
Systems Design Guided by Progress Concerns

Simon Hudon1 and Thai Son Hoang2

1 Department of Computer Science, York University, Toronto, Canada
simon@cse.yorku.ca

2 Institute of Information Security, ETH-Zurich, Switzerland
htson@inf.ethz.ch

Abstract. We present Unit-B, a formal method inspired by Event-B and UNITY,
for designing systems via step-wise refinement preserving both safety and live-
ness properties. In particular, we introduce the notion of coarse- and fine-schedules
for events, a generalisation of weak- and strong-fairness assumptions. We propose
proof rules for reasoning about progress properties related to the schedules. Fur-
thermore, we develop techniques for refining systems by adapting event sched-
ules such that liveness properties are preserved. We illustrate our approach by
an example to show that Unit-B developments can be guided by both safety and
liveness requirements.
Keywords: progress properties, refinement, fairness, scheduling, Unit-B.

1 Introduction

Developing systems satisfying their desirable properties is a non-trivial task. Formal
methods have been seen as a solution to the problem. Given the increasing complex-
ity of systems, many formal methods adopt refinement techniques, where systems are
developed step-by-step in a property-preserving manner. In this way, a system’s details
are gradually introduced into its design in a hierarchical development.

System properties are often put into two classes: safety and liveness [10]. A safety
property ensures that undesirable behaviours will never happen during the system exe-
cutions. A liveness property guarantees that eventually desirable behaviours will hap-
pen. Ideally, systems should be developed in such a way that they satisfy both their
safety and liveness properties. Although safety properties are often considered the most
important ones, we argue that having live systems is also important. A system that is
safe but not live is useless. For example, consider an elevator system that does not move.
Such an elevator system is safe (nobody could ever get hurt), yet useless. According to
a survey [6], liveness properties (in terms of existence and progress) amount to 45% of
the overall system properties.

In most refinement-based development methods such as (B, Event-B, VDM, Z) the
focus is on preserving safety properties. A possible problem for such safety-oriented
methods is that when applying them to design a system, we can make the design so
safe that it becomes unusable. It is hence our aim to design a refinement framework
preserving both safety and liveness properties.

Some modelling methods such as UNITY [3], include the capability of reasoning
about liveness properties. In UNITY, there is a clear distinction between specifica-
tions (temporal properties) and programs (transition systems). Refinement in UNITY

Thai Son Hoang
The original publication is available at http://dx.doi.org/10.1007/978-3-642-38613-8_2
In Proceedings of iFM 2013 Conference © Springer

involves transforming specifications according to the UNITY logic. At the end of the
refinement process, one obtains several temporal properties which then can be imple-
mented by some program fragments according to well-defined rules. As a result, pro-
grams (transition systems) in UNITY are not part of the design, they are the output of
the refinement process. A disadvantage of this approach is that the transformation of
temporal properties can make the choice of refinements hard to understand. In order
to overcome this limitation, we unified the notion of specification and that of program,
making smoother the transition from one to the other.

In this paper, we present a formal method, namely Unit-B [8], inspired by UNITY [3]
and Event-B [1]. We borrow the ideas of system development from Event-B, in which
a series of models is constructed and linked by refinement relationships. The temporal
logic that we use to specify and to reason about progress properties is based on UNITY.

The main attraction of our method is that it incorporates the reasoning about safety
and liveness properties within a single refinement framework. Furthermore, our ap-
proach features the novel notions of coarse- and fine-schedules, a generalisation of the
standard weak- and strong-fairness assumptions. They allow us (1) to reason about the
satisfiability of progress properties by a given model, and (2) to refine a given model
while preserving liveness properties. This makes it possible in Unit-B to introduce live-
ness properties at any stage of the development process. Subsequently, not only does
it rule out any design that would be too conservative, but it also justifies design deci-
sions. As a result, liveness properties, in particular progress properties, act as a design
guideline for developing systems.

We give a semantics for Unit-B models and their properties using computation cal-
culus [5]. This enables us to formally prove the rules for reasoning about properties and
refinement relationship in Unit-B.

Structure The rest of the paper is organised as follows. In Section 2, we review Dijk-
stra’s computation calculus [5] which we used to formulate our semantics and design
our proofs. We follow with a description of the Unit-B method (Section 3). The method
and its refinement rules are demonstrated by an example in Section 4. We summarise
our work in Section 5 including discussion about related work and future work.

2 Background: Computation Calculus

This section gives a brief introduction to computation calculus, based on [5]. Let S be
the state space: a non-empty set of “states”. Let C be the computation space: a set of non-
empty (finite or infinite) sequences of states (“computations”). The set of computation
predicates CPred is defined as follows.

