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Abstract

We present a formal development in Event-B of a distributed topology discovery algo-
rithm. Distributed topology discovery is at the core of several routing algorithms and is
the problem of each node in a network discovering and maintaining information on the
network topology. One of the key challenges in developing this algorithm is specify-
ing the problem itself. We provide a specification that includes both safety properties,
formalizing invariants that should hold in all system states, and liveness properties that
characterize when the system reaches stable states. We prove these properties by ap-
propriately combining proofs of invariants, event refinement, event convergence, and
deadlock freedom. The combination of these features is novel and should be useful for
formalizing and developing other kinds of semi-reactive systems, which are systems
that react to, but do not modify, their environment. Our entire development has been
formalized and machine-checked using the Rodin tool.
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1. Introduction

We report here on a case study in critical system development using refinement. In
our case study, we use the Event-B formalism [2] to specify and formally develop an
algorithm for topology discovery, which is a problem arising in network routing. We
proceed by constructing a series of models, where the initial models specify the system
requirements and the final model describes the resulting system. We use the Rodin tool
for Event-B [3] to prove that each successive model refines the previous one, whereby
the resulting system is correct by construction.

The problem we examine is interesting for several reasons. First, it is a significant
case study in specifying and developing distributed graph and routing algorithms. In
routing protocols such as link-state routing [26], which is the basis for protocols such
as OSPF [22, 21] and OLSR [24], every router in the network must build a graph
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representing the network topology. In this graph (also called a link-state database), the
vertices represent routing nodes and there is an edge from node a to node b if a can
directly transmit data to b. Each node uses this graph to determine the shortest path to
all other nodes, from which it constructs its routing table, which describes the best next
hop to each destination. The main challenge in topology discovery is to ensure that the
distributed construction of these graphs, as well as their updates after network changes,
proceeds correctly. Roughly speaking, this means that whenever a source node sends
a packet to a reachable destination, and the packet is forwarded hop-by-hop using the
local routing tables, then the packet actually reaches its destination. While there has
been some work on using model checkers and theorem provers to verify properties
of routing protocols (see Section 5.1 for discussion of related work), there have been
relatively few case studies in using formal methods to develop such protocols. Our
work provides some insights on how this can be done.

Second, as we will see, formally developing a topology discovery protocol is sur-
prisingly nontrivial. The complexity is both in specifying the protocol’s desired prop-
erties and in carrying out the development and proofs. This complexity comes from
the fact that the protocol should function in dynamically changing environments. If we
do not place constraints on the environment a priori (which we do not) then the actual
topology may change faster than nodes can propagate information about the changes
they discover. For example, two nodes may be connected and not know it, but by the
time they receive link information on their status, they may no longer be connected. In
other words, their link-state databases may never converge to an accurate view of the
actual network topology.

To address this problem, we present a novel approach to specifying and developing
algorithms whose properties depend on the environment’s dynamics. In particular,
we specify the system’s properties in stable system states (cf. Section 4.3). These
are, roughly speaking, states where all nodes have maximum knowledge about the
environment. We prove that when certain events are convergent (which means they
cannot take control of the system for ever, cf. Section 2.2) and deadlock free, then
stable states are reached and that this suffices for the correctness of the nodes’ link-
state databases.

Finally, our case study is representative of an important class of systems, which
we call (distributed) semi-reactive systems. These are distributed systems where the
environment is dynamically changing and although the system cannot alter the envi-
ronment it must monitor and appropriately react to the changes in the environment.
This includes, for example, distributed monitoring algorithms where the nodes must
reach some kind of agreement about the environment’s properties. Our approach sug-
gests one way of developing systems in this general class.

Organization. In Section 2, we introduce Event-B and the Rodin tool. Afterwards,
in Section 3, we describe topology discovery, within the context of link-state routing.
In Section 4, we present our formal development as well as the general development
strategy behind it. Finally, in Section 5, we review related work and draw conclusions.
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2. Background on Event-B

Event-B is a formalism for formalizing and developing systems whose components
can be modeled as discrete transition systems. It represents a further evolution of the
B-method [1], which has been simplified and is now centered around the general notion
of events, also found in Action Systems [6] and TLA [17]. We provide a brief overview
here of Event-B. Full details are provided in [2].

A development in Event-B [5] is a set of formal models. The models are built
from expressions in a mathematical language, which are stored in a repository. When
presenting our models, we will do so in a pretty-printed form, e.g., adding keywords
and following layout conventions to aid parsing. Event-B has a semantics based on
transition systems and simulation between such systems, described in [2]. We will
not describe in detail the semantics here and instead just describe some of the proof
obligations that are important for our development.

Event-B models are organized in terms of the two basic constructs: contexts and
machines. Contexts specify the static part of a model whereas machines specify the dy-
namic part. Contexts may contain carrier sets, constants, axioms, and theorems. Car-
rier sets are similar to types [5]. Axioms constrain carrier sets and constants, whereas
theorems express properties derivable from axioms. The role of a context is to iso-
late the parameters of a formal model (carrier sets and constants) and their properties,
which are intended to hold for all instances.

2.1. Machines
Machines specify behavioral properties of Event-B models. Machines may contain

variables, invariants, theorems, events, and variants. Variables v define the state of a
machine. They are constrained by invariants I(v). Possible state changes are described
by events.

Events. Each event is composed of a guard G(t, v) (the conjunction of one or more
predicates) and an action S(t, v), where t are the event’s parameters.1 The guard states
the necessary condition under which an event may occur, and the action describes how
the state variables evolve when the event occurs. An event can be represented by the
term

any t where G(t, v) then S(t, v) end . (1)

We use the short form
when G(v) then S(v) end (2)

when the event does not have any parameters, and we write

begin S(v) end (3)

when, in addition, the event’s guard equals true. A dedicated event of the form (3)
is used for initialization. Note that events may be annotated to indicate whether they

1When referring to variables v and parameters t, we usually allow for multiple variables and parameters,
i.e., they may be “vectors”. When we later write expressions like x := E(t, v) we mean that if x contains
n > 0 variables, then E must also be a vector of expressions, one for each of the n variables.
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refine other events and with their convergence status. We will say more about this
annotation later.

The action of an event is composed of one or more assignments of the form

x := E(t, v) (4)
x :2 E(t, v) (5)
x :| Q(t, v, x0) , (6)

where x are some of the variables contained in v, E(t, v) is an expression, and Q(t, v, x0)
is a predicate. In (4) and (5), x must be a single variable. Assignments of the form (4)
are deterministic, whereas the other two forms are nondeterministic. In (5), x is as-
signed an element of a set. In (6), Q is a before-after predicate, which relates the
values x (before the action) and x0 (afterwards). (6) is the most general form of assign-
ment and nondeterministically selects an after-state x0 satisfying Q and assigns it to x.
There is also a side condition on the action of an event: the variables on the left-hand
side of the assignments contained in the action must be disjoint. Note that the before-
after predicates for (4) and (5) are as expected; namely, x0 = E(t, v) and x0 2 E(t, v),
respectively.

All assignments of an action S(v) occur simultaneously, which is expressed by con-
joining together their before-after predicates. Assume that x is the set of variables that
are modified by some assignments (i.e., the variables appearing on any assignment’s
left-hand side) and y are the unmodified variables (i.e., y = v \ x), the before-after
predicate of the action S(v) is expressed by conjoining all before-after predicates as-
sociated with each assignment and y = y0 (since y are unchanged). We denoted this
predicate as S(v, v0).

Semantics. An Event-B model formalizes a state transition system. Each state corre-
sponds to the values of the variables v that satisfy the invariants I(v), i.e., the state
space is the set {v | I(v)}. The system’s transitions correspond to the events of the
Event-B model, where each event represents an atomic step that describes a system
transition. Each event therefore defines a relation R(v, v0) between the pre-state v be-
fore the event and the post-state v0 after the event. In particular, each v in R’s domain
satisfies the guard G(v) and each v0 in the R’s range satisfies the before-after predicate
S(v, v0) given by the action. In other words, R(v, v0) = G(v) ^ S(v, v0). We will later
also refer to the pairs (v, v0) in the relation as instances of the event. A model’s tran-
sition relation is therefore the union of the transition relations associated with each of
the events. The resulting transition system may be non-deterministic either because an
event involves a non-deterministic action or multiple events have overlapping guards.

Obligations. Event-B defines proof obligations, which must be proven to show that
machines have their specified properties. We describe below the proof obligation for
invariant preservation. Formal definitions of all proof obligations are given in [2]. In-
variant preservation states that invariants are maintained whenever variables change
their values. Obviously, this does not hold a priori for any combination of events and
invariants and therefore must be proved. For each event, we must prove that the in-
variants I are re-established after the event is carried out. More precisely, under the
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assumption of the invariants I and the event’s guard G, we must prove that the invari-
ants still hold in any possible state after the event’s execution given by the before-after
predicate S(t, v, v0). The proof obligation is as follows.

