
Systems Design Guided by Progress
Concerns

Simon Hudon1 and Thai Son Hoang2

1Department of Computer Science, York University, Canada
2Institute of Information Security, ETH Zurich, Switzerland

iFM 2013, Turku, Finland
12th June 2013

Safety vs. Liveness

Safety Properties

• Something (bad)
never happens.

• e.g. invariance properties

Liveness Properties

• Something (good)
will happen

• e.g. termination, progress

• Liveness properties are essential.

Safety vs. Liveness

Safety Properties

• Something (bad)
never happens.

• e.g. invariance properties

Liveness Properties

• Something (good)
will happen

• e.g. termination, progress

• Liveness properties are essential.

Safety vs. Liveness

Safety Properties

• Something (bad)
never happens.

• e.g. invariance properties

Liveness Properties

• Something (good)
will happen

• e.g. termination, progress

• Liveness properties are essential.

Systems Development using Event-B

M0

satisfies

φ0

M1refined by

satisfies

φ1

Mnrefined by

satisfies

φn

• φ0, φ1, . . . , φn: safety properties.

Unit-B = UNITY + Event-B

M0

satisfies

φ0

M1refined by

satisfies

φ1

Mnrefined by

satisfies

φn

scheduling assumptions
+

+
+

progress properties
+

+
+

+
preserves
liveness

+
preserves
liveness

• Developments using Unit-B are
guided by both safety and liveness requirements.

Unit-B = UNITY + Event-B

M0

satisfies

φ0

M1refined by

satisfies

φ1

Mnrefined by

satisfies

φn

scheduling assumptions
+

+
+

progress properties
+

+
+

+
preserves
liveness

+
preserves
liveness

• Developments using Unit-B are
guided by both safety and liveness requirements.

Unit-B = UNITY + Event-B

M0

satisfies

φ0

M1refined by

satisfies

φ1

Mnrefined by

satisfies

φn

scheduling assumptions
+

+
+

progress properties
+

+
+

+
preserves
liveness

+
preserves
liveness

• Developments using Unit-B are
guided by both safety and liveness requirements.

Unit-B = UNITY + Event-B

M0

satisfies

φ0

M1refined by

satisfies

φ1

Mnrefined by

satisfies

φn

scheduling assumptions
+

+
+

progress properties
+

+
+

+
preserves
liveness

+
preserves
liveness

• Developments using Unit-B are
guided by both safety and liveness requirements.

Traces and the Language of Temporal Logic

A trace σ is a (finite or infinite) sequence of states

σ = s0, s1, s2, s3, . . .

• A (basic) state formula P is any first-order logic formula,

• The basic formulae can be extended by combining
the Boolean operators (¬,∧,∨,⇒) with temporal operators:

always: �φ s0 s1 s2 s3

φ φ φ φ

eventually: ♦φ s0 s1 s2 s3

¬φ ¬φ φ ¬φ

until: φ1 U φ2 s0 s1 s2 s3

φ1 φ1 φ1 φ2

Unit-B Models. Guarded and Scheduled Events

e
any t where

G.t .v

during
C.t .v

upon
F .t .v

then
S.t .v .v ′

end

• Execution of e.t corresponds
to a formula act .(e.t).

• C.t .v : coarse-schedule.

• F .t .v : fine-schedule.

• Healthiness condition:

C.t .v ∧ F .t .v ⇒ G.t .v

Liveness (Scheduling) Assumption

If C.t .v holds infinitely long and F .t .v holds infinitely often
then eventually e.t is executed when F .t .v holds.

sched .(e.t) = �(�C ∧�♦F ⇒ ♦(F ∧ act .(e.t)))

Unit-B Models. Guarded and Scheduled Events

e
any t where

G.t .v
during

C.t .v
upon

F .t .v
then

S.t .v .v ′

end

• Execution of e.t corresponds
to a formula act .(e.t).

• C.t .v : coarse-schedule.

• F .t .v : fine-schedule.

• Healthiness condition:

C.t .v ∧ F .t .v ⇒ G.t .v

Liveness (Scheduling) Assumption

If C.t .v holds infinitely long and F .t .v holds infinitely often
then eventually e.t is executed when F .t .v holds.

sched .(e.t) = �(�C ∧�♦F ⇒ ♦(F ∧ act .(e.t)))

Unit-B Models. Guarded and Scheduled Events

e
any t where

G.t .v
during

C.t .v
upon

F .t .v
then

S.t .v .v ′

end

• Execution of e.t corresponds
to a formula act .(e.t).