Definition 1 (Computation Predicate) CPred = C ! B, i.e. functions from compu-
tations to Booleans.

The standard boolean operators of the predicate calculus are lifted, i.e. extended to
apply to CPred. For example, assuming s, t 2 CPred and ⌧ 2 C, we have,3

3 In this paper, we use f.x to denote the result of applying a function f to argument x. Function
application is left-associative, so f.x.y is the same as (f.x).y.

(s) t).⌧ ⌘ (s.⌧) t.⌧) (1) h8 i :: s.ii.⌧ ⌘ h8 i :: s.i.⌧i . (2)

The everywhere-operator quantifies universally over all computations, i.e.

[s] ⌘ h8 ⌧ :: s.⌧i (3)

Whenever there are no risks of ambiguity, we shall use s = t as a shorthand for [s ⌘ t]
for computation predicates s, t.

Postulate 1 CPred is a predicate algebra.

A consequence of Postulate 1 is that CPred satisfies all postulates for the predicate
calculus as defined in [4]. In particular, true (maps all computations to TRUE) and
false (maps all computations to FALSE) are the “top” and the “bottom” elements of
the complete boolean lattice with the order [)] specifying by these postulates. The
lattice operations are denoted by various boolean operators including ^,_,¬,), etc.

The predicate algebra is extended with sequential composition as follows.

Definition 2 (Sequential Composition)

(s; t).⌧ ⌘ (#⌧ = 1^ s.⌧) _ h9 n : n < #⌧ : s.(⌧ " n+1) ^ t.(⌧ # n)i (4)

where #, " and # denote sequence operations ‘length’, ‘take’ and ‘drop’, respectively.

Intuitively, a computation ⌧ satisfies s ; t if either it is an infinite computation satisfying
s, or there is a finite prefix of ⌧ (i.e. ⌧ " n+1) satisfying s and the corresponding suffix
⌧ # n (which overlaps with the prefix on one state) satisfying t.

In the course of reasoning using computation calculus, we make use of the distinc-
tion between infinite (“eternal”) and finite computations. Two constants E,F 2 CPred
have been defined for this purpose.

Definition 3 (Eternal and Finite Computations) For any predicate s,

E = true; false (5)
F = ¬E (6)

s is eternal ⌘ [s) E] (7)
s is finite ⌘ [s) F] (8)

Given F the temporal “eventually” operator (i.e., }) can be formulated as F; s. The
“always” operator G is defined as the dual of the “eventually” operator.

Definition 4 (Always Operator) G s = ¬(F;¬s), for any predicate s

Important properties of G are that it is strengthening and monotonic. For any predicates
s and t, we have:

[G s) s] , (9)
[s) t]) [G s)G t] , (10)

[G (s) t)) (G s)G t)] . (11)

A constant 1 is defined as the (left- and right-) neutral element for sequential com-
position.

Definition 5 (Constant 1) For any computation ⌧ , 1.⌧ ⌘ #⌧ = 1

State Predicates In fact, 1 is the characteristic predicate of the state space. Moreover,
we choose not to distinguish between a single state and the singleton computation con-
sisting of that state, which allows us to identify predicates of one state with the predi-
cates that hold only for singleton computations. Let us denote the set of state predicates
by SPred.

Definition 6 (State Predicate) For any predicate p, p 2 SPred ⌘ [p) 1].

A consequence of this definition is that SPred is also a complete boolean lattice
with the order [)], with 1 and false being the “top” and “bottom” elements.
It inherits all the lattice operators that it is closed under: conjunction, disjunction, and
existential quantification. The other lattice operations, i.e. negation and universal quan-
tification, are defined by restricting the corresponding operators on CPred to state
predicates. We only use state predicate negation in this paper.

Definition 7 (State predicate negation ⇠) For any state predicate p, ⇠p = ¬p ^ 1 .

For a state predicate p, the set of computations with the initial state satisfying p
is captured by p ; true: the weakest such predicate. A special notation • : SPred !
CPred is introduced to denote this predicate.

Definition 8 (Initially Operator) For any state predicate p, •p = p ; true

This entails the validity of the following rule, which we will use anonymously in
the rest of the paper: for p, q two state predicates, p ; q = p ^ q.

An important operator in LTL is the “next-time operator”. This is captured in com-
putation calculus by the notion of atomic computations: computations of length 2. A
constant X 2 CPred is defined for this purpose.

Definition 9 (Atomic Actions) For any computation ⌧ and predicate a,

X.⌧ ⌘ #⌧ = 2 (12)
a is an atomic action ⌘ [a) X] (13)

Given the above definition, the “next” operator can be expressed as X ; s for arbitrary
computation s.

