
                    \mathbf{OR}
                    END
                 END
              END
           END
         WHEN
                   bagSize (routbag) \neq 0 THEN
           ANY rr WHERE rr \in ran(routbag) THEN
                          bagSize (rinbag) = \theta \wedge rr < RR THEN
                                                                        MoveToLeft (rr, RR)
              SELECT
              WHEN
                         bagSize (rinbag) \neq 0 \lor rr > RR THEN
                                                                       MoveInRight ( rr )
              WHEN
                         bagSize (rinbag) = \theta \wedge rr = RR THEN
                         newRR BE
                                       newRR = RR + 2 IN
                 LET
                    ACHOICE
                                  MoveToLeft ( rr , newRR )
                           MoveToLeft ( rr , Conjugate ( newRR ) )
                    END
                 END
              END
           END
        END
     END
END
```

```
{\bf MACHINE} \quad \textit{RabinState} \ ( \ \textit{maxtotal} \ )
```

CONSTRAINTS $maxtotal \le 2147483646$

SEES

Math , $FBag_ctx$

INCLUDES lin . FBag , rin . FBag , lout . FBag , rout . FBag

PROMOTES

lin . Size , rin . Size , lout . Size , rout . Size , lout . Anyelem , rout . Anyelem

VARIABLES

total , LL , RR

INVARIANT

```
total \in \mathbb{N} \land \\ total = bagSize \ (\ linbag\ ) + bagSize \ (\ rinbag\ ) + \\ (\ bagSize \ (\ loutbag\ ) + bagSize \ (\ routbag\ )) \land \\ LL \in \mathbb{N} \land RR \in \mathbb{N} \land \\ maxInBag \ (\ linbag\ ) \leq RR \land maxInBag \ (\ loutbag\ ) \leq RR \land \\ maxInBag \ (\ rinbag\ ) \leq LL \land maxInBag \ (\ routbag\ ) \leq LL \land \\ (\ bagSize \ (\ linbag\ ) \neq 0 \Rightarrow maxInBag \ (\ linbag\ ) > LL\ ) \land \\ (\ bagSize \ (\ rinbag\ ) \neq 0 \Rightarrow maxInBag \ (\ rinbag\ ) > RR\ ) \land \\ 3 \times total \geq \\ 3 \times (\ bagSize \ (\ linbag\ ) + bagSize \ (\ rinbag\ )) + \\ (\ bagGreat \ (\ loutbag\ , LL\ ) + bagGreat \ (\ routbag\ , LL\ )) + \\ (\ bagGreat \ (\ loutbag\ , RR\ ) + bagGreat \ (\ routbag\ , RR\ ))
```

INITIALISATION

```
total := \theta \parallel LL, RR := \theta, \theta
```

OPERATIONS

```
InitState ( lout , rout ) \triangleq
              lout \in \mathbb{N} \land rout \in \mathbb{N} \land lout + rout \leq maxtotal THEN
          lin . SetToBag ( \{ \} ) \parallel rin . SetToBag ( \{ \} ) \parallel
         lout . SetToBag((1..lout) \times \{0\}) \parallel rout . SetToBag((1..rout) \times \{0\}) \parallel
          total := lout + rout \parallel LL := 0 \parallel RR := 0
      END
              ;
    MoveInLeft (ll) \hat{=}
      PRE ll \in ran(loutbag) \land (loutbag) \neq 0 \lor ll > LL) THEN
          lout . Takelem ( ll ) || lin . Addelem ( ll )
      END ;
    MoveInRight (rr) \hat{=}
      PRE rr \in ran(routbag) \land (bagSize(rinbag) \neq 0 \lor rr > RR) THEN
         rout . Takelem ( rr ) || rin . Addelem ( rr )
      END ;
    MoveToLeft (rr, mm) =
      PRE rr \in \text{ran } (routbag) \land mm \in \mathbb{N}_1 \land bagSize (rinbag) = \theta \land RR \leq mm THEN
          rout . Takelem ( rr ) \parallel lout . Addelem ( mm ) \parallel RR := mm
      END ;
    MoveToRight (ll, mm) =
      PRE ll \in ran (loutbag) \land mm \in \mathbb{N}_1 \land bagSize (linbag) = 0 \land LL \leq mm THEN
          lout . Takelem ( ll ) \parallel rout . Addelem ( mm ) \parallel LL := mm
      END ;
   ll \leftarrow LLVal = ll := LL;
   rr \longleftarrow \mathbf{RRVal} \ \widehat{=} \ rr := RR
END
```