I(v), G(v), S(t, v, v0) ` I(v0) (INV)

Similar proof obligations are associated with a machine’s initialization event. The
only difference is that there is no assumption that the invariants hold. For brevity, we
do not treat initialization differently from ordinary machine events. The required mod-
ifications of the associated proof obligations are straightforward. Note that in practise,
by the property of conjunctivity, we can prove the preservation of each invariant sepa-
rately.

2.2. Machine Refinement
Machine refinement provides a means to introduce details about the dynamic prop-

erties of a model [5]. For more details on the theory of refinement, we refer to the
Action System formalism [6], which has inspired the development of Event-B. Here
we sketch some central proof obligations for machine refinement.

A machine CM can refine another machine AM . We call AM the abstract ma-
chine and CM the concrete machine. The states of the abstract machine are related to
the states of the concrete machine by gluing invariants J(v, w), where v are the vari-
ables of the abstract machine and w are the variables of the concrete machine. Note
that the gluing invariants J(v, w) include both the local invariants of the concrete model
CM (which refers only to w) and the simulation relation that should hold between the
concrete and abstract domains (which refers to both v and w).

Each event ea of the abstract machine is refined by one or more concrete events
ec. Let the abstract event ea and concrete event ec be as follows.

ea b= any t where G(t, v) then S(t, v) end (7)
ec b= any u where H(u,w) then T (u,w) end (8)

Somewhat simplified, we can say that ec refines ea if the guard of ec is stronger than
the guard of ea (guard strengthening), and the gluing invariants J(v, w) establish a
simulation of ec by ea (simulation). Intuitively, the above conditions guarantee that
any trace (sequence of states) of the concrete system can be simulated by the abstract
system with respect to the gluing invariants J(v, w). Proving guard strengthening just
amounts to proving an implication. For simulation, we must prove that ec can be
simulated by ea. More precisely, under the assumption of the invariants I and J and
the concrete guard H , and given the transition described by T, we must show that it is
possible to choose a value for the abstract parameter t and a value for the abstract after
variable v0 such that the abstract guard G holds, the abstract before-after predicate S
holds, and the gluing invariants J are re-established (this includes both the maintenance
of the local invariants and preservation of the simulation relation). The proof obligation
is as follows.

I(v), J(v, w), H(u,w), T(u,w,w0) ` 9t, v0 ·G(t) ^ S(t, v, v0) ^ J(v0, w0)
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In order to prove the above obligation, the abstract parameter t and after variable v0

need to be instantiated. The instantiations are given in the model as witnesses for t and
v0 associated with the concrete events. The witnesses are indicated using the keyword
with and are given by predicates W1(t, u, w) for t and W2(v0, u, w) for v0. Given the
witnesses, this proof obligation can be split into the following 3 proof obligations.

I(v), J(v, w), H(u,w), W1(t, u, w) ` G(t) (GRD)

I(v), J(v, w), H(u,w), T(u,w,w0), W1(t, u, w), W2(v0, u, w) ` S(t, v, v0) (SIM)

I(v), J(v, w), H(u,w), T(u,w,w0), W2(v0, u, w) ` J(v0, w0) (INV REF)

Note that in practise, we only need to give witnesses for parameters of the abstract
event t that does not appear in the concrete events, and the abstract after variables v0

when the abstract action modifying with these variables is non-deterministic, i.e. of the
form (5) or (6). In the other cases, the witnesses can be derived.

A special case of refinement (called superposition refinement) is when v is kept in
the refinement, i.e. v ✓ w. This is the same as renaming the abstract variables v to
v0 and adding to v0 = v to the gluing invariants J . In particular, if the actions are de-
terministic for both abstract and concrete events, the simulation proof obligation SIM

and invariant refinement proof obligation INV REF hold if and only if the expressions
assigned to v0 and v are equivalent. Our reasoning in the later sections will often use
this fact.

In the course of refinement, new events are often introduced into a model. New
events must be proved to refine the implicit abstract event skip, which does nothing.
Moreover, it may be proved that the new events do not collectively diverge. In other
words, the new events cannot take control forever and hence one of the old events
eventually occurs. To prove this, one gives a variant V , which maps a state w to a
finite set. One then proves that each new event strictly decreases V . More precisely,
let ev be a new event, where w is the state before executing ev and w0 is the state
after. Then for each such ev, w, and w0, one proves that V (w0) ( V (w), under the
additional assumptions of all invariants and of the guard of ev. Since the variant maps
a state to a finite set, V induces a well-founded ordering on system states given by strict
subset-inclusion of their images under V .

As explained above, we assume that the variant is a set expression. It can be more
elaborate [5], but this is not relevant here. We call the new events that satisfy the above
property convergent. Note that in some cases the convergence of some events cannot
be immediately shown, but only in a later refinement. In this case, their convergence
is anticipated and we must prove that V (w0) ✓ V (w), that is, these anticipated events
do not enlarge the variant. The convergent attribute of an event is denoted by keyword
status with three possible values: convergent, anticipated, and ordinary (for events
which are not convergent). Events are ordinary by default.

We have used the Rodin Tool [3] for our formal development. This is an industrial-
strength tool for creating and analyzing Event-B models. It includes a proof-obligation
generator and support for interactive and semi-automated theorem proving.
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3. Topology Discovery

In this section, we describe our requirements on the system and our assumptions
on the environment for topology discovery. We begin by describing the problem and
algorithm informally, in the context of link-state routing, which is one of its main
applications.

3.1. Informal Description
Routing is the process of selecting paths through a network for sending data from a

source to a destination. A path may require the data to travel over multiple hops, each
hop being an intermediate router. At each router, data is forwarded using routing tables
to select the next hop (the appropriate output port) based on the packet’s destination
address. It is the routing algorithm’s task to build these routing tables. In link-state
routing, this is done using several auxiliary data structures. In particular, each router
maintains a link-state database (LSDB) that encodes its view of the topology of the
communication network, i.e., the set of routers and the links between them. From
its LSDB, a router computes a shortest path first (SPF) tree, using Dijkstra’s algorithm
[13]. The SPF tree is used to create the routing table: the next hop to some destination is
simply the neighbor that constitutes the first link in the shortest path to that destination.
Examples of routing algorithms that proceed this way include the Open Shortest Path
First protocol (OSPF) [21, 22] and (optimized) link-state routing [10, 11].

Expressed graph-theoretically, each router corresponds to a node in the graph and
there is an edge from node m to node n if m may directly (without the help of inter-
mediate nodes) transmit data to n, i.e., m and n are communication neighbors. Note
that this relationship is often symmetric, so the underlying graph is undirected. But it
need not always be so, i.e., edges (representing links) may exist in only one direction,
whereby the receiver cannot directly return messages to the sender [8]. The edges may
also be weighted, where the weight may represent the physical distance between the
connected nodes, or combine other relevant metrics (such as capacity, mean queuing
and transmission delay, etc.). Finding optimal paths can then be reduced to computing
shortest paths through the resulting graph.

In our case study, we will focus on the important subproblem of topology discov-
ery: discovering and maintaining local information about the network topology. This
requires a distributed algorithm (protocol) since each node must construct its own lo-
cal copy of the network topology. This is done by having each node discover changes
in its own local communication environment and communicating this information to
other nodes. The nodes each individually build their own graphs, representing their
local view of the global network topology.

To show how topology discovery is used within the context of routing, Figure 1
presents a simplified view of the main functionality of link-state routing. The algorithm
consists of an infinite loop that runs on each node n. The loop’s body nondeterminis-
tically chooses (represented by ⇤) between three parts. From left-to-right, these parts
are:

1. Detect and propagate changes.
2. Receive and process changes.
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if DetectChange(m,n) then

UpdateLSDB(m,n)
UpdateSPFTree(LSDB)
LSA CreateLSA(m,n)
Broadcast(LSA)

end if

if Receive(LSA) then

if IsFresh(LSA) then

UpdateLSDB(LSA)
UpdateSPFTree(LSDB)
Broadcast(LSA)

else

Drop(LSA)
end if

end if

Broadcast(LSDB)⇤ ⇤

Figure 1: Link-state algorithm for node n (loop body)

3. Send information to neighboring nodes.

The first part describes how a node detects, processes, and propagates changes.
Suppose a node n detects a change in the status of a link that joins some node m to n.
The node n then adjusts its own link-state database (LSDB), which stores all topology
graph nodes and edges. Afterwards, it updates its shortest path first (SPF) tree from the
LSDB using Dijkstra’s algorithm. Finally, it creates a link-state advertisement (LSA)
describing the status (up or down) of the link from m to n, and starts flooding the net-
work by broadcasting this to all of its neighbors. The second part describes a node’s
actions after receiving a link-state advertisement. If the LSA is fresh (i.e., not pre-
viously received), then again the SPF tree is updated and the flooding is continued
by sending the LSA to all neighbors. The third part states that a node n can, at any-
time, start flooding the network by broadcasting information about its current link-state
database. This can be implemented by n broadcasting an LSA describing the status of
the link from x to y, for each pair of distinct nodes x and y. Alternatively, one message
can be broadcast, describing the entire state of n’s LSDB. In this case, the second part
must be modified to also handle the reception of LSDBs.

