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Safety vs. Liveness

Safety Properties

• Something (bad)
never happens.

• e.g. invariance properties

Liveness Properties

• Something (good)
will happen

• e.g. termination, progress

• Liveness properties are essential.
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Systems Development using Event-B
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• φ0, φ1, . . . , φn: safety properties.
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Traces and the Language of Temporal Logic

A trace σ is a (finite or infinite) sequence of states

σ = s0, s1, s2, s3, . . .

• A (basic) state formula P is any first-order logic formula,

• The basic formulae can be extended by combining
the Boolean operators (¬,∧,∨,⇒) with temporal operators:

always: �φ s0 s1 s2 s3

φ φ φ φ

eventually: ♦φ s0 s1 s2 s3

¬φ ¬φ φ ¬φ

until: φ1 U φ2 s0 s1 s2 s3

φ1 φ1 φ1 φ2



Unit-B Models. Guarded and Scheduled Events

e
any t where

G.t .v

during
C.t .v

upon
F .t .v

then
S.t .v .v ′

end

• Execution of e.t corresponds
to a formula act .(e.t).

• C.t .v : coarse-schedule.

• F .t .v : fine-schedule.

• Healthiness condition:

C.t .v ∧ F .t .v ⇒ G.t .v

Liveness (Scheduling) Assumption

If C.t .v holds infinitely long and F .t .v holds infinitely often
then eventually e.t is executed when F .t .v holds.

sched .(e.t) = �(�C ∧�♦F ⇒ ♦(F ∧ act .(e.t)))
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Schedules vs. Fairness

e =̂ any t where G.t .v during C.t .v upon F .t .v then . . . end

• Schedules are a generalisation of weak- and strong-fairness.

• Weak-fairness:
If e is enabled infinitely long then e eventually occurs.
• Let C be G and F be >.

• Strong-fairness:
If e is enabled infinitely often then e eventually occurs.
• Let F be G and C be >.



Conventions

e =̂ any t where . . . during C.t .v upon F .t .v then . . . end

• Unscheduled events (without during and upon): C is ⊥

• When only during is present (no upon), F is >.

• When only upon is present (no during), C is >.



Safety Properties

• Invariance properties:

� I I I I I

• Unless properties: P un Q

�(P⇒ P U Q) P P P Q
or

�(P⇒�P) P P P P

• Prove: For every event e.t in M

P ∧ ¬Q P ∨Qe.t



Liveness Properties

• Progress properties

P  Q =̂ �(P ⇒ ♦Q)

• Some important rules

(P⇒Q) ⇒ (P  Q) (Implication)
(P  Q) ∧ (Q  R) ⇒ (P  R) (Transitivity)



A Signal Control System

entry block

platform blocks

exit block

entry signal

platform signals

=⇒ SAF 1 There is at most one train
on each block

LIVE 2 Each train in the network
eventually leaves

Refinement Strategy

Model 0 To model trains in the network, focus on LIVE 2
Ref. 1 To introduce the network topology
Ref. 2 To take into account SAF 1
Ref. 3 To introduce signals and derive a specification for the controller
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A Signal Control System. The Initial Model
Sketch

LIVE 2 Each train in the network eventually leaves

variables : trns invariants :
trns ⊆ TRN

=⇒

arrives trns
departs
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A Signal Control System. The Initial Model
Sketch

LIVE 2 Each train in the network eventually leaves

variables : trns invariants :
trns ⊆ TRN

arrives
any t where

t ∈ TRN
then

trns := trns ∪ {t}
end

departs
any t where

t ∈ TRN
then

trns := trns \ {t}
end

properties :
prg0_1 : t ∈ trns  t /∈ trns

Note: Free variables are universally quantified.



Transient Properties
Theorem (Implementing P  ¬P)
M satisfies P  ¬P if there exists an event in M

e =̂ any t where G.t .v during C.t .v upon F .t .v then S.t .v .v ′ end

such that
�(P⇒ C) , (SCH)

C  F , (PRG)

P ∧
C ∧ F

¬Pe.t

(NEG)

• Note: general progress properties can be proved
using the induction or ensure rules.



A Signal Control System. The Initial Model
Properties

departs
any t where

t ∈ TRN

during
t ∈ trns

then
trns := trns \ {t}

end

prg0_1 : t ∈ trns  t /∈ trns

• (SCH) is trivial.

• No fine-schedule (F is >) hence (PRG) is trivial.

• The event falsifies t ∈ trns (NEG)
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Refinement

• Event-based reasoning.