• C.t .v : coarse-schedule.

• F .t .v : fine-schedule.

• Healthiness condition:

C.t .v ∧ F .t .v ⇒ G.t .v

Liveness (Scheduling) Assumption

If C.t .v holds infinitely long and F .t .v holds infinitely often
then eventually e.t is executed when F .t .v holds.

sched .(e.t) = �(�C ∧�♦F ⇒ ♦(F ∧ act .(e.t)))

Schedules vs. Fairness

e =̂ any t where G.t .v during C.t .v upon F .t .v then . . . end

• Schedules are a generalisation of weak- and strong-fairness.

• Weak-fairness:
If e is enabled infinitely long then e eventually occurs.
• Let C be G and F be >.

• Strong-fairness:
If e is enabled infinitely often then e eventually occurs.
• Let F be G and C be >.

Conventions

e =̂ any t where . . . during C.t .v upon F .t .v then . . . end

• Unscheduled events (without during and upon): C is ⊥

• When only during is present (no upon), F is >.

• When only upon is present (no during), C is >.

Safety Properties

• Invariance properties:

� I I I I I

• Unless properties: P un Q

�(P⇒ P U Q) P P P Q
or

�(P⇒�P) P P P P

• Prove: For every event e.t in M

P ∧ ¬Q P ∨Qe.t

Liveness Properties

• Progress properties

P Q =̂ �(P ⇒ ♦Q)

• Some important rules

(P⇒Q) ⇒ (P Q) (Implication)
(P Q) ∧ (Q R) ⇒ (P R) (Transitivity)

A Signal Control System

entry block

platform blocks

exit block

entry signal

platform signals

=⇒ SAF 1 There is at most one train
on each block

LIVE 2 Each train in the network
eventually leaves

Refinement Strategy

Model 0 To model trains in the network, focus on LIVE 2
Ref. 1 To introduce the network topology
Ref. 2 To take into account SAF 1
Ref. 3 To introduce signals and derive a specification for the controller

A Signal Control System

entry block

platform blocks

exit block

entry signal

platform signals

=⇒ SAF 1 There is at most one train
on each block

LIVE 2 Each train in the network
eventually leaves

Refinement Strategy

Model 0 To model trains in the network, focus on LIVE 2
Ref. 1 To introduce the network topology
Ref. 2 To take into account SAF 1
Ref. 3 To introduce signals and derive a specification for the controller

A Signal Control System. The Initial Model
Sketch

LIVE 2 Each train in the network eventually leaves

variables : trns invariants :
trns ⊆ TRN

=⇒

arrives trns
departs

A Signal Control System. The Initial Model
Sketch

LIVE 2 Each train in the network eventually leaves

variables : trns invariants :
trns ⊆ TRN

=⇒

arrives trns
departs

A Signal Control System. The Initial Model
Sketch

LIVE 2 Each train in the network eventually leaves

variables : trns invariants :
trns ⊆ TRN

arrives
any t where

t ∈ TRN
then

trns := trns ∪ {t}
end

departs
any t where

t ∈ TRN
then

trns := trns \ {t}
end

properties :
prg0_1 : t ∈ trns t /∈ trns

Note: Free variables are universally quantified.

Transient Properties
Theorem (Implementing P ¬P)
M satisfies P ¬P if there exists an event in M

e =̂ any t where G.t .v during C.t .v upon F .t .v then S.t .v .v ′ end

such that
�(P⇒ C) , (SCH)

C F , (PRG)

P ∧
C ∧ F

¬Pe.t

(NEG)

• Note: general progress properties can be proved
using the induction or ensure rules.

A Signal Control System. The Initial Model
Properties

departs
any t where

t ∈ TRN

during
t ∈ trns

then
trns := trns \ {t}

end

prg0_1 : t ∈ trns t /∈ trns

• (SCH) is trivial.

• No fine-schedule (F is >) hence (PRG) is trivial.

• The event falsifies t ∈ trns (NEG)

A Signal Control System. The Initial Model
Properties

departs
any t where

t ∈ TRN
during

t ∈ trns
then

trns := trns \ {t}
end

prg0_1 : t ∈ trns t /∈ trns

• (SCH) is trivial.