These three parts implement basic link-state routing. If we are interested in pure
topology discovery, it suffices to simply delete the two UpdateSPFTree statements. The
resulting algorithm corresponds closely to what we will develop in Section 4.

A key point is the need for the third part of the algorithm, which broadcasts the
LSDB thereby initiating flooding even when no changes are present. This is required
for two reasons:

1. to handle the possibility that LSAs are lost during communication and
2. to handle the special case where disconnected parts of a network are reconnected.

(1) can occur if a link goes down during message transit. Figure 2 illustrates (2).
Suppose that the network is disconnected into two subnetworks S1 and S2, which
each undergo changes and at some later time become connected due to a link l coming
up. Just flooding both subnetworks with an LSA describing l being up is not enough
for the nodes in S1 to learn the topology of S2 and vice versa. In actual link-state
routing protocols, this third part, periodic flooding, occurs at fixed, relatively infrequent
intervals. For example, in OSPF it takes place every 30 minutes.

Observe that the above algorithm description is an abstract sketch in that it omits
critical details. For example, nodes receive and propagate information at different times
and hence a node may receive old LSAs containing invalid information about the net-
work topology. How such details are handled (using time stamps, sequence numbers,
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Figure 2: Link l comes up and joins two independent subnetworks

or age fields) and the updating is performed is not specified in the above. We must
address precisely such details in our case study.

3.2. Requirements for Topology Discovery
As previously mentioned, it is surprisingly difficult to formulate the requirements

for topology discovery. The protocol must operate in an environment where the status
of links may change at any time. Moreover, the environment’s behavior is out of the
control of the protocol and not influenced by it (this is the notion of semi-reactive
system, previously mentioned at the end of Section 1). If the environment changes
sufficiently rapidly, then links reported as down may actually be up and vice versa.
Hence the local LSDBs may bear little relationship to the actual network topology.

There is no clear agreement in the literature about the properties the protocol should
have. One property sometimes mentioned is consistency, which is formulated in terms
of actual routing decisions. Consistency states that the topology information stored by
each node is such that the local routing tables that they generate lead to a loop-free path
between any desired (source, destination) pair in the system. Hence data sent will not
enter loops or get lost. One drawback of this specification is that it is not a property
of the local states, but rather a system-wide property of routing itself. A second, more
serious problem is that this property, in general, will not always hold since the local
view of nodes (their LSDBs) will not always reflect the actual network topology. Hence
this property is too strong: in practice, the system will often be in an inconsistent state.

We see two options for weakening consistency to something that can hold. The
first option is the one usually taken by the network community and entails the use
of simulation. Namely, one simulates the network under different environments and
measures the rate of data throughput. The idea here is that if the environment changes
slowly with respect to the system, then we expect that routing should be possible, even
if not completely reliably (reliability can be handled by transport layer protocols like
TCP). Simulation can be used to make statements about the network’s performance,
for example, throughput and delay, as a function of the environment’s dynamics. It
therefore also enables a quantitative comparison of protocols.

A second option, which is the one we shall pursue, is to focus on the limiting case:
the behavior of the algorithm when the environment is sufficiently quiescent. In this
case, we expect that the local LSDBs will eventually converge (also called “stabilize”
in the routing literature) to images of the actual global topology. Some care must be
taken in precisely formalizing this, in particular to handle the previously mentioned
problem that the network may not always be connected. In general, a node n can only
learn about a link from a node k to its neighbor m when there is a path through the
graph (representing the topology) from m to n.
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Following this second option, we formulate our main requirement. Recall from
basic graph theory that any graph can be decomposed into a collection of (maximal)
strongly-connected components. Our main system requirement is then:

System Requirement 1. If the environment is inactive for a sufficiently long time then
for each strongly-connected component M , the local view (LSDB) of every node
in M is in agreement with the actual topology, restricted to M .

Hence, when information about the system gained from link sensing (detecting com-
munication neighbors) and communication stabilizes, each node has the correct view
of the links between all nodes in its connected subnetwork.

We state one further requirement, which limits the possible local views of nodes
during the protocol.

System Requirement 2. The local views of the nodes must be consistent with the past:
a link listed as up is either up or was previously up and a link is listed as down is
either down or was previously down.

This requirement rules out the case that a node concludes that a link is up that never
was. So errors in the local topologies must effectively come from communication
delays concerning status changes.

3.3. Environment Assumptions
Before developing a topology discovery algorithm, we must also be clear about our

assumptions on the environment. We list them below.

Environment Assumption 1. There are only finitely many nodes.

Without this assumption, any notion of stability based on a hop-by-hop propagation of
information would be unachievable.

Environment Assumption 2. There are directed, one-way links between some pairs
of distinct nodes. Links may come up or go down at any time.

These links represent the ability to carry out directed (one-way) communication be-
tween two nodes.

Environment Assumption 3. When there is a new link from node m to node n, then
n is made aware of this. Likewise, when a link from m to n exists and is broken,
n is also made aware of this.

We will refer to a link from m to n as either an outward link from m or an inward link
to n. Assumption 3 reflects the ability to carry out “link sensing”, whereby each node
can sense its inward links. In practice, this must be realized by some kind of protocol,
e.g., m must periodically announce its presence to n, or, in the bidirectional case, a
handshake protocol initiated by n may be used. Note, as a result, that this assumption
does not require that the receiver n immediately becomes aware of changes, but only
eventually.
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Environment Assumption 4. A node m may send a message to a node n only when
there exists a link from m to n. Moreover, the transmission occurs in a collision-
free fashion.

Note that, in practice, collision-free communication may be realized in different ways.
For example, using the CSMA/CD “backoff” approach in Ethernet or by choosing the
time interval between two successive transmission to be larger than the propagation
delay for communication along any link.

Environment Assumption 5. When a link goes down, any messages sent on it and
not yet received are lost.

This reflects that there is a delay (of unbounded length) between message transmission
and reception, and messages can be lost during this time interval.

In the next section, we shall see how each of these requirements is formalized in
the context of our Event-B development.

4. Formal Development

Here we describe our development of topology discovery in Event-B. The approach
we take, which is general to system development by refinement, is to build a series of
models, where each model refines the model preceding it.

4.1. Refinement Strategy
The initial models incrementally introduce our assumptions on the environment and

the system, whereas the subsequent models introduce design decisions for the resulting
system. Below we provide an overview of the series of models that we constructed.

Initial model specifies the protocol environment.
Refinement 1 introduces the observer event for observing stable states and adds sys-

tem events to model how nodes update their link information.
Refinement 2 provides further details about link updates, in particular a node updates

information about its direct links or receives information about links from its
neighbor nodes.

Refinement 3 introduces sequence numbers for tracking fresh link-state information.
Refinement 4 uses message passing to transmit information about the status of links.
Refinement 5 separates the events into two sets: the set of events that update link-state

information and those events that discard it as being redundant. The idea is to
prove the convergence of the events that update link-state information.

Refinements 6 completes the convergence proof.

In the rest of this section, we explain these models in more detail and present rep-
resentative parts of our formalization. Note that the entire development (all proof obli-
gations and theorems) have been proved using the Rodin-tool. The entire machine-
checked development archive can be found on the web.2

2URL: http://deploy-eprints.ecs.soton.ac.uk/31/

11



4.2. The Context and Initial Model
We begin by defining an Event-B context. In the context, we define the carrier

set NODES of all network nodes and we axiomatize that it is finite. This formalizes
Environment Assumption 1. Additionally, we define a (function) constant closure
that, together with axioms, formalizes the transitive closure of binary relations between
NODES.

sets: NODES constants: closure

axioms:

axm0 1 finite(NODES)
axm0 2 closure 2 (NODES$ NODES)! (NODES$ NODES)
axm0 3 8r · r ✓ closure(r)
axm0 4 8r · closure(r); r ✓ closure(r)
axm0 5 8r, s · r ✓ s ^ s; r ✓ s ) closure(r) ✓ s

Note that “;” denotes forward relational composition.
In our initial model, we formalize the behavior of the environment, where links

(represented as pairs of nodes) may go up or down at any time. The variable RLinks
(R for real, i.e., actual links) represents the set of links that are currently up, whereas the
variable DLinks represents the set of links are down. These sets are disjoint (inv0 3)
since a link cannot be simultaneously up and down. Note, however that we do not
require that their union is the set of all links. This may be because two nodes are
simply not communication neighbors or because their status has not yet been fixed.
This set of “unknown” links is simply the complement of the set RLinks [ DLinks.
The sets RLinks and DLinks are initially both empty.