(abs_)e =̂ any t where G during C upon F then S end

(cnc_)f =̂ any t where H during D upon E then R end

• Safety:

• Guard strengthening: H⇒G
• Action strengthening: R⇒ S

• Liveness:

• Scheduling assumptions strengthening.
• Schedules weakening:

(�C ∧ �♦F ) ⇒ ♦(�D ∧ �♦E) (REF_LIVE)



Schedules Weakening
Practical Rules

(�C ∧ �♦F ) ⇒ ♦(�D ∧ �♦E) (REF_LIVE)

Practical rules
• Coarse-schedule following

C ∧ F  D (C_FLW)

• Coarse-schedule stabilising

D un ¬C (C_STB)

• Fine-schedule following

C ∧ F  E (F_FLW)
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A Signal Control System. The First Refinement
The State

=⇒
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departs

inv1_1 : loc ∈ trns→ BLK
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A Signal Control System. The First Refinement
Refinement of departs

(abs_)departs
any t where

t ∈ TRN
during

t ∈ trns
then

trns := trns \ {t}
end

(cnc_)departs
any t where

t ∈ trns ∧ loc.t = Exit
during

t ∈ trns ∧ loc.t = Exit
then

trns := trns \ {t}
loc := {t}C− loc

end

• Guard and action strengthening are trivial.

• Coarse-schedule following (amongst others):

t ∈ trns  t ∈ trns ∧ loc.t = Exit ( prg1_1)



A Signal Control System. The First Refinement
New Event moveout

moveout
any t where

t ∈ trns ∧ loc.t ∈ PLF
during

t ∈ trns ∧ loc.t ∈ PLF
then

loc.t := Exit
end



A Signal Control System. The Second Refinement
The State

SAF 1 There is at most one train on each block

invariants :
∀t1, t2 · t1 ∈ trns ∧ t2 ∈ trns ∧ loc.t1 = loc.t2 ⇒ t1 = t2



A Signal Control System. The Second Refinement
Refinement of moveout

(abs_)moveout
any t where

t ∈ trns ∧ loc.t ∈ PLF
during

t ∈ trns ∧ loc.t ∈ PLF
then

loc.t := Exit
end

(cnc_)moveout
any t where

t ∈ trns ∧ loc.t ∈ PLF∧

Exit /∈ ran .loc

during
t ∈ trns ∧ loc.t ∈ PLF

upon

Exit /∈ ran .loc

then
loc.t := Exit

end

• Neither weak- nor strong-fairness is satisfactory.

• Weak-fairness requires Exit to be free infinitely long.
• Strong-fairness is too strong assumption.
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Summary

The Unit-B Modelling Method

• Guarded and scheduled events.

• Reasoning about liveness (progress) properties.

• Refinement preserving safety and liveness properties.

• Developments are guided by safety and liveness requirements.

Future Work
• Decomposition / Composition

• Tool support



Refinement
The UNITY way vs. the Event-B way

• UNITY: Refines the formulae.

Refinement︷ ︸︸ ︷
φ ⇐ φ1 ⇐ . . . ⇐ φn � M︸ ︷︷ ︸

Translation

• Cons: Hard to understand the choice of refinement.

• Event-B: Refines transition systems.

︸ ︷︷ ︸
Verification

φ �

Refinement︷ ︸︸ ︷
M0 refined by M1 . . . refined by M

• Cons: No support for liveness properties.
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Execution of Unit-B Models

ex .M = saf .M ∧ live.M (1)

saf .M = init .M ∧� step.M (2)

step.M = (∃e.t ∈ M·act .(e.t)) ∨ SKIP (3)

live.M = ∀e.t ∈ M·sched .(e.t) (4)

sched .(e.t) = �(�C ∧ �♦F ⇒ ♦(F ∧ act .(e.t))) (5)



The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(P un Q) ∧ ((P ∧ ¬Q) (¬P ∨Q)) ⇒ (P  Q) (ENS)

P

¬Q

¬P ∨ Q

P ∧ ¬Q P ∧ ¬Q P ∧ ¬Q

P ∨ Q P ∨ Q P ∨ Q

Q
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The specification of the controller

ctrl_platform
any p where

p ∈ PLF ∧ p ∈ ran .loc ∧ Exit /∈ ran .loc∧
∀q ·q ∈ PLF ⇒ sgn.q = RD

during
p ∈ PLF ∧ p ∈ ran .loc ∧ sgn.p = RD

upon
Exit /∈ ran(loc) ∧ ∀q ·q ∈ PLF ∧ q 6= p⇒ sgn.q = RD

then
sgn.p := GR

end