• No fine-schedule (F is >) hence (PRG) is trivial.

• The event falsifies t ∈ trns (NEG)

Refinement

• Event-based reasoning.

(abs_)e =̂ any t where G during C upon F then S end

(cnc_)f =̂ any t where H during D upon E then R end

• Safety:

• Guard strengthening: H⇒G
• Action strengthening: R⇒ S

• Liveness:

• Scheduling assumptions strengthening.
• Schedules weakening:

(�C ∧ �♦F) ⇒ ♦(�D ∧ �♦E) (REF_LIVE)

Schedules Weakening
Practical Rules

(�C ∧ �♦F) ⇒ ♦(�D ∧ �♦E) (REF_LIVE)

Practical rules
• Coarse-schedule following

C ∧ F D (C_FLW)

• Coarse-schedule stabilising

D un ¬C (C_STB)

• Fine-schedule following

C ∧ F E (F_FLW)

Schedules Weakening
Practical Rules

(�C ∧ �♦F) ⇒ ♦(�D ∧ �♦E) (REF_LIVE)

Practical rules
• Coarse-schedule following

C ∧ F D (C_FLW)

• Coarse-schedule stabilising

D un ¬C (C_STB)

• Fine-schedule following

C ∧ F E (F_FLW)

A Signal Control System. The First Refinement
The State

=⇒

arrives trns
departs

inv1_1 : loc ∈ trns→ BLK

A Signal Control System. The First Refinement
The State

=⇒

arrives departsmovein moveout

inv1_1 : loc ∈ trns→ BLK

A Signal Control System. The First Refinement
Refinement of departs

(abs_)departs
any t where

t ∈ TRN
during

t ∈ trns
then

trns := trns \ {t}
end

(cnc_)departs
any t where

t ∈ trns ∧ loc.t = Exit
during

t ∈ trns ∧ loc.t = Exit
then

trns := trns \ {t}
loc := {t}C− loc

end

• Guard and action strengthening are trivial.

• Coarse-schedule following (amongst others):

t ∈ trns t ∈ trns ∧ loc.t = Exit (prg1_1)

A Signal Control System. The First Refinement
New Event moveout

moveout
any t where

t ∈ trns ∧ loc.t ∈ PLF
during

t ∈ trns ∧ loc.t ∈ PLF
then

loc.t := Exit
end

A Signal Control System. The Second Refinement
The State

SAF 1 There is at most one train on each block

invariants :
∀t1, t2 · t1 ∈ trns ∧ t2 ∈ trns ∧ loc.t1 = loc.t2 ⇒ t1 = t2

A Signal Control System. The Second Refinement
Refinement of moveout

(abs_)moveout
any t where

t ∈ trns ∧ loc.t ∈ PLF
during

t ∈ trns ∧ loc.t ∈ PLF
then

loc.t := Exit
end

(cnc_)moveout
any t where

t ∈ trns ∧ loc.t ∈ PLF∧

Exit /∈ ran .loc

during
t ∈ trns ∧ loc.t ∈ PLF

upon

Exit /∈ ran .loc

then
loc.t := Exit

end

• Neither weak- nor strong-fairness is satisfactory.

• Weak-fairness requires Exit to be free infinitely long.
• Strong-fairness is too strong assumption.

A Signal Control System. The Second Refinement
Refinement of moveout

(abs_)moveout
any t where

t ∈ trns ∧ loc.t ∈ PLF
during

t ∈ trns ∧ loc.t ∈ PLF
then

loc.t := Exit
end

(cnc_)moveout
any t where

t ∈ trns ∧ loc.t ∈ PLF∧
Exit /∈ ran .loc

during
t ∈ trns ∧ loc.t ∈ PLF

upon

Exit /∈ ran .loc

then
loc.t := Exit

end

• Neither weak- nor strong-fairness is satisfactory.

• Weak-fairness requires Exit to be free infinitely long.
• Strong-fairness is too strong assumption.

A Signal Control System. The Second Refinement
Refinement of moveout

(abs_)moveout
any t where

t ∈ trns ∧ loc.t ∈ PLF
during

t ∈ trns ∧ loc.t ∈ PLF
then

loc.t := Exit
end

(cnc_)moveout
any t where

t ∈ trns ∧ loc.t ∈ PLF∧
Exit /∈ ran .loc

during
t ∈ trns ∧ loc.t ∈ PLF

upon
Exit /∈ ran .loc

then
loc.t := Exit

end

• Neither weak- nor strong-fairness is satisfactory.