In our model, we also use two auxiliary variables to track the history of the links:
RLinksH (H for history) represents the set of links that are up or were up. Similarly,
DLinksH represents the set of links that are down or were down. These are each ini-
tially assigned the empty set. The invariants inv0 4–inv0 7 formalize the relationships
between the actual links and the history links.

inv0 4–inv0 5: The history should not be too small, i.e., it should contain at least the
current set of links.

inv0 6–inv0 7: The history should not be too large, i.e., it should not contain any
unknown links.

The history variables RLinksH and DLinksH are fictional in the sense that the algo-
rithm we develop will not actually make use of them. We will remove them from our
model in a later refinement.

variables: RLinks, DLinks, RLinksH, DLinksH
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invariants:

inv0 1 RLinks 2 NODES$ NODES
inv0 2 DLinks 2 NODES$ NODES
inv0 3 RLinks \ DLinks = ?
inv0 4 RLinks ✓ RLinksH
inv0 5 DLinks ✓ DLinksH
inv0 6 RLinksH ✓ RLinks [ DLinks
inv0 7 DLinksH ✓ RLinks [ DLinks

init
begin

RLinks, DLinks := ?, ?
RLinksH,DLinksH := ?, ?

end

Beside initialization, there are two additional events: AddLink and RemoveLink. The
first models the case where an arbitrary link (that is not currently up) comes up. This
link is then added to the set RLinks and RLinksH and removed from the set DLinks
(if it is already there). The second handles the symmetric case.

AddLink
any link where

link /2 RLinks
then

RLinks := RLinks [ {link}
DLinks := DLinks \ {link}
RLinksH := RLinks [ {link}

end

RemoveLink
any link where

link /2 DLinks
then

RLinks := RLinks \ {link}
DLinks := DLinks [ {link}
DLinksH := DLinksH [ {link}

end

Note that these events formalize Environment Assumption 2. The fact that com-
munication links are directed is formalized by the fact that the relations RLinks and
DLinks are not necessarily symmetric.
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4.3. The First Refinement
In our first refinement, we start to model the details of the protocol, although still

very abstractly. In particular, we state that the link information stored at each nodes
gets updated, although without yet specifying how.

We introduce two variables rlinks and dlinks with the following invariants. These
two variables represent the current link-state information stored by each node.

invariants:

inv1 1 rlinks 2 NODES! (NODES$ NODES)
inv1 2 dlinks 2 NODES! (NODES$ NODES)
inv1 3 8n · rlinks(n) ✓ RLinksH
inv1 4 8n · dlinks(n) ✓ DLinksH
inv1 5 8n · rlinks(n) \ dlinks(n) = ?

The first two invariants specify that rlinks and dlinks are both total functions.
This formalizes that each node stores its own local information (a binary relation be-
tween NODES) about the status of links. Invariants inv1 3 and inv1 4 directly establish
System Requirement 2: if a node has some information that a link is up, then this link
must be either currently up or was up in the past, and similarly with information about
down-links. The last invariant, inv1 5, states that a node cannot store contradictory
information about the same link. Of course, different nodes can have different infor-
mation about the same link.

One of the key aspects of our development strategy is to specify a so-called ob-
server event. This event has no effect on this system state itself as its action is skip.
Rather, its guard is used to define the notion of a stable state of the system.

stabilize
status ordinary
when

8m, n · m 7! n 2 RLinks,m 7! n 2 rlinks(n)
8m, n · m 7! n 2 DLinks,m 7! n 2 dlinks(n)

8m, n · m 7! n 2 closure(RLinks))
(8k · (k 7! m 2 rlinks(n), k 7! m 2 rlinks(m)) ^

(k 7! m 2 dlinks(n), k 7! m 2 dlinks(m)))
then

skip
end

The three guards can be understood as follows.

• The first two guards hold in states where every node n knows the correct status
of all its inward links. In other words, n has detected all the changes in the envi-
ronment with respect to its inward links. This detection is realized in subsequent
refinement levels through hello and goodbye events. Note that m 7! n is the
Event-B notation for the pair (m, n).
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Figure 3: Information propagation from m to n

• The last guard says that if there is a path from a node m to n, i.e., m 7! n 2
closure(RLinks), then n has the same information (up/down) as m for all in-
ward links to m. This is illustrated in Figure 3.

Hence, the observer event fires in those states where nodes know the correct status of
their neighbors and this status has already been propagated through the network along
all outward links. Intuitively, in stable states, all nodes have the maximum knowledge
of the environment that can be acquired from link sensing and communication along
links. We will say that the system is in a stable state when the observer event can fire.

A central property that we proved is the following.

Theorem 1 (Stability implies correct local view). If the system is stable, then for any
strongly-connected component M in the network and any node n in M , n has the
correct view of the status (up/down) of all links in M .

We formulate this theorem in Event-B as follows, where grdStabilize refers to the
guard of the observer event.

grdStabilize
)

(8M ·
(8f, l · f 2M ^ l 2M ^ f 6= l) f 7! l 2 closure(RLinks))

)
(8n · n 2M)

M C rlinks(n) B M = M C RLinks B M ^
M C dlinks(n) B M = M C DLinks B M))

Here, a set of nodes M defines a strongly-connected component of the graph whose
edge relation is defined by RLinks, when for every distinct pair of nodes f and l in
M , then f 7! l 2 closure(RLinks). The operators C and B respectively restrict the
domain and the range of a relation to a set (here M , i.e., the vertices of the strongly-
connected component).

We proved this theorem using the Rodin tool. The theorem itself constitutes part
of the proof of System Requirement 1. Namely, in a stable state, each node has the
correct view of all links in its strongly-connected component. It still remains to be
proved that this stable state will be reached whenever the environment is inactive for a
sufficient long time period. We prove this in Section 4.9.

In this model, we also introduce two new events, addlink and removelink, which
modify the link-state information of some node.
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addlink
status anticipated
any n, link where

n 2 NODES
link 2 RLinksH

then

rlinks(n) := rlinks(n) [ {link}
dlinks(n) := dlinks(n) \ {link}

end

removelink
status anticipated
any n, link where

n 2 NODES
link 2 DLinksH

then

rlinks(n) := rlinks(n) \ {link}
dlinks(n) := dlinks(n) [ {link}

end

The event addlink abstractly models a node receiving information on a link directly
from the topology. Specifically, the event nondeterministically selects a node n and a
link link which is currently up or was previously up. It then updates n’s local informa-
tion about link, ensuring that it is added to the set of real (up-)links and removed from
the set of down-links. Perhaps counterintuitively, the event may add a link to rlinks(n)
that is actually down, i.e., that belongs to DLinks and only was up in the past. This
reflects a key aspect of our distributed algorithm: the information nodes receive about
the environment may be out-dated. But by the time n receives information that link is
up, the link may actually be down.

The second event removelink is analogous to addlink. From now on, we concen-
trate on the refinement of addlink; the refinement of removelink can be found in our
on-line development archive.

Observe that since none of the three new events modifies the old variables RLinks
DLinks, RLinksH , and DLinksH , they all constitute trivial refinements of skip. At
this level of refinement, addlink and removelink are anticipated. That is, we delay the
proof that these events converge to subsequent refinements.

4.4. The Second Refinement
In this refinement, we specify more concretely how link information is updated in

each node. There are two cases.
The first case models a direct update by the hello event.
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hello
refines addlink
status convergent
any n, m where

m 7! n 2 RLinks
m 7! n /2 rlinks(n)

with

link = m 7! n
then

rlinks(n) := rlinks(n) [ {m 7! n}
dlinks(n) := dlinks(n) \ {m 7! n}

end

This models the situation where a node n discovers information (by receiving a “hello”
message) from a node m with an outward link to n. As indicated by the refines key-
word, this event refines the abstract event addlink, where the abstract parameter link
is represented by the pair m 7! n. To see that this is a refinement, observe that
the guard strengthening (GRD) proof obligation holds since the guard of this event
m 7! n 2 RLinks implies that m 7! n 2 RLinksH (recall the invariant inv0 3,
which states that RLinks ✓ RLinksH). Moreover, the proof obligations (SIM) and
(INV REF) hold since the updates of rlinks and dlinks are equal, with the witness
link = m 7! n.

