
Analysing Security Protocols Using Refinement

in iUML-B

Colin Snook, Thai Son Hoang, and Michael Butler

ECS, University of Southampton, U.K.
{cfs,t.s.hoang,mjb}@ecs.soton.ac.uk

Abstract. We propose a general approach based on abstraction and re-
finement for constructing and analysing security protocols using formal
specification and verification. We use class diagrams to specify concep-
tual system entities and their relationships. We use state-machines to
model the protocol execution involving the entities’ interactions. Fea-
tures of our approach include specifying security principles as invariants
of some abstract model of the overall system. The specification is then
refined to introduce implementable mechanisms for the protocol. A glu-
ing invariant specifies why the protocol achieves the security principle.
Security breaches arise as violations of the gluing invariant. We make use
of both theorem proving and model checking techniques to analyse our
formal model, in particular, to explore the source and consequence of the
security attack. To demonstrate the use of our approach we explore the
mechanism of a security attack in a network protocol.

Keywords: Virtual LAN, Security, Event-B, iUML-B.

1 Introduction

Ensuring security of protocols is a significant and challenging task in the context
of autonomous cyber-physical systems. In this paper, we investigate the use of
formal models of protocols in order to discover and analyse possible security
threats. In particular, we are interested in the role of formal models in identify-
ing security flaws, exploring the nature of attacks that exploit these flaws and
proposing measures to counter flaws in systems that are already deployed.

Our contribution is a general approach based on abstraction and refinement
for constructing and analysing security protocols. The approach is suitable for
systems containing multiple conceptual entities (for example, data packets, de-
vices, information tags, etc.). We use class diagrams to specify the relationships
between entities and state-machines to specify protocols involved in their inter-
actions. Security principles are defined as constraints on the system entities and
their relationships. We use refinements of these models, to gradually introduce
implementation details of the protocols that are supposed to achieve these se-
curity properties. The use of abstract specification and refinement allows us to
separate the security properties from the protocol implementation. In particular,
possible security flaws are detected as violations of the gluing invariants that link

The original publication is available at https://doi.org/10.1007/978-3-319-57288-8_6
In Proceedings of NFM 2017: NASA Formal Methods Conference © Springer

2 C. Snook, T.S. Hoang, M. Butler

the abstract and concrete models. Further analysis helps to pinpoint the origin
and nature of attacks that could exploit these flaws. The approach has been
developed within the Enable-S3 project [4] which aims to provide cost-e�cient
cross-domain verification and validation methods for autonomous cyber-physical
systems. Within Enable-S3, we are applying the approach on case studies in the
avionics and maritime domains. The case-studies involve secure authentication
and communications protocols as part of larger autonomous systems.

We illustrate our approach with an analysis of Virtual Local Area Network
(VLAN) operation including the principle of tagging packets. We explore a
known security flaw of these systems, namely double tagging. We use the Event-B
method and iUML-B class diagrams and state-machines as the modelling tool.

The rest of the paper is structured as follows. Section 2 gives some back-
ground on the case study, the methods and tools that we use. The main content
of the paper is in Section 3 describing the development using iUML-B and anal-
ysis of the VLAN model. Finally, we summarise our approach in Section 4 and
conclude in Section 5. For more information and resources, we refer the reader
to our website: http://eprints.soton.ac.uk/id/eprint/403533. The web-
site contains the Event-B model of the VLAN.