• Weak-fairness requires Exit to be free infinitely long.
• Strong-fairness is too strong assumption.

Summary

The Unit-B Modelling Method

• Guarded and scheduled events.

• Reasoning about liveness (progress) properties.

• Refinement preserving safety and liveness properties.

• Developments are guided by safety and liveness requirements.

Future Work
• Decomposition / Composition

• Tool support

Refinement
The UNITY way vs. the Event-B way

• UNITY: Refines the formulae.

Refinement︷ ︸︸ ︷
φ ⇐ φ1 ⇐ . . . ⇐ φn � M︸ ︷︷ ︸

Translation

• Cons: Hard to understand the choice of refinement.

• Event-B: Refines transition systems.

︸ ︷︷ ︸
Verification

φ �

Refinement︷ ︸︸ ︷
M0 refined by M1 . . . refined by M

• Cons: No support for liveness properties.

Refinement
The UNITY way vs. the Event-B way

• UNITY: Refines the formulae.

Refinement︷ ︸︸ ︷
φ ⇐ φ1 ⇐ . . . ⇐ φn � M︸ ︷︷ ︸

Translation

• Cons: Hard to understand the choice of refinement.

• Event-B: Refines transition systems.

︸ ︷︷ ︸
Verification

φ �

Refinement︷ ︸︸ ︷
M0 refined by M1 . . . refined by M

• Cons: No support for liveness properties.

Execution of Unit-B Models

ex .M = saf .M ∧ live.M (1)

saf .M = init .M ∧� step.M (2)

step.M = (∃e.t ∈ M·act .(e.t)) ∨ SKIP (3)

live.M = ∀e.t ∈ M·sched .(e.t) (4)

sched .(e.t) = �(�C ∧ �♦F ⇒ ♦(F ∧ act .(e.t))) (5)

The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(P un Q) ∧ ((P ∧ ¬Q) (¬P ∨Q)) ⇒ (P Q) (ENS)

P

¬Q

¬P ∨ Q

P ∧ ¬Q P ∧ ¬Q P ∧ ¬Q

P ∨ Q P ∨ Q P ∨ Q

Q

The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(P un Q) ∧ ((P ∧ ¬Q) (¬P ∨Q)) ⇒ (P Q) (ENS)

P
¬Q

¬P ∨ Q

P ∧ ¬Q P ∧ ¬Q P ∧ ¬Q

P ∨ Q P ∨ Q P ∨ Q

Q

The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(P un Q) ∧ ((P ∧ ¬Q) (¬P ∨Q)) ⇒ (P Q) (ENS)

P
¬Q

¬P ∨ Q

P ∧ ¬Q P ∧ ¬Q P ∧ ¬Q

P ∨ Q P ∨ Q P ∨ Q

Q

The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(P un Q) ∧ ((P ∧ ¬Q) (¬P ∨Q)) ⇒ (P Q) (ENS)

P
¬Q

¬P ∨ Q

P ∧ ¬Q P ∧ ¬Q P ∧ ¬Q

P ∨ Q P ∨ Q P ∨ Q

Q

The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(P un Q) ∧ ((P ∧ ¬Q) (¬P ∨Q)) ⇒ (P Q) (ENS)

P
¬Q

¬P ∨ Q

P ∧ ¬Q P ∧ ¬Q P ∧ ¬Q

P ∨ Q P ∨ Q P ∨ Q

Q

The Ensure Rule

Theorem (The ensure-rule)
For all state predicates p and q,

(P un Q) ∧ ((P ∧ ¬Q) (¬P ∨Q)) ⇒ (P Q) (ENS)

P
¬Q

¬P ∨ Q

P ∧ ¬Q P ∧ ¬Q P ∧ ¬Q

P ∨ Q P ∨ Q P ∨ Q

Q

The specification of the controller

ctrl_platform
any p where

p ∈ PLF ∧ p ∈ ran .loc ∧ Exit /∈ ran .loc∧
∀q ·q ∈ PLF ⇒ sgn.q = RD

during
p ∈ PLF ∧ p ∈ ran .loc ∧ sgn.p = RD

upon
Exit /∈ ran(loc) ∧ ∀q ·q ∈ PLF ∧ q 6= p⇒ sgn.q = RD

then
sgn.p := GR

end