The second case models an indirect update by the transfer rlink event.

transfer rlink
refines addlink
status anticipated
any n, m, x, y where

x 7! y 2 rlinks(m) [ dlinks(m)
n 6= y
x 7! y 2 RLinksH

with

link = x 7! y
then

rlinks(n) := rlinks(n) [ {x 7! y}
dlinks(n) := dlinks(n) \ {x 7! y}

end

This models a node n receiving information about a link x 7! y from some node
m, which is not necessarily a neighbor. The guard n 6= y indicates that this is an
indirect update, that is, x 7! y is not an inward link of n. This refines the abstract
event addlink, where the abstract parameter link is represented by the pair x 7! y.
The guard strengthening (GRD) is trivial since we did not remove the abstract guard.
The proof obligations (SIM) and (GRD) are trivially satisfied with link replaced by
x 7! y (witness link = x 7! y). Note that the third guard, which refers to RLinksH ,
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cheats in the sense that it looks at the history. This cheating will be eliminated in a later
refinement step when this event is refined and the variable RLinksH is removed.

The link-state information for down-links is modeled analogously by events good-
bye and transfer dlink, which are omitted here. Together, hello and goodbye formal-
ize Environment Assumption 3.

At this stage, we also prove the convergence of the hello and goodbye events and
we will prove the convergence of the transfer rlink and transfer dlink events in the
next refinement. Hence, they are anticipated at this level. The reason for decompos-
ing the convergence proof into different refinements is that this allows us to simplify
the proof by decomposing the events into two different subsets and then considering
these subsets individually. Note that when proving the convergence, we still have the
obligation of proving that the anticipated events do not increase the new variant. Taken
together, these steps imply that the events reduce a composite variant, built from the
lexicographic combination of the variants used in the two proofs.

The variant that we used in this refinement is V1 defined by

{m 7! n | m 7! n 2 RLinks \ rlinks(n)} [
{m 7! n | m 7! n 2 DLinks \ dlinks(n)} .

This is the set of inward links to n, where n has incorrect information. Since the set
of NODES is finite, this variant is also finite. Informally, since the hello and goodbye
events both provide correct information about one inward link of a node, they therefore
decrease the variant V1.

As noted above, even though we do not prove the convergence of the transfer rlink
and transfer dlink events here, we must prove that these events do not increase the
variant V1. This is the case since these events do not change the status of any inward
link to a node (notice the guard n 6= y), so V1 will not be changed.

4.5. The Third Refinement
In the following refinement steps, we model communication between nodes. This

is in contrast to the last step where nodes update their link information directly using
the link information of other nodes, which is of course not realizable in a distributed
system. Before modeling communication, we first model how nodes track which infor-
mation is fresh, i.e., whether the link information received is new or old.

In this model, we introduce a new variable, seqNum, representing the sequence
number stored at each node for each link.
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invariants:

inv3 1 seqNum 2 NODES! (NODES⇥ NODES! N)
inv3 2 8k,m, n · seqNum(k)(m 7! n)  seqNum(n)(m 7! n)
inv3 3 8m, n, link ·

seqNum(m)(link) = seqNum(n)(link) ^ link 2 rlinks(m)
) link 2 rlinks(n)

inv3 4 8m, n, link ·
seqNum(m)(link) = seqNum(n)(link) ^ link 2 dlinks(m)

) link 2 dlinks(n)

inv3 5 8n, link · 0 < seqNum(n)(link)) link 2 rlinks(n) [ dlinks(n)

inv3 6 8n, link · link 2 rlinks(n) [ dlinks(n)) 0 < seqNum(n)(link)

The events we will give preserve the following invariants:

inv3 1: Each node stores its own sequence number information about the links. This
is represented as a table of non-negative numbers, with an entry for each link.
The entry 0 signifies that the node does not currently have any information about
the given link.

inv3 2: The sequence number n has about a link m 7! n is always the most recent.

inv3 3–inv3 4: If two nodes m and n have the same sequence number for a given
link, then they also have the same link-state information for that link.

inv3 5–inv3 6: For any node n, possessing information about a given link is equiva-
lent to having a positive sequence number for link.

Moreover, in order to reason about the convergence of transfer rlink and trans-
fer dlink, we introduce an auxiliary variable msg that “measures” the convergence of
the event. This variable will not be used in the guards of the events. Hence it does not
affect the execution and we can therefore safely remove this variable in the subsequent
refinement. The invariants concerning msg are as follows.

invariants:

inv3 7 msg 2 (NODES⇥ NODES⇥ N)$ NODES
inv3 8 8x, y, sn, n ·

sn  seqNum(y)(x 7! y) ^
seqNum(n)(x 7! y) < sn

)
x 7! y 7! sn 7! n 2 msg

inv3 9 finite(msg)

inv3 7: Each message contains information in the form of a link and sequence number
as well as the destination node for the information.

inv3 8: If n’s sequence number for a link x 7! y is less than y’s, then the information
about x 7! y from y has not yet reached n.
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inv3 9: msg is finite.

In the initialization event, the sequence number for all links is set to 0 and msg is
empty.

seqNum := NODES ⇥ {(NODES ⇥NODES)⇥ {0}}
msg := ?

The sequence number for a given node and link first takes on a positive value after a
direct update (e.g. in the hello event).

hello
refines hello
any n, m where

m 7! n 2 RLinks
m 7! n /2 rlinks(n)

then

rlinks(n) := rlinks(n) [ {m 7! n}
dlinks(n) := dlinks(n) \ {m 7! n}
seqNum(n)(m 7! n) := seqNum(n)(m 7! n) + 1
msg := msg [

({m 7! n 7! seqNum(n)(m 7! n) + 1}⇥ (NODES \ {n}))
end

The only difference with the abstract version is the last two assignments, which incre-
ment the sequence number and update msg.3 Since the event’s guard is unchanged and
the additional assignment modifies only a new variable, this clearly refines the corre-
sponding abstract hello event. Once new information is detected by n, this information
must be propagated to all the other nodes in the network.

For indirect updates, the sequence number for the link-state information being
transferred is not updated, but simply passed from one node to another.

3The notation f(x) := E denotes the update f := fC�{x 7! E}, where C� is the operator for relational
override. Note, in the third assignment, that seqNum(n) is a function and therefore seqNum(n)(m 7! n)
denotes the one-point update of this function at the point m 7! n.
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transfer rlink
refines transfer rlink
status convergent
any n, m, x, y, sn where

m 7! n 2 RLinks
sn  seqNum(m)(x 7! y)
seqNum(n)(x 7! y) < sn
8k · seqNum(k)(x 7! y) = sn) x 7! y 2 rlinks(k)
x 7! y 2 RLinksH

then

rlinks(n) := rlinks(n) [ {x 7! y}
dlinks(n) := dlinks(n) \ {x 7! y}
seqNum(n)(x 7! y) := sn
msg := msg \ {x 7! y 7! sn 7! n}

end

Compared to the abstract version of the event, there is an additional parameter sn.
This parameter represents the sequence number that m stored for the link x 7! y
when the message was sent. This is less than or equal to the current sequence number
that m has for this link, since the sequence number that a node associates with a link
never decreases (it is strictly less if m has received new information on this link in the
meantime). The fourth guard states that for any node k with the same sequence number
for the link x 7! y, the link is in the set of k’s up-links. This ensures that there will be
no conflicting information in the network. Note that both the second and fourth guards
(together with the last guard, introduced previously) cheat in the sense that they cannot
be directly implemented. This cheating will be eliminated in a subsequent refinement.
The additional assignments in the event’s action, with respect to the abstract version,
update n’s sequence number for the link x 7! y and remove this information from the
set msg.

We establish guard strengthening (GRD) as follows. From the event’s guard,
we can derive that seqNum(m)(x 7! y) is positive. Together with the invariant
inv3 5, this implies that x 7! y 2 rlinks(m) [ dlinks(m) (i.e. m has previously
received information about the link x 7! y). We now prove n 6= y by contradic-
tion. From the second and third guards of the event, we derive that seqNum(n)(x 7!
y) < seqNum(m)(x 7! y) and by replacing y with n, we have seqNum(n)(x 7!
n) < seqNum(m)(x 7! n). However, from invariant inv3 2, seqNum(m)(x 7!
n)  seqNum(n)(x 7! n), which is a contradiction. The third abstract guard, i.e.,
x 7! y 2 RLinksH , is copied here. For the proof obligations (SIM) and (GRD), the
only additional assignments are to update the sequence number and msg. Hence this
obligation is trivially satisfied.

In this refinement, we also proved the convergence of the transfer rlink and trans-
fer dlink events. The variant V2 is just msg. First, by inv3 9, the variant is finite. Sec-
ond, the action of these two transfer events remove x 7! y 7! sn 7! n from msg. Fi-
nally, from the invariant inv3 8 and the guard of this event, x 7! y 7! sn 7! n 2 msg.
Hence these events decrease the variant V2.
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The variants V1 and V2 form a lexicographical variant, namely V = (V2, V1) where
V2 has higher precedence. The convergence proofs that we gave in the current and the
last refinement show that the events hello, goodbye, transfer rlink, and transfer dlink
decrease the combined variant V .