2 Background

2.1 VLAN tagging

A Local Area Network (LAN) consists of devices that communicate over phys-
ical data connections that consist of multiple steps forming routes via interme-
diate network routing devices called switches. The ‘trunk’ connections between
switches are used by multiple routes. A VLAN restricts communication so that
only devices that share the same VLAN as the sender, can receive the commu-
nication thus providing a way to group devices irrespective of physical topology.
In order to achieve this, switches attach a tag to message packets in order to
identify the sender’s VLAN. The tag is removed before being sent to the receiv-
ing device. Typically, a system uses one VLAN identity to represent a default
VLAN. This is known as the native VLAN. A packet intended for the native
VLAN does not require tagging. The IEEE 802.1Q standard [6] is the most com-
mon protocol for ethernet-based LANs and includes a system for VLAN tagging
and associated handling procedures. The standard permits multiple VLAN tags
to be inserted so that the network infrastructure can use VLANs internally as
well as supporting client VLAN tagging. A well-known security attack exploits
double tagging by hiding a tag for a supposedly inaccessible VLAN behind a
tag for the the native VLAN. The receiving switch sees the unnecessary native
VLAN tag and removes it before sending the packet on to the next switch. This
switch then sees the tag for the inaccessible VLAN and routes the packet accord-
ingly so that the packet infiltrates the targeted VLAN. Double tagging attacks
can be avoided by not using (i.e. de-configuring) the native VLAN.

Analysing Security Protocols Using iUML-B 3

2.2 Event-B

Event-B [1] is a formal method for system development. Main features of Event-
B include the use of refinement to introduce system details gradually into the
formal model. An Event-B model contains two parts: contexts and machines.
Contexts contain carrier sets, constants, and axioms constraining the carrier
sets and constants. Machines contain variables v , invariants I(v) constraining
the variables, and events. An event comprises a guard denoting its enabled-
condition and an action describing how the variables are modified when the
event is executed. In general, an event e has the following form, where t are
the event parameters, G(t , v) is the guard of the event, and v := E(t , v) is the
action of the event1.

e b= any t where G(t , v) then v := E(t , v) end (1)

A machine in Event-B corresponds to a transition system where variables rep-
resent the states and events specify the transitions. Contexts can be extended
by adding new carrier sets, constants, axioms, and theorems. Machine M can be
refined by machine N (we call M the abstract machine and N the concrete ma-
chine). The state of M and N are related by a gluing invariant J(v ,w) where v ,
w are variables of M and N, respectively. Intuitively, any “behaviour” exhibited
by N can be simulated by M, with respect to the gluing invariant J . Refinement
in Event-B is reasoned event-wise. Consider an abstract event e and the corre-
sponding concrete event f. Somewhat simplifying, we say that e is refined by f if
f’s guard is stronger than that of e and f’s action can be simulated by e’s action,
taking into account the gluing invariant J . More information about Event-B can
be found in [5]. Event-B is supported by the Rodin Platform (Rodin) [2], an ex-
tensible toolkit which includes facilities for modelling, verifying the consistency
of models using theorem proving and model checking techniques, and validating
models with simulation-based approaches.

2.3 iUML-B

iUML-B [8–10] provides a diagrammatic modelling notation for Event-B in the
form of state-machines and class diagrams. The diagrammatic models are con-
tained within an Event-B machine and generate or contribute to parts of it. For
example a state-machine will automatically generate the Event-B data elements
(sets, constants, axioms, variables, and invariants) to implement the states while
Event-B events are expected to already exist to represent the transitions. Tran-
sitions contribute further guards and actions representing their state change, to
the events that they elaborate. An existing Event-B set may be associated with
the state-machine to define its instances. In this case the state-machine is ‘lifted’
so that it has a value for every instance of the associated set. State-machines are
typically refined by adding nested state-machines to states.

1 Actions in Event-B are, in the most general cases, non-deterministic [5].

4 C. Snook, T.S. Hoang, M. Butler

(a) Class diagram (b) State-machine

Fig. 1: Example iUML-B diagrams

Class diagrams provide a way to visually model data relationships. Classes,
attributes and associations are linked to Event-B data elements (carrier set, con-
stant, or variable) and generate constraints on those elements. For the VLAN
we use class diagrams extensively to model the sets of entities and their rela-
tionships and we use state-machines to constrain the sequences of events and to
declare state dependant invariant properties.