3 The Unit-B Method

This section presents our contribution: the Unit-B method which is inspired by Event-
B and UNITY. Similar to Event-B, Unit-B is aimed at the design of software systems
by stepwise refinement. It differs from Event-B by the capability of reasoning about
progress properties and its refinement-order which preserves liveness properties. It also
differs from UNITY by unifying the notions of programs and specifications, allowing
refinement of programs.

3.1 Syntax

Similar to Event-B, a Unit-B system is modelled by a transition system, where the state
space is captured by variables v and the transitions are modelled by guarded events.
Furthermore, Unit-B has additional assumptions on how the events should be scheduled.
Using an Event-B-similar syntax, a Unit-B event has the following form:

e b= any t where g.t.v during c.t.v upon f.t.v then s.t.v.v

0
end , (14)

where t are the parameters, g is the guard, c is the coarse-schedule, f is the fine-
schedule, and s is the action changing state variables v. The action is usually made up of
several assignments, either deterministic (:=) or non-deterministic (:|). An event e with
parameters t stands for multiple events. Each corresponds to several non-parameterised
events e.t, one for each possible value of the parameter t. Here g, c, f are state predi-
cates. An event is said to be enabled when the guard g holds. The scheduling assump-
tion of the event is represented by c and f as follows: if c holds for infinitely long and f
holds infinitely often then the event is carried out infinitely often. An event without any
scheduling assumption will have its coarse-schedule c equal to false. An event having
only the coarse-schedule c will have the fine-schedule to be 1. Vice versa, an event
having only the fine-schedule f will have the coarse-schedule to be 1.

In addition to the variables and the events, a model has an initialisation state predi-
cate init constraining the initial value of the state variables. All computations of a model
start from a state satisfying the initialisation and are such that, at every step, either one
of its enabled events occurs or the state is unchanged, and each computation satisfies
the scheduling assumptions of all events.

Properties of Unit-B models are captured by two types of properties: safety and
progress (liveness).

3.2 Semantics

We are going to use computation calculus to give the semantics of Unit-B models. Let
M be a Unit-B model containing a set of events of the form (14) and an initialisation
predicate init. Since the action of the event can be described by a before-after predicate
s.t.v.v0, it corresponds to an atomic action S.t = h8 e :: •(e = v)) X ; s.t.e.vi.
Given that an event e.t can only be carried out when it is enabled, the effect of each
event execution can therefore be formulated as follows: act .(e.t) = g.t ; S.t. A special
constant SKIP is used to denote the atomic action that does not change the state.

Definition 10 (Constant SKIP) SKIP.⌧ ⌘ #⌧=2 ^ ⌧.0=⌧.1, for all traces ⌧ (⌧.0,
⌧.1 denotes the first two elements of ⌧).

The semantics of M is given by a computation predicate ex .M which is a conjunc-
tion of a “safety part” saf .M and a “liveness part” live.M, i.e.,

[ex .M ⌘ saf .M ^ live.M] . (15)

A property represented by a formula s is satisfied by M, if

[ex .M) s] . (16)

Safety Below, we define the general form of one step of execution of model M and the
safety constraints on its complete computations.

[step.M ⌘ h9 e, t : e.t 2 M : act .(e.t)i _ SKIP] (17)
[saf .M ⌘ • init ^G (step.M ; true)] (18)

Safety properties of the model are captured by invariance properties (also called
invariants) and by unless properties.

An invariant I.v is a state-properties that hold at every reachable state of the model.
In order to prove that I.v is an invariant of M, we prove that [ex .M) G •I]. In
particular, we rely solely on the safety part of the model to prove invariance properties,
i.e., we prove [saf .M) G •I]. This leads to the well-known invariance principle.

[init) I] ^ [h8 e, t : e.t 2 M : I ; act .(e.t)) X; Ii]
)

[saf .M)G •I]
(INV)

Invariance properties are important for reasoning about the correctness of the models
since they limit the set of reachable states. In particular, invariance properties can be
used as additional assumptions in proofs for progress properties.

The other important class of safety properties is defined by the unless operator un.

Definition 11 (un operator) For all state predicates p and q,

[(p un q) ⌘ G (•p) (G •p) ; (1 _X) ; •q)] (19)

Informally, p un q is a safety property stating that if condition p holds then it will hold
continuously unless q becomes true. The formula (1 _X) is used in (19) to allow the
last state where p holds and the state where q first holds to either be the same state or
to immediately follow one another. The following theorem is used for proving that a
Unit-B model satisfies an unless property.

