Systems Design Guided by Progress
Concerns

Simon Hudon' and Thai Son Hoang?

"Department of Computer Science, York University, Canada
2|nstitute of Information Security, ETH Zurich, Switzerland

iFM 2013, Turku, Finland
12th June 2013

l Eidgenassische Technische Hachschule Ziirleh
Swiss Federal Institute of Technalogy Zurich

=

o
m|m
=|m
EIrY
-
<lm

=<

==

Safety vs

Safety Properties

e Something (bad)
never happens.

e e.g. invariance properties

. Liveness

Liveness Properties

e Something (good)
will happen

e e.g. termination, progress

Safety vs. Liveness

Safety Properties Liveness Properties
e Something (bad) e Something (good)
never happens. will happen
e e.g. invariance properties e e.g. termination, progress

o Liveness properties are essential.

Safety vs. Liveness

Safety Properties Liveness Properties
e Something (bad) e Something (good)
never happens. will happen
e e.g. invariance properties e e.g. termination, progress

e Liveness properties are essential.

Systems Development using Event-B

refined by ——{ My |- refined by -

satisfies satisfies satisfies
¢O ¢1 ¢n

° oo, P1,...,¢n: safety properties.

Unit-B = UNITY + Event-B

refined by —— My f-ooeeeeeeen refined by -----ooooonee

satisfies satisfies satisfies
o ?1 ®n

Unit-B = UNITY + Event-B

scheduling assumptions

+—) — — +
+
e /
refined by —— My f-ooeeeeeeen refined by -----ooooonee

satisfies satisfies satisfies
o o1 ®n

Unit-B = UNITY + Event-B

scheduling assumptions

+
fined by refined by

satisfies satisfies satisfies
o o1 ®n

A J
+
k+/—\ N

progress properties

Unit-B = UNITY + Event-B

scheduling assumptions

7 —_
+
refined b My oo refined by ----oooooee
é ed by ed by

satisfies preserves satisfies preserves satisfies
liveness liveness

o o1 ®n

\ J
+
K"'/\ \ — — +

progress properties

e Developments using Unit-B are
guided by both safety and liveness requirements.

Traces and the Language of Temporal Logic

A trace o is a (finite or infinite) sequence of states

o = Sp, 51,52, 83, . ..

o A (basic) state formula P is any first-order logic formula,

e The basic formulae can be extended by combining
the Boolean operators (—, A, V, =) with temporal operators:

always: [1¢ @ e e @ ,,,,,,,
eventually: & ¢ @ e e @ ,,,,,,,

I

until: ¢1 1 ¢» @ e e @ ,,,,,,,

®1 ?1 ol o2

Unit-B Models

e
any t where
G.t.v

then
S.tv.V
end

. Guarded and Scheduled Events

o Execution of e.t corresponds
to a formula act.(e.t).

Unit-B Models. Guarded and Scheduled Events

e e Execution of e.t corresponds
any t where to a formula act.(e.t).
G.t.v
during
C.tv e F.t.v: fine-schedule.
upon
F.t.v
then
S.tv.v/
end

e C.t.v: coarse-schedule.

Liveness (Scheduling) Assumption

If C.t.v holds infinitely long and F.t.v holds infinitely often
then eventually e.t is executed when F.t.v holds.

sched.(e.t) = OO CAOOF = O(F Aact.(e.t)))

Unit-B Models.

e
any t where
G.t.v
during
C.tv
upon
F.tv
then
S.tv.v/
end

Guarded and Scheduled Events

e Execution of e.t corresponds
to a formula act.(e.t).

e C.t.v: coarse-schedule.
e F.t.v: fine-schedule.

e Healthiness condition:

CtvAF.tv = G.tv

Liveness (Scheduling) Assumption

If C.t.v holds infinitely long and F.t.v holds infinitely often
then eventually e.t is executed when F.t.v holds.

sched.(e.t)

= OO CAOOF = O(F Aact.(e.t)))

Schedules vs. Fairness

e = any t where G.t.v during C.t.v upon F.t.v then ... end

e Schedules are a generalisation of weak- and strong-fairness.

o Weak-fairness:
If eis enabled infinitely long then e eventually occurs.

e LetCbe Gand Fbe T.

e Strong-fairness:
If eis enabled infinitely often then e eventually occurs.

e Let Fbe Gand Cbe T.

