Probabilistic invariants for probabilistic machines

Annabelle Mclver
Carroll Morgan
Thai Son Hoang

Zhendong Jin
Ken Robinson

May 30, 2003

1 What is pGSL?

e probabilistic Generalised Substitution Language (pGSL) is the extension of Generalised Sub-
stitution Language (GSL).

e In pGSL, predicates (functions from state to Boolean) has been widened to functions from
state to real number.

e For consistency with Boolean logic, false —0, true — 1. In other words, it acts over
‘expectations’ rather than predicates.

e Notationally, we have kept the predicate as much as possible.

e Example of an expression in pGSL:

2 New pB construct

e probabilistic Generalised Substitution Language (pGSL): Probabilistic choice substitution
S,eT.

e probabilistic AMN (pAMN):

PCHOICE p OF
S

OR
T

END

3 Example of probabilistic Library
Consider the specification of a simple Library in Fig. 1.

e The state of the machine contains three variables, namely booksInLibrary, loansStarted
and loansEnded booksLost representing: the number of books in the library; the number of
book loans initiated by the library; the number of book loans completed by the library; and
the number of books lost, respectively.

e Initially, booksInLibrary has value total Books (a parameter of the machine). Both loansStarted
and loansEnded are assigned 0 initially.

e The StartLoan operation (for starting a loan of a book) has a precondition that there are
books available for loan; it decrements the books held and increments the book loans.

e The loss of a book will be modelled by the EndLoan operation so that, with some probability
pp, the user fails to return a book to the library; in that case the effect of EndLoan is to
consider the book lost. In this operation, the chance of a book being lost is pp — where
booksInLibrary fails to increase; the other 1—pp of the time, booksInLibrary increases.

e The first term of the invariant on the left-hand side is the number of books not in the on-loan
database; the second term is the number of books that are in the on-loan database.

We have two operations that can modify the state of the machine, StartLoan, for starting a loan of
a book, and EndLoan, for ending the loan of a book. The StartLoan operation has a precondition
that there are books available for loan; it decrements the books held and increments the book
loans.

The loss of a book will be modelled by the EndLoan operation so that, with some probability pp,
the user fails to return a book to the library; in that case the effect of EndLoan is to consider the
book lost. The PCHOICE construct is the probabilistic AMN (pAMN) counterpart of ,®. In
this operation, the chance of a book being lost is pp — where booksInLibrary fails to increase;
the other 1—pp of the time, booksInLibrary increases. The variable booksLost is introduced to
record the number of books lost and is initialised to 0.

The first term of the invariant on the left-hand side is the number of books not in the on-loan
database; the second term is the number of books that are in the on-loan database. This specifica-
tion is simply modelling the effect of loss, without attempting to identify where it occurs. In prac-
tice, loss could be the consequence of a faulty (unreliable) loan or return operation. At some point,
“loss” needs to be recognised and that is modelled by the probabilistic booksLost:=booksLost+ 1.

A new EXPECTATION clause is introduced into pA MN for declaring the probabilistic invariant.
It gives an expression V over the program variables, denoting the random-variable invariant,
and an initial expression e which is evaluated over the program variables when the machine is
initialised. We write it e = V. Its interpretation is that the expected value of V', at any point,
is always at least the value of e initially. The value of e can be depended on the context of the
machine (machine’s parameters, constants, etc.) but often e will just be a constant.

When we claim that the expectation V' = pp x loansEnded — booksLost is an expected-value
invariant for this machine, we mean that, if we check the value of V' many times during the
running operations of the Library, then the average of our observation of V' will be at least 0.
That’s the mathematical meaning of our probabilistic invariant. From that we can conclude
for our probabilistic library machine, the expected number of books lost (value of booksLost) is
bounded above by ppxloansEnded.

MACHINE ProbabilisticLibrary (totalBooks)
SEES Real TYPE
CONSTANTS pp
PROPERTIES pp € REALApp <vreal (1)Areal (0)<pp
VARIABLES

booksInLibrary , loansStarted , loansEnded , booksLost
INVARIANT

booksInLibrary € N A loansStarted € N A loansEnded € N A booksLost € N A
loansEnded < loansStarted N
booksInLibrary + booksLost + loansStarted — loansEnded = totalBooks

EXPECTATIONS
real (0) = pp X real (loansEnded) — real (booksLost)
INITIALISATION

booksInLibrary , loansStarted , loansEnded , booksLost := totalBooks , 0 , 0 , 0

OPERATIONS

StartLoan =
PRE booksInLibrary > 0 THEN
booksInLibrary := booksInLibrary — 1 ||
loansStarted := loansStarted + 1
END ;

EndLoan =
PRE loansEnded < loansStarted THEN
PCHOICE pp OF
booksLost := booksLost + 1

OR
booksInLibrary := booksInLibrary + 1
END I
loansEnded := loansEnded + 1
END

END

Figure 1: Simple probabilistic Library

4 Proof obligation generator

Proof obligations are generated similarly to standard specification with the exception that the
invariant is now a real-value, not a Boolean. In order to prove that the real invariant is bounded
below, we have to prove the following:

P1: The initialisation needs to establish the lower bound of the probabilistic invariant, given the
context of the machine (information about sets and constants)

e = [Init]I .

P2: The operations do not decrease the expected value of the probabilistic invariant, i.e. the
expected value of the invariant after the operation is at least the expected value before the
operation

I=[0pI.

