
Decomposition Tool for Event-B

?

Renato Silva1, Carine Pascal2, T.S. Hoang3, and Michael Butler1

1 University of Southampton
2 Systerel

3 ETH Zurich
{ras07r,mjb}@ecs.soton.ac.uk

carine.pascal@systerel.fr

htson@inf.ethz.ch

Abstract. Two methods have been identified for Event-B model de-
composition: shared variable and shared event. The purpose of this pa-
per is to introduce the two approaches and the respective tool support
in the Rodin platform. Besides alleviating the complexity for large sys-
tems and respective proofs, decomposition allows team development in
parallel over the same model which is very attractive in the industrial
environment.

Key words: Formal Methods, Event-B, Decomposition, Shared Event,
Shared Variable, Team Development, Rodin

1 Introduction

The “top-down” style of development used in Event-B [1] allows the introduction
of new events and data-refinement of variables during refinement steps. A con-
sequence of this development style is an increasing complexity of the refinement
process when dealing with many events and state variables. The main purpose
of the model decomposition is precisely to address such di�culty by cutting
a large model into smaller components. Two methods have been identified for
the Event-B decomposition: shared variable [2, 3] and shared event [4, 5]. We
propose a plug-in developed in the Rodin platform [6] that supports these two
decomposition methods for Event-B. Because decomposition is monotonic [4],
the generated sub-components can be further refined independently. Therefore
we can introduce team developments: several developers share parts of the same
model and work independently in parallel. Moreover the decomposition also par-
tition the proof obligations which are expected to be easier to be discharged in
the sub-components.

This document is structured as follows: Sect. 2 defines the two styles of Event-
B decomposition. Section 3 introduces in more details the tool support. Finally
in Sect. 4 we draw conclusions about this work.
? Part of this research was carried out within the European Commission ICT project

214158 DEPLOY (http://www.deploy-project.eu)

Thai Son Hoang
The original publication is available at http://dx.doi.org/10.1002/spe.1002
Appeared in Software: Practice and Experience, Volume 41(2), pp 199-208.
© John Wiley & Sons, Ltd

Thai Son Hoang

Thai Son Hoang

2 Decomposition Tool for Event-B

2 Decomposition Styles

Consider Fig. 1 where machine M has events e1 to e4 and variables v1 to v3.
The solid lines connect variables used by the events. In Fig. 1(a), machine M

is decomposed using the shared variable approach where events are partitioned
into sub-components: events e1 and e2 are allocated to machine M1 and e3

and e4 are allocated to machine M2. Consequently, variable v1 belongs to M1

and v3 belongs to M2 (private variables). Variable v2 is shared between e2 and
e3 so it is shared by both sub-components (shared variable). Besides the initial
event allocation we introduce additional external events simulating how shared
variables are handled in the other sub-component (e3 ext is added to M1 and
e2 ext to M2). Sub-components can be refined independently but the shared
variable must be present and cannot be data-refined.

Figure 1(b) depicts machine M again decomposed but using the shared event

approach where variables are partitioned to sub-components: v1 is placed in M1

and v2, v3 are placed in M2. Events using variables allocated to di↵erent sub-
components (e2 shares v1 and v2) must be split. The part corresponding to each
variable (e2 1 and e2 2) is used to create partial versions of the non-decomposed
event. The sub-components can be refined independently without constraints.

(a) (b)

Fig. 1. Shared Variable decomposition on the left and shared event decomposition on
the right

Shared event approach is suitable for message-passing distributed systems
while shared variable approach is suitable for design of parallel algorithms [7].

3 Decomposition Tool

The decomposition tool is implemented as a plug-in in the Rodin platform. The
decomposition style used depends on the inputted system and on the end-user’s

Decomposition Tool for Event-B 3

preference. The decomposition originates sub-components according to the con-
figuration (events/variables partition). That configuration is stored persistently
in a composed machine [8] for future reuse or editing as seen in Fig. 2. ”Replay-
ing” the decomposition might require additional storing mechanisms. We intend
to address this issue in the future.