Figure 1 shows an abstract example of an iUML-B model to illustrate the
features we have used in the VLAN. We give the corresponding translation into
Event-B in Figure 2. In Figure 1a, there are three classes; CLS1 , CLS2 , which
elaborate carrier sets, and CLS3 , which is a sub-class of CLS1 and elaborates
a variable. An attribute or association of a class can have a combination of the
following properties: surjective, injective, total, and functional. Attributes attr1
of CLS1 and attr3 of CLS3 are total and functional, while attr2 of CLS2 is
functional. An injective association rel defined between CLS1 and CLS2 elabo-
rates a constant. Figure 1b shows an example of a state-machine, which is lifted
to the carrier set CLS1 for its instances. This is also the instances set for the
class CLS1 and a state of the state-machine is named after its variable sub-class,
CLS3 . Further sub-states S1 and S2 are modelled as variable subsets of CLS3 .
The state of an instance is represented by its membership of these sets. The
state-machine transitions are linked to the same events as the methods of CLS3 .
Hence the state-machine constrains the invocation of class methods for a partic-
ular instance of the class. The contextual instance is modelled as a parameter
this CLS3 which can be used in additional guards and actions in both the class
diagram and the state-machine.

The transition c, from the initial state to S1 also enters parent state CLS3
and therefore represents a constructor for the class CLS3 . The class method c is

Analysing Security Protocols Using iUML-B 5

sets : CLS1 ,CLS2 constants : attr1 , attr2 , rel

axioms :
rel 2 CLS1 7⇢ CLS2

attr1 2 CLS1 ! N
attr2 2 CLS2 ! Z

variables :

CLS3 ,

S1 ,

S2

attr3

invariants :
CLS3 ✓ CLS1

S1 ✓ CLS3

S2 ✓ CLS3

partition(CLS3 ,S1 ,S2)

attr3 2 CLS3 !BOOL

8this CLS3 ·(this CLS3 2 S2))
(attr3 (this CLS3) = FALSE)

INITIALISATION : begin
CLS3 := ?
S1 := ?
S2 := ?
attr3 := ?
end

c :
any this CLS2 , this CLS3 where

this CLS2 2 CLS2

this CLS3 /2 CLS3

rel(this CLS3) = this CLS2

then

S1 := S1 [{this CLS3}
CLS3 := CLS3 [{this CLS3}
attr3 := attr3 C� {this CLS3 7! FALSE}
end

e :
any this CLS3 , b where

this CLS3 2 CLS3

this CLS3 2 S1

b 2 BOOL

attr2 (rel(this CLS3)) > 0
then

S1 := S1 \ {this CLS3}
S2 := S2 [{this CLS3}
attr3 (this CLS3) := b

end

Fig. 2: Event-B translation of the iUML-B example

also defined as a constructor and automatically generates an action to initialise
the instance of attr3 with its defined initial value. The same event c is also
given as a method of class CLS2 in order to generate a contextual instance
this CLS2 which is used in an additional (manually entered) guard to define
a value for the association rel of the super-class. The transition and method
e is a normal method of class CLS3 , which is available when the contextual
instance exists in CLS3 and S1 , and changes state by moving the instance
from S1 to S2 . The other guards and actions shown in this event concerning
parameter b and attribute attr2 , have been added as additional guards and
actions of the transition or method. These are not shown in the diagram as they
are entered using the diagram’s properties view. The state invariant shown in
state S2 applies to any instance while it is in that state. The Event-B version of
the invariant is quantified over all instances and an antecedent added to represent
the membership of S2 . In the rest of this paper we do not explain the translation
to Event-B.

6 C. Snook, T.S. Hoang, M. Butler

2.4 Validation and Verification

Consistency of Event-B models is provided via means of proof obligations, e.g.,
invariant preservation by all events. Proof obligations can be discharged auto-
matically or manually using the theorem provers of Rodin. Another important
tool for validation and verification of our model is ProB [7]. ProB provides
model checking facility to complement the theorem proving technique for verify-
ing Event-B models. Features of the ProB model checker include finding invariant
violations and deadlock for multiple refinement levels simultaneously. Further-
more, ProB also o↵ers an animator enabling users to validate the behaviour of
the models by exploring execution traces. The traces can be constructed interac-
tively by manual selection of events or automatically as counter-examples from
the model checker. Here, an animation trace is a sequence of event execution
with parameters’ value. The animator shows the state of the model after each
event execution in the trace.