The guard of the observer event stabilize is also refined using information about
sequence numbers. In particular, the abstract event

stabilize
when

8m, n · m 7! n 2 RLinks,m 7! n 2 rlinks(n)
8m, n · m 7! n 2 DLinks,m 7! n 2 dlinks(n)

8m, n · m 7! n 2 closure(RLinks))
(8k · (k 7! m 2 rlinks(n), k 7! m 2 rlinks(m)) ^

(k 7! m 2 dlinks(n), k 7! m 2 dlinks(m)))
then

skip
end

becomes

stabilize
when

8m, n · m 7! n 2 RLinks,m 7! n 2 rlinks(n)
8m, n · m 7! n 2 DLinks,m 7! n 2 dlinks(n)

8m, n, link · m 7! n 2 RLinks)
seqNum(m)(link)  seqNum(n)(link)

then

skip
end

The first two guards are unchanged and state that every node knows the status of all
inward links. What is new is the last guard. This states that for any pair of nodes m
and n, and link link, if m has a direct communication link to n, then n’s information
about link is not older than m’s. From the properties of closure and invariant inv3 2, it
follows that if there is a path from m to n, then n will have the same sequence number
for all links inward to m. This fact, together with the invariants inv3 3 and inv3 4,
allows us to conclude that n will have up-to-date information about all inward links to
m (which is the last abstract guard).

4.6. The Fourth Refinement
We now model communication. We first remove the auxiliary variable msg. We

also remove the assignments that modify msg from the events hello and goodbye.
We then introduce three variables: SChan, RChan, and DChan. These model the
channels for transmitting sequence numbers, up-link information, and down-link infor-
mation, respectively.
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invariants:

inv4 1 SChan 2 (NODES⇥ NODES)! ((NODES⇥ NODES)! N)
inv4 2 RChan 2 (NODES⇥ NODES)! (NODES$ NODES)
inv4 3 DChan 2 (NODES⇥ NODES)! (NODES$ NODES)

For each pair of nodes, the link-state (up/down) information is a relation between
NODES, formalizing the set of pairs of nodes on the communication channel. More
precisely, for all nodes m and n, RChan(m 7! n) (respectively, DChan(m 7! n))
is the set of up (down) link information that is transferred from m to n. The chan-
nel SChan associates sequence numbers to the links in the link-state channels. Thus
SChan(m 7! n) stores information about the sequence numbers that are in transit
from m to n.

We now mention the relevant channel properties.

invariants:

inv4 4 8m, n · RChan(m 7! n) \ DChan(m 7! n) = ?
inv4 5 8m, n · (9link · 0 < SChan(m 7! n)(link)))m 7! n 2 RLinks
inv4 6 8m, n, link · SChan(m 7! n)(link)  seqNum(m)(link)

inv4 4: Link-state channels from nodes m to n are disjoint.

inv4 5: If there is traffic (i.e., a link with a positive sequence number) in the channel
from m to n, then the link m 7! n must currently be up.

inv4 6: For any two nodes m and n and a link, link’s sequence number in the channel
from m to n is not newer than the sequence number stored at node m for the same
link.

invariants:

inv4 7 8m, n, link · link 2 RChan(m 7! n))
(8k · seqNum(k)(link) = SChan(m 7! n)(link))

link 2 rlinks(k))

inv4 8 8m, n, link · link 2 DChan(m 7! n))
(8k · seqNum(k)(link) = SChan(m 7! n)(link))

link 2 dlinks(k))

inv4 9 8k, link · link 2 rlinks(k))
(8m, n · seqNum(k)(link) = SChan(m 7! n)(link)
) link 2 RChan(m 7! n))

inv4 7 – inv4 9: The sequence numbers in the channels are consistent with the se-
quence numbers stored at each node. For example, inv4 7 states that if a link is
in the channel for up-links from m to n, then for any node k which has the same
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sequence number as that stored in channel from m to n, link must be in the set
of up-links of the node k.
Note that the statement corresponding to inv4 9 for down-links, i.e.

8k, link · link 2 dlinks(k))
(8m, n · seqNum(k)(link) = SChan(m 7! n)(link)
) link 2 DChan(m 7! n)) ,

is derivable from the set of invariants.

invariants:

inv4 10 8m, n, x, y, link ·
SChan(m 7! n)(link) = SChan(x 7! y)(link) ^
link 2 RChan(m 7! n)

)
link 2 RChan(x 7! y)

inv4 11 8m, n, link · link 2 RChan(m 7! n))
0 < SChan(m 7! n)(link)

inv4 12 8m, n, link · link 2 DChan(m 7! n))
0 < SChan(m 7! n)(link)

inv4 13 8m, n, link · link /2 RChan(m 7! n) ^ link /2 DChan(m 7! n)
) SChan(m 7! n)(link) = 0

inv4 10: The sequence numbers in the channels are consistent with each other. For
example, if a link has the same sequence number in the channel from m to n
and the channel from x to y, then this link either belongs to the up channels of
both m 7! n and x 7! y, or the down channels of both, but not up for one and
down for the other.

inv4 11 – inv4 13: For each pair of nodes m and n and the link link, if link is in one
of the link-state channels, then the sequence number for link in SChan is also
positive and vice versa.

Moreover, at this stage, we can remove the history variable RLinksH and DLinksH .
To prove refinement, we need the following invariants, which relate these history vari-
ables to the information in the channels.

invariants:

inv4 14 8m, n·RChan(m 7! n) ✓ RLinksH
inv4 15 8m, n·DChan(m 7! n) ✓ DLinksH

inv4 14 – inv4 15: For each pair of nodes m and n, the up-link information in the
channel from m to n is included in RLinksH , the set of links that are up or
were up. The invariant for down-links is analogous.
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Coming back to the modeling of the events, the actual communication between
nodes uses the above channels, so the abstract events for transferring link information
(namely, transfer rlink and transfer dlink) must each be split into a pair of events for
sending and receiving information. The following diagram illustrates what happens.
First, the node m sends the information to the channels and afterwards the node n
receives information from the channels. In our development, each transfer event is
refined by a receive event and we add a new send event, which therefore refines skip.
In our diagram, the top part is the abstraction (skip and transfer) and the bottom part
is the refinement (send and receive).

mGFED@ABC nGFED@ABC
mGFED@ABC nGFED@ABCchannels

skip // transfer //

send // receive //

Below is the description of the new event for sending information about an up link
from m to n.

send rlink
status anticipated
any m, n, link where

m 7! n 2 RLinks
SChan(m 7! n)(link) = 0
link 2 rlinks(m)

then

SChan(m 7! n)(link)seqNum(m)(link)
RChan(m 7! n) := RChan(m 7! n) [ {link}

end

For a node to send information about a link, this event assumes that the information
about the same link from the last send has been received or lost, see Environment

Assumption 4. This is formalized by the guard stating that the corresponding sequence
number in the channel is 0. The information is then sent by placing it on the outward
links from m to n. The guard m 7! n 2 RLinks (i.e. the link from m to n is currently
up), which is also required by Environment Assumption 4.

The abstract transfer rlink is refined to specify the following event receive rlink.
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receive rlink
refines transfer rlink
any m, n, x, y where

seqNum(n)(x 7! y) < SChan(m 7! n)(x 7! y)
x 7! y 2 RChan(m 7! n)

then

rlinks(n) := rlinks(n) [ {x 7! y}
dlinks(n) := dlinks(n) \ {x 7! y}
seqNum(n)(m 7! n) := SChan(m 7! n)(x 7! y)
SChan(m 7! n)(x 7! y) := 0
RChan(m 7! n) := RChan(m 7! n) \ {x 7! y}

end

The link-state information is retrieved from the channels from m to n. Here, the ab-
stract parameter sn is refined as SChan(m 7! n)(x 7! y). Note that the proof obliga-
tions (SIM) and (GRD) are trivially satisfied since the additional actions only modify
new variables, namely SChan and RChan. To establish guard strengthening (GRD),
we must prove the following.

• m 7! n is an up-link. But, since seqNum(n)(x 7! y) < SChan(m 7! n)(x 7!
y), we know that SChan(m 7! n)(x 7! y) is positive. From the invariant
inv4 5, we can conclude that the link m 7! n is an up link.

• SChan(m 7! n)(x 7! y) (as a refinement of the abstract parameter sn) satisfies
the guard of the abstract event, i.e.

SChan(m 7! n)(x 7! y)  seqNum(m)(x 7! y)
seqNum(n)(x 7! y) < SChan(m 7! n)(x 7! y)
8k · seqNum(k)(x 7! y) = SChan(m 7! n)(x 7! y)) x 7! y 2 rlinks(k)

The first condition follows from the invariant inv4 6. The second condition is
exactly the first guard of this concrete event. The last condition can be derived
from the second guard, x 7! y 2 RChan(m 7! n), and the invariant inv4 7.