Theorem 1 (Proving an un-property) Consider a machine M and property p un q. If

h8 e, t : e.t 2 M : G((p^⇠q);act .(e.t);true) X;(p _ q);true)i (20)

then [ex .M) pun q]

Proof (Sketch). Condition (20) ensures that every event of M either maintains p or
establishes q. By induction, we can see that the only way for p to become false after a
state where it was true is that either q becomes true or that it was already true.

Liveness For each event of the form (14), its schedule sched .(e.t) is formulated as
follows, where c and f are the event’s coarse- and fine-schedule, respectively.

[sched .(e.t) ⌘ G (G •c ^ GF ; •f) F ; f ; act .(e.t) ; true)] . (21)

To ensure that the event e.t only occurs when it is enabled, we require the following
feasibility condition:

[ex .M) G •(c ^ f) g)] (SCH-FIS)

Our scheduling is a generalisation of the standard weak-fairness and strong-fairness
assumptions. The standard weak-fairness assumption for event e (stating that if the
event is enabled infinitely long then eventually it will be taken) can be formulated by
using c = g and f = 1. Similarly, the standard strong-fairness assumption for e (stat-
ing that if the event is enabled infinitely often then eventually it will be taken) can be
formulated by using c = 1 and f = g.

[wf.(e.t) ⌘ G (G • g) F; act .(e.t); true)] (22)
[sf.(e.t) ⌘ G (GF; •g) F; act .(e.t); true)] (23)

The liveness part of the model is the conjunction of the schedules for its events, i.e.,

[live.M ⌘ h8 e, t : e.t 2 M : sched .(e.t)i] (24)

3.3 Progress Properties

Progress properties are of the form p q, where is the leads-to operator.

Definition 12 (operator) For all state predicates p and q,

[(p q) ⌘ G (•p) F •q)] (25)

In this paper, properties and theorems are often written without explicit quantifications:
these are universally quantified over all values of the free variables occurring in them.

Important properties of are as follows. For state predicates p, q, and r, we have:

[(p) q)) (p q)] (Implication)
[(p q) ^ (q r)) (p r)] (Transitivity)

[(p q) ⌘ (p^⇠q q)] (Split-Off-Skip)

The main tool for reasoning about progress properties in Unit-B is the transient
operator tr.

Definition 13 (tr operator) For all state predicate p, [tr p ⌘ GF ; •⇠p].

tr p states that state predicate p is infinitely often false. The relationship between tr and
 is as follows:

p ⇠p = 1 ⇠p = tr p . (26)

The attractiveness of properties such as tr p is that we can implement these using a
single event as follows.

Theorem 2 (Implementing tr) Consider a Unit-B model M and a transient property
tr p. We have [ex .M) tr p], if there exists an event

e b= any t where g.t.v during c.t.v upon f.t.v then s.t.v.v0 end ,

that is to say ex .M entails:

G (G •c ^GF ; •f) F ; f ; act .(e.t)) , (LIVE)

and parameter t such that e.t 2 M and ex .M entails each of the conditions below:

G •(p) c) , (SCH)

c f , (PRG)

G ((p ^ c ^ f) ; act .(e.t) ; true) X ; •⇠p) . (NEG)

Proof. In this case, G acts as an everywhere operator which allows us to prove F; • ⇠p
instead of GF;•⇠p. Additionally, since [¬s)s ⌘ s] for any computation predicate
s, we discharge our proof obligation by strengthening F ; •⇠p to its negation, G •p.

F ; •⇠p

({ [F ;X) F], aiming for (NEG) }
F ;X ; •⇠p

({ (NEG) }
F ; (p ^ c ^ f) ; act ; true

({ computation calculus }
F;f ;act ;true ^ G •c ^ G •p

({ (LIVE); G is conjunctive }
GF;•f ^ G •c ^ G •p

= { (PRG) }
G •c ^ G •p

= { G is conjunctive; (SCH) }
G •p

(Due to space restriction, for the rest of this paper, we only present sketch of proofs of
theorems. Detailed proofs are available in [8]).

Condition (SCH) is an invariance property. Condition (PRG) is a progress property.
Condition (NEG) states that event e.t establish ⇠ p in one step. In practice, often we
design c such that it is the same as p and f is 1 (i.e., omitting f); as a result, conditions
(SCH) and (PRG) are trivial. Condition (NEG) can take into account any invariance
property I and can be stated as [(I ^ p ^ c ^ f) ; act .(e.t)) X;⇠p].

In general, progress properties can be proved using the following ensure-rule. The
rule relies on proving an unless property and a transient property.