3 Development

In this section, we discuss the development of the model. The model consists of
three refinement levels. The abstract level captures the essence of the security
property which is proven for the abstract representation of events that make
new packets and move them around the network. The first refinement introduces
some further detail of the network system and is proven to be a valid refinement
of the first model. That is, it maintains the security property. Both of these
first levels are un-implementable because they refer directly to a conceptual
property of a packet which is the VLAN that the packet was intended for. In
reality it is not possible to tell from a raw packet, which VLAN it was originally
created for. The second refinement introduces tagging as a means to implement
a record of this conceptual property. The refinement models nested tagging and
the behaviour of a typical switch which, apart from tagging packets depending
on their source, also removes tags for the native LAN. The automatic provers are
unable to prove that removing tags satisfies the gluing invariant. This is the well-
known security vulnerability to double tagging attacks. Adding a constraint to,
e↵ectively, disallow the native LAN from being configured as a VLAN, allows
the provers to discharge this proof obligation. This corresponds to the usual
protective measure against double tagging attacks.

3.1 M0 : An Abstract Model of VLAN Security

We aim to make the first model minimally simple while describing the essential
security property. We use a class diagram (Figure 3) to introduce some ‘given’
sets for data packets (class PKT) and VLANs (class VLAN). The constant as-
sociation PV describes the VLAN that each packet is intended for. (Note that
this is a conceptual relationship representing an intention and hence the imple-
mentation cannot access it). We abstract away from switches and devices and

Analysing Security Protocols Using iUML-B 7

introduce a set of nodes, class NODE , to represent both. The communications
topology is given by the constant association, Route, which maps nodes to nodes
in a many to many relationship.

Fig. 3: Abstract model of VLAN security requirement

The set of VLANs that a particular node is allowed to see, is given by the
constant association nv . For now this is a many to many relationship but in
later refinements we will find that, while switches are allowed to see all VLANs,
devices may only access the packets of one VLAN.

The class pkt represents the subset of packets that currently exist (whereas,
PKT represented all possible packets that might exist currently or in the past or
future). A packet that exists, always has exactly one owner node. The method
makePacket takes a non-existing packet from PKT and adds it to pkt and ini-
tialises the new packet’s owner to the contextual node instance. The method
movePacket changes the owner of an existing packet to a new node that is non-
deterministically selected from the nodes that the current owner node is directly
linked to via Route.

The class invariant, sec inv, in class pkt describes the security property2:

8this pkt·this pkt 2 pkt) PV (this pkt) 2 nv [{owner(this pkt)}] , (2)

i.e., the VLAN for which this packet is intended, belongs to the VLANs that its
owner is allowed to see. For this invariant to hold we need to restrict the method
movePacket so that it only moves packets to a new owner that is allowed to see
the VLAN of the packet. For now we do this with a guard, PV (p) 2 nv [{n}],
where p is the packet and n is the destination node. However, this guard must be
replaced in later refinements because it refers directly to the conceptual property

2 A concise summary of the Event-B mathematical notation can be found at http:

//wiki.event-b.org/images/EventB-Summary.pdf.

8 C. Snook, T.S. Hoang, M. Butler

PV and is therefore not implementable. We also ensure that makePacket only
creates packets with a PV value that its maker node is allowed to see.

We use a state-machine (Figure 3) to constrain the sequence of events that
can be performed on a packet. The state-machine is lifted to the set PKT of
all packets, At this stage we only require that makePacket is the initial event
that brings a packet into existence, and this can be followed by any number of
movePacket events.

Fig. 4: First refinement of VLAN introducing Switches and Devices

3.2 M1: Introducing Switches and Devices

In M0, to keep things simple we did not distinguish between switches and devices.
However, they have an important distinction since switches are allowed to see all
VLAN packets. The design will utilise this distinction so we need to introduce
it early on. In M1 (Figure 4) we introduce two new classes, Switch and Device,
as subtypes of NODE .