• x 7! y 2 RLinksH . But we know that x 7! y 2 RChan(m 7! n) and
from invariant inv4 14, we have that RChan(m 7! n) ✓ RLinksH and hence
x 7! y 2 RLinksH .

The refinement of transfer dlink to receive dlink is analogous.
Note that the event receive rlink receives only genuinely new messages. Hence it

is necessary to introduce a complement event that discards obsolete information, both
for up-links and down-links. Another reason for introducing discard events is that,
without them, we would not be able to prove deadlock freedom in the next refinement
level. Below is the event for discarding information about an up-link (the new event
discard dlink is analogous).
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discard rlink
status anticipated
any m, n, link where

SChan(m 7! n)(link)  seqNum(n)(link)
link 2 RChan(m 7! n)

then

SChan(m 7! n)(link) := 0
RChan(m 7! n) := RChan(m 7! n) \ {link}

end

The link-state information is obsolete since the node has already received more recent
information about link in the channel. Hence, the information is simply discarded
from the channel. This new event refines skip since the actions only effect the new
variables, SChan and RChan.

Now that we have explicitly introduced communication, we refine the environment
event RemoveLink to account for Environment Assumption 5. That is, when a link
goes down, any messages sent on it and not yet received are lost.

RemoveLink
refines RemoveLink
any link where

link 2 RLinks
then

RLinks := RLinks \ {link}
DLinks := DLinks [ {link}
SChan := SChan C� ({link}⇥ {NODES⇥ NODES⇥ {0}})
RChan(link) := ?
DChan(link) := ?

end

This trivially refines the abstract RemoveLink event since the guard is unchanged and
the new assignments only modify new variables.

Note that at this point all the events can be straightforwardly implemented in a
distributed system. That is, the events no longer “cheat” and perform tests or actions
that would not be algorithmically realizable.

4.7. The Fifth Refinement
Our machine in the fourth refinement is an implementation of the protocol. How-

ever, we have not yet established the convergence of the events send rlink and dis-
card rlink (and correspondingly for dlink). We are now faced with the following
problem: these events actually do not converge and should not converge. As we saw
in Figure 1 (third part), each node will periodically broadcast information about its
LSDB and its neighbors will repeatedly receive this information, even when it is not
new. What we will show then is that the system eventually does reach a stable state
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(assuming that the environment does not change), i.e. the system satisfies System Re-

quirement 1, despite continually broadcasting and receiving redundant information.
To prove this, we construct an equivalent model of the system by first partition-

ing these four non-convergent events each into two parts: a convergent and divergent
part. We accomplish this by defining a restricted local notion of stability, called neigh-
bor stability, and showing that the neighbor-stable parts diverge and, conversely, the
neighbor-unstable parts converge. This is done in this section and Section 4.8. Af-
terwards, in Section 4.9, we prove that stability follows from this partial convergence,
under an additional assumption concerning the strong-fairness of event execution.

Given a link link and a link from m to n, we say the information about link is
neighbor stable from m to n if n’s sequence number for link is at least as large as
m’s. This means that the information about link in m does not need to be propagated
to n and therefore further information coming from m about link will not change
this neighbor-stable status. Using this notion of neighbor stable, we can restate the
third guard of the observe event stabilize (from Section 4.5) as follows: Any link is
neighbor-stable for any up-link from m to n.

We now partition the events by adding either the guard

seqNum(m)(link)  seqNum(n)(link)

or its complement. For example, we partition the send rlink event into the two events
send rlink stable and send rlink unstable. For send rlink stable we add the above
guard and for send rlink unstable we add the complement as a guard. We partition
the other three events discard rlink, send dlink, and discard dlink similarly.

Note that we must partition the discard events as information must also be discarded
in neighbor-unstable states. The reason for this is that communication is asynchronous
and therefore information may be sent in a stable state but received in an unstable state.

To prove that the events send rlink unstable and send dlink unstable are con-
vergent, we use the following variant V3.

{m 7! n 7! link | SChan(m 7! n)(link)  seqNum(n)(link)}

This denotes the set of old messages on all channels. We will prove the convergence of
discard rlink unstable and discard dlink unstable in the next refinement level and
hence they act as anticipated events here.

The convergence proof is as follows. First, note that all these events transfer link’s
sequence number from m to n. For any tuple x 7! y 7! k different from m 7! n 7!
link, the events neither change SChan(x 7! y)(k) nor seqNum(y)(k). Hence, we
can restrict our attention to m 7! n 7! link. Now consider the following cases.

• For the events send rlink unstable and send dlink unstable, their guards state
that the sequence number for link in the channel from m to n is 0 and hence
m 7! n 7! link 2 V3. After the event, the sequence number for link in m,
which is newer than n’s sequence number for link, is copied to the channel.
Hence m 7! n 7! link /2 V 0

3 (V 0
3 denotes the value of the variant after the event

execution) and therefore V3 is decreased.
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• For the events send rlink stable and send dlink stable, their guards state that
the sequence number in the channel is 0. Hence m 7! n 7! link 2 V3. After the
event, the information from m that is not newer than that of n is copied to the
channel. Hence m 7! n 7! link 2 V 0

3 . This means that V3 does not increase.

• For discard rlink stable, discard rlink unstable, discard dlink stable, and
discard dlink unstable, the guards of these events state that the information
in the channel before is not newer than that of n and afterwards this information
is reset to 0, which is also not newer than that n. Hence V3 also does not increase.

In this refinement step, we also proved the following theorem about the deadlock
freeness of a set of events. Namely, the guard of the event stabilize is equivalent to the
negation of the disjunction of the guards of the following eight events: hello, goodbye,
send rlink unstable, send dlink unstable, receive rlink, discard rlink unstable,
receive dlink, and discard dlink unstable. Hence, if none of these eight events is
enabled, then stabilize is enabled and the system is therefore in a stable state.

Moreover, we also proved theorems stating that the 4 events send rlink stable,
send dlink stable, discard rlink stable, and discard dlink stable maintain the sys-
tem’s stable state, that is, if the state before the event execution is stable then the state
after the event execution is also stable. This is easy to prove since stable refers only
to RLinks, DLinks, rlinks, dlinks, and seqNum, whereas our 4 events only mod-
ify the information in the channels, i.e., SChan, RChan, and DChan. Hence, these
events will maintain the stable state.

4.8. Sixth Refinement
In this refinement step, we prove the convergence of the discard rlink unstable

and discard dlink unstable. The variant V4 that we used is

{m 7! n 7! link | SChan(m 7! n)(link) 6= 0} \
{m 7! n 7! link | seqNum(n)(link) < seqNum(m)(link)} .

Informally, the variant represents the set of messages about link that are transferred
from m to n, where link is not neighbor stable from m to n. The proof is as follows.

• The events discard rlink unstable and discard dlink unstable discard a mes-
sage for a link from m to n where the information is unstable. Hence they
decrease the variant V4.

• The events discard rlink stable and discard dlink stable also discard a mes-
sage for a link from m to n, but the information is stable. Hence they do not
increase the variant V4.

4.9. Partial Convergence implies Stability
In contrast to the development of terminating programs, we now only prove the

convergence of a subset of the events. Nevertheless, this is sufficient to establish Sys-

tem Requirement 1. Namely, if the environment is inactive for a sufficiently long
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time, then for each strongly-connected component M , the local view of every node in
M agrees with the actual topology, restricted to M .

First, we introduce the notion of a run of Event-B together with a strong-fairness
assumption. A run of an Event-B model is an infinite sequence of states obtained from
an initial state by executing events of the model. We call a run strongly fair with respect
to a set of events E if it respects the following strong-fairness assumption with respect
to E: if an event from E is enabled infinitely often, then it will be taken infinitely often.
This assumption will hold for any reasonable implementation of topology discovery.

At the last refinement level, the set of events can be divided into different groups as
follows.

1. A set of environment events Env = {Env1, . . ., Envl}. In our case, there are just
the two events AddLink and RemoveLink.

2. An observer event Obs. This observer event has skip as its action and its guard
specified that the system is in stable state. Hence it is of the form

when stable then skip end

In our development, this is the stabilize event.
3. A set of convergent events CE = {CE1, . . ., CEm }. In our development, the con-

vergent events are hello, goodbye, send rlink unstable, send dlink unstable,
receive rlink, discard rlink unstable, receive dlink, and discard dlink unstable.

4. A set of divergent events DE = {DE1, . . ., DEn}. These events are send rlink stable,
send dlink stable, discard rlink stable, and discard dlink stable.

We will now prove the following theorem:

Theorem 2 (System Stabilizes). Assume that the following propositions hold:

i) Deadlock-freedom for the observer event Obs and convergent events CE. In par-
ticular,

stable, ¬(G(CE1) _ · · · _G(CEm)) ,

where G(CEi) is the guard of the event Ci.
ii) The events in CE converge using a well-founded variant V .

iii) The events in DE do not increase V .
iv) The events in DE preserve stable. By this we mean that none of the DE events

disable the guard of Obs.
v) The events in CE are strongly fair.