Theorem 3 (The ensure-rule) For all state predicates p and q,

[(p un q) ^ (tr p^ ⇠q)) (p q)] (27)

Proof (Sketch). pun q ensures that if p holds then it will hold for infinitely long or
eventually q holds. If q holds eventually then we have p q. Otherwise, if p holds
for infinitely long and ⇠ q also hold for infinitely long, we have a contradiction, since
tr p^ ⇠ q ensures that eventually p^ ⇠ q will be falsified. As a result, if p holds for
infinitely long then eventually q has to hold.

3.4 Refinement

In this section, we develop rules for refining Unit-B models such that safety and liveness
properties are preserved. Consider a machine M and a machine N, N refines M if

[ex .N) ex .M] . (REF)

As a result of this definition, any property of M is also satisfied by N. Similarly to
Event-B, refinement is considered in Unit-B on a per event basis. Consider an abstract
event e.t belong to M and a concrete event f.t belong to N as follows.

e b= any t where g.t.v during c.t.v upon f.t.v then s.t.v.v0 end (28)

f b= any t where h.t.v during d.t.v upon e.t.v then r.t.v.v0 end (29)

We have f.t is a refinement of e.t if

[ex .N) (act .(f.t)) act .(e.t))] , and (EVT-SAF)
[ex .N) (sched .(f.t)) sched .(e.t))] (EVT-LIVE)

A similar rule is presented for the initialisation. The proof that N refines M (i.e., (REF))
given conditions such as (EVT-SAF) and (EVT-LIVE) is left out. A special case of event
refinement is when the concrete event f is a new event. In this case, f is proved to be
a refinement of a special SKIP event which is unscheduled and does not change any
abstract variables.

Condition (EVT-SAF) leads to similar proof obligations in Event-B such as guard
strengthening and simulation. We focus here on expanding the condition (EVT-LIVE).
The subsequent theorems are related to concrete event f (29) and abstract event e (28),
under the assumption that condition (EVT-SAF) has been proved. They illustrate dif-
ferent ways of refining event scheduling information: weakening the coarse-schedule,
replacing the coarse-schedule, strengthening the fine-schedule, and removing the fine-
schedule.

Theorem 4 (Weakening the coarse-schedule) Given e = f . If

[ex .N) G • (c) d)] then [ex .N) (sched .(f.t)) sched .(e.t))] .

Proof (Sketch). The coarse-schedule is at an anti-monotonic position within the defini-
tion of sched .

Theorem 5 (Replacing the coarse-schedule) Given e = f . If

[ex .N) c d] (30)
[ex .N) d un ⇠c] , (31)

then [ex .N) (sched .(f.t)) sched .(e.t))]

Proof (Sketch). Conditions (30) and (31) ensures that if c holds then eventually d holds
and it will hold for at least as long as c As a result, if c holds for infinitely long, d also
holds for infinitely long. Hence the new schedule ensures that f occurs at least on those
cases where e has to occur.

Theorem 6 (Strengthening the fine-schedule) Given d = c. If

[ex .N) G • (e) f)] , and (32)
[ex .N) f e] (33)

then [ex .N) (sched .(f.t)) sched .(e.t))].

Proof (Sketch). We can prove sched .(e.t) under the assumptions sched .(f.t) and ex .N
by calculating from F ; (c^f) ; act .(e.t) ; true (the right hand side of sched .(e.t)) and
applying one assumption after the other (in this order (32), (EVT-SAF), sched .(f.t),
(33)) to strengthen it to G •c ^GF ; •f (the right hand side of sched .(e.t)).

Theorem 7 (Removing the fine-schedule) Given d = c and e = 1. If

[ex .M) G • (c) f)] (34)

then [ex .N) (sched .(f.t)) sched .(e.t))].

Proof (Sketch). Condition (34) ensures that when c holds for infinitely long, f holds
for infinitely long, hence we can remove the fine-schedule f , i.e., replaced it by 1.

4 Example: A Signal Control System

We illustrate our method by applying it to design a system controlling trains at a sta-
tion [9]. We first present some informal requirements of the system.

4.1 Requirements

entry block

platform blocks

exit block

entry signal

platform signals

=)

Fig. 1. A signal control system

The network at the station con-
tains an entry block, several plat-
form blocks and an exiting block, as
seen in Figure 1. Trains arrive on
the network at the entry block, then
can move into one of the platform
blocks before moving to the exit-
ing block and leaving the network.
In order to control the trains at the
station, signals are positioned at the
end of the entry block and each plat-
form block. The train drivers are as-
sumed to obey the signals. The sig-
nals are supposed to change from
green to red automatically when a
train passes by.