Conventions

e = any t where ... during C.t.v upon F.t.v then ... end

e Unscheduled events (without during and upon): Cis L
e When only during is present (no upon), Fis T.

e When only upon is present (no during), Cis T.

Safety Properties

e Invariance properties:
T

e Unless properties: Pun Q

P=Pua) - B—B-E~@ -

or

oe-0n - @-@-®-®

e Prove: For every evente.tin M

S

Liveness Properties

e Progress properties
P~Q = OWP=Q)
e Some important rules

(P=Q)

=
(P~ QA(Q~R) =

(Implication)
(Transitivity)

A Signal Control System

platform signals

— entrysignal,’ Y SAF 1 There is at most one train
! E] ' on each block
U 1
“‘ ﬂ ," LIVE 2 Each train in the network
entry block it block
/ N e b eventually leaves

platform blocks

A Signal Control System

platform signals

— entrysignal,’ Y SAF 1 There is at most one train
! E] ' on each block
U 1
“‘ ﬂ ," LIVE 2 Each train in the network
entry block it block
/ N e b eventually leaves

platform blocks

Refinement Strategy

Model 0 To model trains in the network, focus on LIVE 2
Ref. 1 To introduce the network topology
Ref. 2 To take into account SAF 1
Ref. 3 To introduce signals and derive a specification for the controller

A Signal Control System. The Initial Model
Sketch
LIVE 2 Each train in the network eventually leaves

A Signal Control System. The Initial Model
Sketch
LIVE 2 Each train in the network eventually leaves

invariants :

variables : irns trns C TAN

arrives departs

N\

-

g

A Signal Control System. The Initial Model

Sketch

LIVE 2 Each train in the network eventually leaves

variables : irns invariants :
trns C TRN
arrives departs
any { where any { where
te TRN te TRN
then then
trns := trns U {t} trns := trns\ {t}
end end

properties :
prg0_1: tetrns ~ t¢trns

Note: Free variables are universally quantified.

Transient Properties

Theorem (Implementing P ~~ —=P)
M satisfies P ~ —P if there exists an eventin M

e = any t where G.t.v during C.t.v upon F.t.v then S.t.v.v' end

such that
oP=0C), (SCH)

CwF, (PRG)

e.t 4)‘
(NEG)

o Note: general progress properties can be proved
using the induction or ensure rules.

A Signal Control System. The Initial Model

Properties

departs
any { where
t e TRN

prg0_1: tetrns ~ t¢trns

then
trns := trns \ {t}
end

A Signal Control System. The Initial Model

Properties

departs
any { where
te TRN
during
t € trns
then
trns := trns \ {t}
end

prg0_1: tetrns ~ t ¢ trns

e (SCH) is trivial.
¢ No fine-schedule (F is T) hence (PRG) is trivial.

e The event falsifies t € trns (NEG)

Refinement

e Event-based reasoning.

(abs_)e = any f where G during C upon F then S end
(cnc_)f = any t where H during D upon E then R end

o Safety:
e Guard strengthening: H= G
e Action strengthening: R= S

e Liveness:
e Scheduling assumptions strengthening.
e Schedules weakening:

(OC AOGF) = @D A OGE) (REF_LIVE)

Schedules Weakening

Practical Rules

(OC A OGF) = @D A OGE) (REF_LIVE)

Schedules Weakening

Practical Rules

(OC A OGF) = @D A OGE) (REF_LIVE)

Practical rules

o Coarse-schedule following
CAF ~ D (C_FLW)
e Coarse-schedule stabilising
D un -C (C_STB)
e Fine-schedule following

CANF ~ E (F_FLW)

A Signal Control System. The First Refinement

The State

arrives departs

N

A Signal Control System. The First Refinement

arrives

The State

moveout departs

hvd v N

movein

invi_1:loc € trns — BLK

A Signal Control System. The First Refinement

Refinement of departs

(cnc_)departs
any { where
t € trns A loc.t = Exit

(abs_)departs
any { where
te TRN

{ during
during t € trns A loc.t = Exit
t € trns
then then
trns .= trns \ {t
trns := trns\ {t} loc := {t} 6\/0{0}
end '

end

e Guard and action strengthening are trivial.
o Coarse-schedule following (amongst others):

tetrns ~ t e trns A loc.t = Exit (prgi_1)