Since switches are implicitly associated with all VLANS (i.e. trusted), we
do not need to model which VLANs they are allowed to access. Therefore, we
replace nv with a functional association dv whose domain (source) is restricted
to Device. It is a total function, rather than a relation, because a device has
access to exactly one VLAN and again we model this as a constant function
since we do not require it to vary.

Switches are not allowed to create new packets so we move makePacket to
Device. Since, when moving a packet, the destination kind a↵ects the security

Analysing Security Protocols Using iUML-B 9

checks, we split movePacket into two alternatives: movePacketToSwitch which
does not need any guard concerning PV and movePacketToDevice where we
replace the guard, PV (p) 2 nv [{n}], with PV (p) = dv(n) to reflect the data
refinement. Note however, that the new guard still refers to PV .

The refinement introduces the need for some further constraints on the se-
quence of events for a particular package. We introduce sub-states atDevice and
atSwitch (Figure 4) to show that a packet can only be moved to a device from
a switch. Note that these states could be derived from owner (hence the invari-
ants in states atDevice and atSwitch) however, the state diagram helps visualise
the process relative to a packet which will become more significant in the next
refinement level.

3.3 M2: Introducing Tagging

We can now introduce the tagging mechanism that allows switches to know which
VLAN a packet is intended for. Our aim is that, in this refined model, switches
should not use the PV relationship other than for proving that the tag mecha-
nism achieves an equivalent result. We introduce a new given set, TAG , (Figure
5) which has a total functional association TV with VLAN . This function repre-
sents the VLAN identifier within a tag, which is part of the implementation, i.e.,
guards that reference TV are implementable. We add a variable partial function
association, tag , from pkt to TAG , which represents the tagging of a packet.

In typical LAN protocols, already tagged packets can be tagged again to allow
switches to use VLANs for internal system purposes. Although, for simplification,
we omit this internal tagging, we allow tags to be nested so that we can model
a double tagging attack by a device. Therefore we model nested tags with a
variable partial functional association, nestedTag from TAG to itself. When a
packet arrives at a switch from a device, the switch can tell which VLAN it
belongs to from the port that it arrived on. However, for simplicity, we avoid
introducing ports in this refinement. Instead we model this information via a
variable functional association from from pkt to NODE . Hence a switch can
determine which VLAN a packet, p, is for via dv(from(p)). Port configuration
could easily be introduced in a subsequent refinement without altering the main
points of this article. A significant behaviour of switches that relates to security
is how they deal with packets for the native VLAN. Therefore, in the Event-B
context for M2, we introduce a specific instance of VLAN called NativeVLAN .

The behaviour (Figure 5) is refined to add procedures for handling tagged
packets. State atSwitch is split into three sub-states, RCVD for packets that
have just been received from a device, TAGD for packets from a device that
have been successfully processed and REJECTED for packets that are found to
be invalid. A device may now send an untagged packet to a switch (transition
movePacketToSwitch untagged) and allow the switch to determine appropriate
tagging, or it may tag the packet itself (transition movePacketToSwitch tagged)
in which case the switch will check the tag. In the latter case the tag may be
valid or invalid and may have nested tags.

10 C. Snook, T.S. Hoang, M. Butler

Fig. 5: Second refinement of VLAN introducing tagging

After receiving a packet, p, at the state RCVD , the new owner switch pro-
cesses it by taking one of the following transitions:

– addTag: if p is not already tagged, a tag, tg , such that TV (tg) = dv(from(p)),
is added and the packet is accepted by moving it to state TAGD .

– alreadyTagged: if p is already tagged correctly (i.e., TV (tg) = dv(from(p)))
and not tagged as the native VLAN (i.e. TV (tg) 6= NativeVLAN) the packet
is accepted as is.

– removeNativeTag: if p is correctly tagged for the native VLAN (i.e., TV (tg) =
dv(from(p)) = NativeVLAN), the tag is removed and the packet is accepted.
The tag is removed in such as way as to leave p tagged with a nested tag if
any.