The most important properties of the system are that (1) there should be no collision
between trains (SAF 1), and (2) each train in the network eventually leaves (REQ 2).

SAF 1 There is at most one train on each block
REQ 2 Each train in the network eventually leaves

Refinement strategy In the initial model, we abstractly model the trains in the network,
focusing on REQ 2. In the first refinement, we introduce the topology of the network.
We strengthen the model of the system, focusing on SAF 1 in the second refinement.
In the third refinement, we introduce the signals and derive a specification for the con-
troller that manages these signals.

4.2 Initial Model

In this initial model, we use a carrier set TRN to denote the set of trains and a variable
trns to denote the set of trains currently within the network. Initially trns is assigned
the empty set. At this abstract level, we have two events to model a train arriving at the
station and a train leaving the station as below.

arrive b= any t where t 2 TRN then trns := trns [{t} end

depart b= any t where t 2 TRN then trns := trns \ {t} end

The requirement REQ 2 can be specified as a progress property prg0 1: t 2 trns
t /2 trns . According to (26), prg0 1 is equivalent to prg0 2: tr t 2 trns . In order to im-
plement this transient property, we rely on Theorem 2 and add scheduling information
for event depart as follows.

depart b= any t where t 2 TRN during t 2 trns then trns := trns \ {t} end

Here, we design our depart event to implement the transient property prg0 2 such that
conditions (SCH) and (PRG) are trivial. For condition (NEG), it is easy to prove that
depart establishes the fact t /2 trns in one step.

Since event arrive will not affect our reasoning about progress properties (it is al-
ways unscheduled), we are going to omit the refinement of arrive in the subsequent
presentation.

4.3 First Refinement

In this refinement, we first introduce the topology of the network in terms of blocks. We
introduce a carrier set BLK and three constants Entry , PLF , Exit denoting the entry
block, platform blocks and exit block, respectively. A new variable loc is introduced
denoting the location of trains in the network, constrained by invariant inv1 1: loc 2
trns ! BLK .

For event depart, we strengthen the guard to state that a train can only leave from
the exit block. Subsequently, in order to make sure that the schedule is stronger than the
guard (condition (SCH-FIS)), we need to strengthen the coarse-schedule accordingly
(see Figure 2). In order to prove the refinement of depart, we apply Theorem 5 (coarse-
schedule replacing). In particular we need to prove the following conditions:

t 2 trns t 2 trns ^ loc.t = Exit (prg1 1)
t 2 trns ^ loc.t = Exit un ⇠(t 2 trns) (un1 2)

From now on, we focus on reasoning about progress properties, e.g., prg1 1, omit-
ting the reasoning about unless properties, e.g., un1 2. The readers should be convinced

depart

any t where

t 2 trns ^ loc.t = Exit

during

t 2 trns ^ loc.t = Exit

then

trns := trns \ {t}
loc := {t} C� loc

end

moveout

any t where

t 2 trns ^ loc.t 2 PLF

during

t 2 trns ^ loc.t 2 PLF

then

loc.t := Exit

end

movein

any t where

t 2 trns ^ loc.t = Entry

during

t 2 trns ^ loc.t = Entry

then

loc :| h9 p : p 2 PLF : loc

0 = loc C� {t 7! p}i
end

Fig. 2. Events of the first refinement

that using Theorem 1, these unless properties are valid for our model. We first apply
(Split-Off-Skip) to obtain t 2 trns ^ loc.t 6= Exit t 2 trns ^ loc.t = Exit and
then apply the transitivity property (Transitivity) of the leads-to operator to establish
two progress properties prg1 3 and prg1 4 as follows.

t 2 trns ^ loc.t 6= Exit t 2 trns ^ loc.t 2 PLF (prg1 3)
t 2 trns ^ loc.t 2 PLF t 2 trns ^ loc.t = Exit (prg1 4)

Consider prg1 4, we first apply the ensure-rule (Theorem 3) to establish two properties
(after simplification) as follows:

t 2 trns ^ loc.t 2 PLF un t 2 trns ^ loc.t = Exit (un1 5)
tr t 2 trns ^ loc.t 2 PLF (prg1 6)

We apply Theorem 2 to implement prg1 6 by the new event moveout which has a
weakly-fair scheduling (see Figure 2). The proof that moveout implements prg1 6 is
straightforward and therefore is omitted.

Similarly, for prg1 3, we apply the ensure-rule and implementing the resulting tran-
sient property, i.e., tr t 2 trns ^ loc.t = Entry , by event movein in Figure 2.