(a)

COMPOSED MACHINE CM
TYPE SHARED EVENT
REFINES Mn

INCLUDES
N
P
Q

EVENTS
evt 1 REFINES Mn.evt 1

Combines Events N.evt 1 k P.evt 1
. . .
evt n REFINES Mn.evt n

Combines Events P.evt n k Q.evt n
END

(b)

Fig. 2. Decomposition tool diagram for a machine Mn and composed machine CM
using the shared event approach

The input for the decomposition is a machine of a given Rodin project se-
lected by the end-user. After the selection of the style and decomposition con-
figuration, the tool generates the sub-components automatically. Summarising
these are the steps to be followed in order to decompose (we decompose Mn in
Fig. 2(a)):

1. End-user selects a machine Mn to decompose.
2. End-user defines sub-components to be generated: N, P, Q
3. End-user selects the decomposition style to use:

Shared Variable: end-user selects the events to be allocated to sub-components.
The tool automatically decomposes the rest of the model according to
the event partition (shared/private variables, external events).

Shared Event: the end-user selects the variables to be allocated for each
sub-component. The rest is done automatically.

4. The end-user can opt to decompose the seen contexts into the sub-components
similarly to the machine decomposition.

5. Sub-components are fulfilled according to the decomposition configuration.
6. The decomposition configuration is stored as a composed machine.
7. Sub-components N, P, Q . . . can be further refined.

The configuration is performed through the Rodin’s Graphical User Interface
as it seems more suitable for the end-user.

4 Decomposition Tool for Event-B

3.1 Limitations

For the shared variable decomposition the partition of events is always possible
since the possible restriction (variables) can be shared between sub-components.
On the other hand, that decomposition might be less significant despite being
possible: a further refinement may be more complex and not benefit the develop-
ment. The decomposition should have a final goal: a misleading decomposition
may harm a system instead of helping. For the shared event decomposition, the
partition of variables is not always possible for all developments. Predicates using
variables allocated to di↵erent sub-components need user’s interaction in order
to simplify the separation since such operation cannot be done automatically.
The tool automatically flags situations requiring user’s intervention.

4 Conclusion

This paper presents the decomposition of Event-B models and tool support in
the Rodin platform. Decomposition can advantageously be used to decrease the
complexity and increase the modularity of large systems, especially after several
refinements. Main benefits are the distribution of proof obligations over the sub-
components which are expected to be easier to be discharged and the further
refinement of independent sub-components in parallel introducing team develop-
ment of a model which is attractive for the industry. Shared variable and shared
event decomposition are supported in the same tool: the former seems suitable
when designing concurrent programs while the latter seems particularly suitable
for message-passing distributed programs. However the end-user chooses a de-
composition style depending on specific systems and on its modelling preferences.
The decomposition configuration is stored persistently for replaying/editing al-
though further study is still required for this matter. A visualisation view for
decomposition seems intuitive and we intend to explore it using GMF [9].

References

1. Métayer, C., Abrial, J.R., Voisin, L.: Event-B Language. Technical report, Deliver-
able 3.2, EU Project IST-511599 - RODIN (May 2005)

2. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Dis-
crete Models: Application to Event-B. Fundam. Inf. 77(1-2) (2007) 1–28

3. Abrial, J.R.: Event Model Decomposition. Technical report, ETH Zurich (2009
(Unpublished))

4. Butler, M.: Synchronisation-based Decomposition for Event-B. In: RODIN Deliv-
erable D19 Intermediate report on methodology. (2006)

5. Butler, M.: Decomposition Structures for Event-B. Integrated Formal Methods
iFM2009 (February 2009)

6. Rodin: RODIN project Homepage. http://rodin.cs.ncl.ac.uk (September 2008)
7. Butler, M.: An Approach to the Design of Distributed Systems with B AMN. In:

Proc. 10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM), LNCS
1212. (1997) 221–241

8. Silva, R., Butler, M.: Parallel Composition Using Event-B. http://wiki.event-b.
org/index.php/Parallel_Composition_using_Event-B (July 2009)

9. GMF: Graphical Modeling Framework. http://www.eclipse.org/modeling/gmf/

(September 2008)