– reject: if p is incorrectly tagged (i.e., TV (tg) 6= dv(from(p))), it is rejected
by moving it to state REJECTED which has no outgoing transitions.

Analysing Security Protocols Using iUML-B 11

After processing packet, p, the switch can either pass it on to another switch
or, if available, pass it to a device via one of the following transitions:

– movePacketToDevice untagged: if p is not tagged, and the switch is connected
to a device, n, on the native VLAN (i.e. dv(n) = NativeVLAN),

– movePacketToDevice tagged: if p is tagged and the switch is connected to
a device, n, which is on the VLAN indicated by the tag (i.e. dv(n) =
TV (tag(p))).

It is these two transitions that refine movePacketToDevice, which need to es-
tablish the security invariant using tags rather than the unimplementable guard
concerning PV . This has been done as indicated above by the conditions on
dv(n). It can been seen by simple substitution, that the state invariants of TAGD
enable the prover to establish that the new guards are at least as strong as the
abstract one (PV (p) = dv(n)). We also need to prove that these state invari-
ants are satisfied by the incoming transitions of state TAGD . A state invariant
PV (p) = dv(from(p)) is added to RCVD in order to allow the prover to es-
tablish this. Again, this can be checked using simple substitutions of the guards
of addTag, alreadyTagged and removeNativeTag using this state invariant. The
other two state invariants for RCVD are merely to establish well-definedness of
the function applications. The state invariants of state RCVD are clearly estab-
lished by the actions of incoming transitions movePacketToSwitch untagged and
movePacketToSwitch tagged.

3.4 Analysis

We analyse the protocol using both theorem proving and model checking tech-
niques. Given the model in Section 3.3, the automatic provers discharge all
proof obligations except for one. The prover cannot establish that the transi-
tion removeNativeTag establishes the state-invariant

p 2 dom(tag)) TV (tag(p)) = PV (p) (3)

of state TAGD . In general, a failed invariant preservation proof identifies the
property (the invariant) that may be at risk and the transition (event) that may
violate it. We say ‘may’ because lack of proof does not necessarily indicate a
problem. It can be a result of insu�cient prover power. We therefore use the
ProB model checker to confirm the problem.

As with any model checker, we instantiate the context of the system, in
this case, the network topology. The network topology under consideration can
be seen in Figure 6. The switches, i.e., SWCH1 and SWCH2 have access to
all VLANs, namely, VLAN1 , and VLAN2 . The native VLAN NativeVLAN is
defined to be VLAN1 . Devices DVCE1 , DVCE4 belong to VLAN1 and devices
DVCE2 and DVCE3 both belong to VLAN2 . We define two packets PK1 and
PK2 where PK1 is intended for VLAN1 and PK2 is for VLAN2 , i.e.,

PV = {PK1 7! VLAN1 ,PK2 7! VLAN2} .

12 C. Snook, T.S. Hoang, M. Butler

SWCH1 SWCH2

DVCE1

VLAN1

DVCE2

VLAN2

DVCE3

VLAN2

DVCE4

VLAN1

Fig. 6: Network topology for analysis

Finally, we define two tags TAG1 , and TAG2 corresponding to VLAN1 and
VLAN2 , respectively. A tag with nested tag is numbered accordingly, for exam-
ple, TAG12 is for VLAN1 and has an inner tag for VLAN2 . Our subsequent
analysis is based on this particular setting.

Firstly, we want to identify whether the state-invariant (3) can indeed be
violated. We model check the whole refinement-chain from M0 to M2. ProB
indeed identifies a counter-example trace which leads to the violation of the
invariant as follow.

. . .

�! makePacket(PK1 ,DVCE1) (4)

�! movePacketToSwitch tagged(PK1 ,SWCH1 ,TAG12 ,DVCE1) (5)

.