4.4 Second Refinement

In this refinement, we incorporate the safety requirement stating that there are no colli-
sions between trains within the network, i.e. SAF 1. This is captured by invariant inv2 1

about loc: h8 t1, t2 : t1, t2 2 trns ^ loc.t1 = loc.t2 : t1 = t2i.
The guard of event moveout needs to be strengthened to maintain inv2 1. As a

result, we need to modify the schedule information to ensure the feasibility condi-
tion (SCH-FIS) for Unit-B events stating that the schedules are stronger than the guard.
In particular, we add (through strengthening) a fine-schedule to moveout (see Figure 3).
The scheduling information for moveout states that for any train t , if t stays in a plat-
form for infinitely long and the exit block becomes free infinitely often, then t can move
out of the platform.

We want to highlight the fact that moveout has both coarse- and fine-schedules. In
particular, using only either weak- or strong-fairness would be unsatisfactory. Weak-
fairness requires for the exit block to be remain free continuously in order for trains to
move out. This assumption is not met by the current system. Strong-fairness allows a
train to leave if the train is present on the platform intermittently. This assumption is

moveout

any t where

t 2 trns ^ loc.t 2 PLF^
Exit /2 ran .loc
during

t 2 trns ^ loc.t 2 PLF

upon

Exit /2 ran .loc
then

loc.t := Exit

end

movein

any t where

t 2 trns ^ loc.t = Entry ^ h9 p : p 2 PLF : p /2 ran .loci
during

t 2 trns ^ loc.t = Entry ^ h9 p : p 2 PLF : p /2 ran .loci
then

loc :| h9 p : p 2 PLF \ ran .loc : loc

0 = loc C� {t 7! p}i
end

Fig. 3. Events of the second refinement

more flexible than we need since it allows behaviours where a train hops on and off the
platform infinitely often. The price of that flexibility is to entangle properties of the exit
block with properties of trains: indeed, we would need not only to prove that the train
will be on its platform and that the exit block will become free but that both happen
simultaneously infinitely often.

We choose to relinquish this flexibility and are therefore capable of structuring our
proof better: on one hand, the train stays on its platform as long as necessary; indepen-
dently, the exit block becomes free infinitely many times.

In order to prove the refinement of moveout, we apply Theorem 6 (fine-schedule
strengthening), which requires to prove the following progress property (remember that
when an event has no fine schedules, it is assumed to be 1).

1 Exit /2 ran .loc (prg2 3)

Property prg2 3 is equivalent to transient property prg2 4: trExit 2 ran .loc. We sat-
isfy prg2 4 by applying the transient rule (Theorem 2) using event depart where the
value for the parameter t is given by loc

�1.Exit , i.e., the train at the exit block. The
proofs of conditions (SCH), (PRG), and (NEG) are straight-forward.

Finally we strengthen the guard of movein and subsequently strengthen its coarse-
schedule (see Figure 3). We apply Theorem 5 (coarse-schedule replacing) movein. The
detailed proof is omitted here.

4.5 Third Refinement

In this refinement, we introduce the signals associated with different blocks within the
network. Variable sgn is introduced to denote the value of the signals associated with
different blocks. We focus on the controlling of the platform signals here. In particular,
invariants inv3 2 and inv3 3 state that if a platform signal is green (GR) then the exit
block is free and the other platform signals are red (RD).

inv3 1 : sgn 2 {Entry} [PLF ! COLOR
inv3 2 : h8 p : p 2 PLF ^ sgn.p = GR : Exit /2 ran .loci
inv3 3 : h8 p, q : p, q 2 PLF ^ sgn.p = sgn.q = GR : p = qi

We refine the moveout event using the platform signal as shown in Figure 4. The
refinement of moveout is justified by applying Theorem 5 (coarse-schedule replacing)

moveout

any t where

t 2 trns ^ loc.t 2 PLF^
sgn.(loc.t) = GR

during

t 2 trns ^ loc.train 2 PLF^
sgn.(loc.t) = GR

then

loc.t := Exit

sgn.(loc.t) := RD

end

ctrl platform

any p where

p 2 PLF ^ p 2 ran .loc ^ Exit /2 ran .loc^
h8 q : q 2 PLF : sgn.q = RDi
during

p 2 PLF ^ p 2 ran .loc ^ sgn.p = RD

upon

Exit /2 ran(loc) ^ h8 q : q 2 PLF ^ q 6= p : sgn.q = RDi
then

sgn.p := GR

end

Fig. 4. Events of the third refinement

and Theorem 7 (fine-schedule removing). In particular, replacing the coarse-schedule
requires the following transient property

tr t 2 trns ^ loc.t 2 PLF ^ sgn.(loc.t) = RD . (prg3 5)

In order to satisfy prg3 5, we introduce a new event ctrl platform for the controller
to change a platform signal to green according to Theorem 2 (see Figure 4). This event
ctrl platform is a specification for the system to control the platform signals preserving
both safety and liveness properties of the system. In particular, the scheduling informa-
tion states that if (1) a platform is occupied and the platform signal is RD infinitely long
and (2) the exit block is unoccupied and the other platform signals are all RD infinitely
often, then the system should eventually set this platform signal to GR. The refinement
of event movein and how the entry signal is controlled is similar and omitted.