A Signal Control System. The First Refinement

New Event moveout

moveout
any t where
tetrnsNloc.t € PLF

during

tetrnsAloc.t € PLF
then

loc.t := Exit

end

A Signal Control System. The Second Refinement
The State

SAF 1 There is at most one train on each block

invariants :
Vi, to - tetrnsAty € trnsAloc.ty = loc.ta = t; =1t

A Signal Control System. The Second Refinement

Refinement of moveout

(abs_)moveout
any t where
tetrnsAloc.t € PLF

during

te trns A loc.t € PLF
then

loc.t := Exit
end

(cnc_)moveout

any { where
tetrns A loc.t € PLFA

during
tetrnsAloc.t € PLF
upon

then
loc.t := Exit
end

A Signal Control System. The Second Refinement

Refinement of moveout

(abs_)moveout
any t where
tetrnsAloc.t € PLF

during

te trns A loc.t € PLF
then

loc.t := Exit
end

(cnc_)moveout

any { where
tetrns Aloc.t € PLFA
EXxit ¢ ran.loc

during
tetrnsAloc.t € PLF

upon

then
loc.t := Exit
end

A Signal Control System. The Second Refinement

Refinement of moveout

(cnc_)moveout
any t where
tetrns A loc.t € PLFA
EXxit ¢ ran.loc

(abs_)moveout
any { where
tetrns Aloc.t € PLF

during during
tetrnsAloc.t € PLF uptoi ts A loc.t € PLF
then)
loc.t -— Exit EXxit ¢ ran.loc
end then _
loc.t .= Exit
end

o Neither weak- nor strong-fairness is satisfactory.

o Weak-fairness requires Exit to be free infinitely long.
e Strong-fairness is too strong assumption.

Summary

The Unit-B Modelling Method

e Guarded and scheduled events.
e Reasoning about liveness (progress) properties.
o Refinement preserving safety and liveness properties.

o Developments are guided by safety and liveness requirements.

Future Work
e Decomposition / Composition

o Tool support

Refinement
The UNITY way vs. the Event-B way

e UNITY: Refines the formulae.

Refinement

b= P <= ... <= ¢9p A M
N———
Translation

o Event-B: Refines transition systems.

Refinement
¢ = Mg refined by My ... refined by M
———

Verification

Refinement
The UNITY way vs. the Event-B way

e UNITY: Refines the formulae.

Refinement
b= P <= ... <= ¢9p A M
————
Translation

e Cons: Hard to understand the choice of refinement.

o Event-B: Refines transition systems.

Refinement
¢ 3 Mg refined by My ... refined by M
———

Verification

e Cons: No support for liveness properties.

Execution of Unit-B Models

ex.M
saf.M
step.M
live.M

sched.(e.t)

saf. M A live.M

init. M A O step.M

(3e.t € M-act.(e.t)) Vv SKIP
Ve.t € M-sched.(e.t)

O@OC AOOF = O(F Aact.(e.t)))

The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(PunQ) A (PA-Q)~ (-PV Q) = (P~Q) (ENS)

P

~~~~~~~~ &—O—0O—0




The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(PunQ) A (PA-Q)~ (-PV Q) = (P~Q) (ENS)




The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(PunQ) A (PA=-Q)~ (-PV Q) = (P~Q) (ENS)

~~~~~~~~ &—O0—0O—0

-PVvQ

The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(Pun@Q) A (PA=Q)~ (=PV Q) = (P~Q)

e — @ —@— @

-PvQ
PA-Q PA-Q PA-Q

(ENS)

The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(Pun@Q) A (PA=Q)~ (=PV Q) = (P~Q)

(ENS)

The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(Pun@) A (PA=Q)~ (mPV Q) = (P~Q)

P Q
-Q
,,,,,,,, () () O
>© N AN
-PVvQ
PA-Q_ PA-Q_ PA-Q._

(ENS)

The specification of the controller

ctrl_platform
any p where
p € PLF A p € ran.loc A Exit ¢ ran.locA
vq-q € PLF = sgn.g = RD
during
p € PLF Ap €ran.loc A sgn.p= RD
upon
Exit ¢ ran(loc) AVq-q € PLF A q # p=-sgn.q = RD
then
sgn.p := GR
end