�! removeNativeTag(PK1 ,SWCH1) (6)

In the trace, DVCE1 creates PK1 (4) before moving it to SWCH1 with tag
TAG12 (5). When SWCH1 removes the native tag TAG12 from PK1 (6), re-
sulting in TAG2 , the state-invariant (3) becomes invalid since PK1 is intended
for VLAN1 , but it is now tagged with TAG2 , which is identified for VLAN2 .

However, the violation could be caused by an unnecessarily strong gluing
invariant. To verify whether the security invariant (2) is indeed violated in M2,
we model check M2 without M0 and M1 but with the security invariant copied
from M0 to M2 in place of the gluing invariant. Once again, ProB returns a
counter-example trace which is an extension of the previous trace, i.e.,

. . .

�! makePacket(PK1 ,DVCE1) (7)

�! movePacketToSwitch tagged(PK1 ,SWCH1 ,TAG12 ,DVCE1) (8)

.

�! removeNativeTag(PK1 ,SWCH1) (9)

.

�! moveUntaggedPacketToDevice tagged(DVCE2 ,PK1 ,SWCH1) (10)

After removing the native tag of PK1 (9), the packet is moved from SWCH1 to
DVCE2 (10). At this time, PK1 has arrived to a device (DVCE2) which does
not have permission to receive any packet for VLAN1 .

Analysing Security Protocols Using iUML-B 13

Note that there are three di↵erent points in the process leading to the security
breach:

– the point where the security attack is initiated (8),
– the point where the design assumptions are violated and (9),
– the point where the security is breached (10).

Coming back to the original failed invariant preservation proof obligation,
we can now confirm that it is indeed possible for the invariant to be violated3.
Examination of the pending goal that the prover is attempting to prove reveals
more detail about the problem.

TV (({p}⇥ nestedTag [tag [{p}]])(p)) = PV (p) ,

It shows that the prover has replaced the packet’s tag with its nested tag in the
design property, and is attempting to show that the VLAN of the nested tag is
also for the correct VLAN for the packet. From the theorem prover, therefore,
we know that

– the switch’s procedure of removing the native tag causes a problem,
– the problem is that the nested tag becomes the packets main tag and does

not necessarily indicate the correct VLAN

When a constraint, NativeVLAN /2 ran(dv), i.e., no device can be configured
to use the native VLAN, is added to the model the proof obligation is immedi-
ately discharged since the guard of the transition removeNativeTag can easily be
shown to be false. This constraint corresponds to the recommended protective
action to prevent double tagging attacks.

Overall, the theorem provers can identify the security flaw in a design or pro-
tocol. They do not need to find an example attack but can pinpoint the exact
nature of the flaw directly. This is because proof obligations are generated from
the actions of individual events. While the provers indicates the nature of the
violation of the design assumption, they do not reveal the complete sequence
from attack to security breach. The model-checker, while being restricted to ex-
ample instantiations, is able to illustrate the process from initial attack through
to security breach.

4 Summary of Approach

To summarise, our approach is as follows:

1. Create an iUML-B Class diagram model of the entities and relationships
that are essential concepts of the system. Add a state-machine to model the
required behaviour of the system. Only model su�cient concepts to express
the security property. Do not model the mechanism that implements the
security.

3 This is because removing the native tag may reveal an invalid nested tag (the known
security flaw exploited by double tagging attacks).

14 C. Snook, T.S. Hoang, M. Butler

2. Express the security property as an invariant over the entities in the model.
Make sure that the model preserves the invariant.

3. Refine the iUML-B model (possibly over several iterations) to introduce
the mechanism that will ensure the system is secure. Do not constrain the
behaviour of elements unless the security system has control over this be-
haviour. That is, allow attacks to occur within the model.

4. Animate each refinement level to ensure that the model behaves in a use-
ful way. This is important to validate that our formal model captures the
behaviour of the real system.

5. If any POs are not proven check the type of PO and the goal to see whether
there is a mistake in the model. Correct the model as necessary.

6. If unproven POs remain for the gluing invariant, this may mean that the
security mechanism has a flaw. Analyse the problem as follows:
– Examine the PO. Note the event that it relates to and examine the goal

of the prover. This can often be used to interpret what is going wrong
or whether a manual proof is possible.