Then if the environment is eventually quiescent (i.e., at some point no environment
events Env1, . . ., Envl from the first group occur) then the system will eventually
reach a stable state and remain in this state.

The following proof is a traditional “paper and pencil proof”, rather than a proof
using the Rodin tool.

PROOF. Our proof of Theorem 2 is by contradiction and proceeds as follows. Assume
that there is a strongly fair run R with a quiescent suffix, but which never reaches a sta-
ble state. Then there must be infinitely many i such that R(i) does not satisfy “stable”.
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Let r be a quiescent suffix of R. By Proposition (i), there are infinitely many states
such that some event in CE is enabled. By the fairness assumption, Proposition (v),
the events in CE must be taken infinitely often on r. Since there are no environment
events and by Proposition (ii) all events in CE decrease the variant, whereas by Propo-
sition (iii), other system events (i.e., Obs and DE) do not increase the variant V , the
variant V decrease infinitely often in r. This contradicts the well-foundedness of V .
Therefore, all strongly fair runs with a quiescent suffix eventually reach a stable state.
Moreover, once in a stable state, all the events in CE are disabled and, by Proposition
(iv), the events in DE preserve the stable state. Together with the fact that event Obs
does not change the state (its action is skip), it follows that the system stays in the
stable state. ⇤

Note that the theorem statement is closely related to the proof rules for extended
response of Manna and Pnueli [19]. Our statement is somewhat simpler than their rules
as we deal only with assertional (state) formulas and strongly fair events (they consider
both weakly and strongly fair transitions). Moreover, we have an additional assumption
(iv), which we use to establish that stability is preserved after a stable state is reached.

In our application of this theorem, we assume Proposition (v), whereas the other
propositions have already been previously proved using the Rodin tool. In particular,
we proved Propositions (i) and (iv) in the 5th refinement and Propositions (ii) and
(iii) in the 2nd, 3rd, 5th, and 6th refinements. The system referred to in the theorem
statement is the machine M5 given by the 5th refinement, rather than the machine M4

from the 4th refinement, which is our implementation. However, M5 simply partitions
four of M4’s events. Therefore the proof of Theorem 2 for M5 can be naturally mapped
to M4. Namely, the partition of M4’s events into stable and unstable events in M5 gives
rise to a partition of their instances (recall Section 2.1). Therefore Theorem 2 also holds
for M4 if we restate the fairness assumption in Theorem 2 as follows: “If an instance
of event is enabled infinitely often, then it will be taken infinitely often.”

Finally, recall Theorem 1, proved in Section 4.3, which states that in a stable state,
each node has the correct view of all links in its strongly-connected component. It
follows from this and Theorem 2 that the system M4 satisfies System Requirement 1.

4.10. Summary — Proof Statistics
In Table 1 we give proof statistics of the development in the Rodin Tool. These

statistics measure the size of the model, the proof obligations generated and discharged
by the Rodin Platform, and those interactively proved. Note that there are many proof
obligations in the 4th refinement due to the introduction of three different channels.
In order to guarantee correctness using these channels, various invariants must be es-
tablished. Moreover, our formal model of these channels uses high-order functions.
Given the current state of the Rodin platform, this results in a large number of interac-
tive (manual) proofs. Also, most of the proofs in the 5th and the 6th refinements are
interactively discharged. The main reason for this is the lack of automatic support in
the tool for reasoning about set comprehension, disjunctions, and strict subsets.
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Model Number of Automatically Interactively
Proof Obligations Discharged Discharged

Context 0 0 0
Initial Model 21 19(91%) 2(9%)
1st Refinement 33 30(91%) 3(9%)
2nd Refinement 30 25(83%) 5(17%)
3rd Refinement 74 38(54%) 36(46%
4th Refinement 176 102(58%) 74(42%)
5th Refinement 44 7(16%) 37(84%)
6th Refinement 8 0(0%) 8(100%)
Total 386 221(57%) 165(43%)

Table 1: Proof statistics

5. Related Work and Conclusions

5.1. Related Work
Numerous formal methods have been applied to the analysis of network protocols.

This includes model checking [7, 16], theorem proving [12], and development by re-
finement [4, 25]. Most of the existing case studies focus on endpoint protocols, such
as link-layer protocols like the sliding-window or alternating-bit protocols, or higher-
level protocols such as SSL/TLS. These protocols generally involve just two processes
(the end points) or perhaps a third process (e.g., an adversary). Routing is different as
its specification should make a general statement about an entire networks of nodes,
executing the protocol concurrently.

With respect to routing protocols, probably the most detailed study is that of [9],
who used an interactive theorem prover (HOL) together with a model checker (SPIN)
to prove different properties of distance vector routing protocols. They carried out case
studies analyzing the Routing Information Protocol (RIP) standard and the Ad-Hoc
On-Demand Distance Vector (AODV) protocol. Although the protocols they analyze
are of a different flavor than ours (distance vector versus link state) there are a number
of similarities. For instance, in their analysis of RIP, they formalize a notion of sta-
bility, which captures nodes agreeing on shortest paths. They are able to establish this
property in general, since the protocol imposes limits on the lengths of paths (so-called
hop counts). In contrast, we can only show (our notion of) the stability of topology dis-
covery under the assumption of a suitably quiescent environment. Another substantial
difference is they carry out post-hoc protocol verification whereas we focus on protocol
development.

In [23], the authors describes their use of CMC, a code-based model-checker for C
and C++, to model check different implementations of AODV. They use model check-
ing not for verification, but rather for bug finding and hence they can soundly reduce
the protocol’s infinite state space (unbounded number of nodes, unbounded sequence
counters, etc.) to a finite one by scaling down their model to work with a fixed number
(2 to 4) of processes that operate on data from finite domains. The properties checked
include properties of the distributed routing tables (which was also the case in [9]),
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such as the routing tables of all nodes do not form a loop. In addition, since they are
working with a code-based checker, they are able to search for implementation errors,
such as segmentation violations, memory leaks, dangling pointers, and the like. These
implementation aspects are, of course, not present in our work, although it is possible in
theory to carry out the refinement down to actual code, which is then, by construction,
error free. The Rodin tool does not yet, however, support this.

A number of network protocols have been formally developed using refinement.
For example, [25] shows how to develop a family of different sliding window proto-
cols. These are two party endpoint protocols that provide reliable data transfer between
a producer and a consumer connected by unreliable channels. An example of non-
endpoint protocol is given in [4], who present the development of a distributed leader
election protocol on a connected network graph (the IEEE 1394 protocol). [2] presents
the development in Event-B of a routing algorithm for mobile agents due to [20], which
was originally verified in Coq.

Finally, note that the main system property that we show (System Requirement 1)
is established by proving that the system enters a stable state. The notion of stability
that we formalize in Section 4.3 is an instance of the general notion of a stable system
property (see e.g., [14, 18]), which is a property P of system states whereby if P is
true of any reachable state s, then P is true of all states reachable from s. Different
approaches have been given for proving stabilization properties of protocols, e.g., [15,
27]. Our Theorem 2 gives sufficient conditions for establishing (a form of) stability. It
is attractive in that, with the exception of the fairness assumption, all other assumptions
can directly and easily be established with the Rodin tool.

5.2. Conclusions
We have presented a case study in formally developing a distributed topology dis-

covery algorithm in Event-B. Our approach to formalizing and reasoning about stable
states should be applicable to other semi-reactive systems, including other routing al-
gorithms. Our approach is particularly novel in how it combines refinement with argu-
ments about convergence and disjointness of events to specify liveness properties about
the system eventually stabilizing and properties of the resulting stable state.

We have presented a single development of topology discovery. However, in actual-
ity, we formalized several different developments, each highlighting a different aspect
of the problem, making different assumptions about the environment, and establishing
different properties. For example, we first considered the case where the environment
is static and we developed a terminating algorithm satisfying a strong post-condition.
We also considered the case where the environment is dynamic and not necessarily sta-
bilizing. There we had the idea of augmenting the environment with history variables
and using them to establish interesting, although weak invariants, e.g., corresponding
to our second requirement. The current development, and our general development
approach, arose from different attempts to combine these developments and exploit the
standard notions of convergence and deadlock-freeness as a way to express properties
holding only in stable states. Our different developments reflect not only the many
facets of the problem, but also the fact that there was a learning process involved in
understanding the problem, the solution, and the invariants that hold. The observa-
tion that specifying problems is often nontrivial and requires iteration to converge on a
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good solution (and there may be many) is certainly not a new. But it is an observation
worth repeating and such iteration fits well a development process where one alternates
between specification and proving at different levels of abstraction.
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