5 Conclusion

We presented in this paper Unit-B, a formal method inspired by Event-B and UNITY.
Our method allows systems to be developed gradually via refinement and support rea-
soning about both safety and liveness properties. An important feature of Unit-B is the
notion of coarse- and fine-schedules for events. Standard weak- and strong-fairness as-
sumptions can be expressed using these event schedules. We proposed refinement rules
to manipulate the coarse- and fine-schedules such that liveness properties are preserved.
We illustrated Unit-B by developing a signal control system.

A key observation in Unit-B is the role of event scheduling regarding liveness prop-
erties being similar to the role of guards regarding safety properties. Guards prevent
events from occurring in some unsafe state so that safety properties will not be vio-
lated; similarly, schedules ensure the occurrence of events in order to satisfy liveness
properties. Another key aspect of Unit-B is the role of progress properties during refine-
ment. Often, to ensure the validity of a refinement, one needs to prove some progress
properties which (eventually) can be implemented (satisfied) by some scheduled events.

Related work Unit-B and Event-B differ mainly in the scheduling assumptions. In
Event-B, event executions are assumed to satisfy the minimal progress condition: as
long as there are some enabled events, one of them will be executed non-deterministically.
Given this assumption, certain liveness properties can be proved for Event-B models

such as progress and persistence [7]. However, this work does not discuss how the re-
finement notion can be adapted to preserve liveness properties. Moreover, the minimum
progress assumption is often either too weak to prove liveness properties or, when it is
not, make the proofs needlessly complicated.

TLA+[11] is another formal method based on refinement supporting liveness prop-
erties. The execution of a TLA+ model is also captured as a formula with safety and
liveness sub-formulae. However, refinement of the liveness part in TLA+ involves cal-
culating explicitly the fairness assumptions of the abstract and concrete models. In our
opinion, this is not practical for developing realistic systems. The lack of practical rules
for refining the liveness part in TLA+ might stem from the view of the author of TLA+
concerning the unimportance of liveness [11, Chapter 8]. In our opinion, liveness prop-
erties are as important as safety properties to design correct systems.

Future work Currently, we only consider superposition refinement in Unit-B where
variables are retained during refinement. More generally, variables can be removed and
replaced by other variables during refinement (data refinement). We are working on
extending Unit-B to provide rules for data refinement.

Another important technique for coping with the difficulties in developing complex
systems is composition/decomposition and is already a part of methods such as Event-B
and UNITY. We intend to investigate on how this technique can be added to Unit-B, in
particular, the role of event scheduling during composition/decomposition.

Given the close relationship between Unit-B and Event-B, we are looking at extend-
ing the supporting Rodin platform [2] of Event-B to accomodate Unit-B. We expect to
generate the corresponding proof obligations according to different refinement rules
such that it can be verified using the existing provers of Rodin.

References
1. J-R. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge University

Press, 2010.
2. J-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin: an open

toolset for modelling and reasoning in Event-B. STTT, 12(6):447–466, 2010.
3. M. Chandy and J. Misra. Parallel program design - a foundation. Addison-Wesley, 1989.
4. E. Dijkstra and C. Scholten. Predicate Calculus and Program Semantics. Springer-Verlag

New York, Inc., New York, NY, USA, 1990.
5. R. Dijkstra. Computation calculus: Bridging a formalization gap. Mathematics of Program

Construction, Jan 1998.
6. M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for finite-state

verification. In ICSE, pages 411–420, 1999.
7. T.S. Hoang and J-R. Abrial. Reasoning about liveness properties in Event-B. In S. Qin and

Z. Qiu, editors, ICFEM, volume 6991 of LNCS, pages 456–471. Springer-Verlag, 2011.
8. S. Hudon. A progress preserving refinement. Master’s thesis, ETH Zurich, July 2011.
9. S. Hudon and T.S. Hoang. Development of control systems guided by models of their envi-

ronment. ENTCS, 280:57–68, December 2011.
10. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software Eng.,

3(2):125–143, 1977.
11. L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley, 2002.

	Systems Design Guided by Progress Concerns