– Run the model-checker to establish that there really is a problem. If the
model checker can not find a trace to the violation, a manual proof may
be possible.

– Remove the gluing invariant and copy the security property invariant
from the abstract model and run the model checker (without previous
refinement levels). If it does not find a trace that violates the security
property, the gluing invariant may be too strong.

– If a trace to the security property is found there is a flaw in the protocol.
The trace can be examined to analyse the nature of the attack, the flaw
in the security mechanism and how it leads to the security violation.

In the example presented in this paper, the abstract model (step 1) M0 was
developed in Section 3.1, and the security invariant (step 2) was introduced
in the same section. The refinement process (step 3) involved an intermediate
refinement M1 in Section 3.2 and a final refinement M2 in Section 3.3. At each
refinement level, animation with ProB (step 4) and examination of unproven
POs (step 5), helped us to arrive at a correct and useful model. A security flaw
was detected and analysed (step 6) as described in Section 3.4.

5 Conclusion

Our investigation into a known example of a security vulnerability indicates that
formal modelling with strong verification tools can be extremely beneficial in
understanding security problems. The tools at our disposal include an automatic
theorem prover as well as a model checker. In our previous work on safety-critical
systems we have found that these tools exhibit great synergy and this is also the
case when analysing security protocols.

We use iUML-B class diagrams and state-machines as a diagrammatic repre-
sentation of the Event-B formalism. The diagrams help us create, visualise and
communicate the models leading to a better understanding of the systems.

Analysing Security Protocols Using iUML-B 15

Although we use animation to informally validate system behaviour, we have
not yet done any rigorous analysis of liveness properties. A future aim of our
research is to incorporate liveness reasoning into our approach.

This refinement-based approach can be applied to any problem that involves
sets of entities that are interacting in some way via a procedure or protocol.
For example, an authentication protocol such as Needham-Schroder could be
modelled abstractly as a class of agents sending messages and receiving them
with property perceived sender based on an actualSender. This could then be
refined to replace direct references to the actual sender, with encrypted nonces.

Finally, we envisage that without refinement, formulating the gluing invariant
that links the specification to the implementation would, in general, be challeng-
ing. Here the role of the gluing invariant is essential as its violation helps the
designer to identify the point where the design assumptions are o↵ended, causing
the actual security breach. A similar observation has been made in [3].

Acknowledgement

This work is funded by the Enable-S3 Project, www.enable-s3.eu.

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: An open toolset for modelling and rea-
soning in Event-B. Software Tools for Technology Transfer, 12(6):447–466, Novem-
ber 2010.

3. Michael Butler. On the use of data refinement in the development of secure com-
munications systems. Formal Aspects of Computing, 14(1):2–34, October 2002.

4. Enable-S3 consortium. Enable-S3 project website. http://www.enable-s3.eu. Ac-
cessed 04/12/2016.

5. Thai Son Hoang. An introduction to the Event-B modelling method. In Industrial

Deployment of System Engineering Methods, pages 211–236. Springer-Verlag, 2013.
6. IEEE. 802.1Q-2014 - Bridges and Bridged Networks. http://www.ieee802.org/

1/pages/802.1Q-2014.html. Accessed 02/12/2016.
7. Michael Leuschel and Michael Butler. ProB: An automated analysis toolset for the

B method. Software Tools for Technology Transfer (STTT), 10(2):185–203, 2008.
8. Mar Yah Said, Michael Butler, and Colin Snook. A method of refinement in UML-

B. Softw. Syst. Model., 14(4):1557–1580, October 2015.
9. Colin Snook. iUML-B statemachines. In Proceedings of the Rodin Workshop 2014,

pages 29–30, Toulouse, France, 2014. http://eprints.soton.ac.uk/365301/.
10. Colin Snook and Michael Butler. UML-B: Formal modeling and design aided by

UML. ACM Trans. Softw. Eng. Methodol., 15(1):92–122, January 2006.

