
Consistency Verification of Specification Rules

T.S. Hoang, S. Itoh, K. Oyama, K. Miyazaki, H. Kuruma, and N. Sato

Center for Technology Innovation, Hitachi Ltd., Kanagawa 244-0817, Japan
hoang.thaison.ex, shinji.itoh.wn, kyohei.oyama.ec, kunihiko.miyazaki.zt,

hironobu.kuruma.zg, naoto.sato.je@hitachi.com

Abstract. This paper focuses on the consistency analysis of specifica-
tion rules expressing relationships between input and expected output
of systems. We identified the link between Minimal Inconsistent Sets
(MISes) of rules and Minimal Unsatisfiable Subsets (MUSes) of con-
straints. For practical consistency verification of rules, we developed a
novel algorithm using SMT solvers for fast enumeration of MUSes. We
evaluated the algorithm using publicly available benchmarks. Finally,
we used the approach to verify the consistency of specifications rules
extracted from real-world case studies.
Keywords: Specification rules, Consistency verification, Minimal Incon-
sistent Sets (MISes), Minimal Unsatisfiable Subsets (MUSes), SMTs.

1 Introduction

In financial and public sectors, regulations and policies are often specified in
terms of rules describing relationships between input and expected output. As an
example, consider a rewarding policy for a vehicle insurance company. Beside the
normal contracts, the company o↵ers two special rewards in the form of discounts
(in percentages) for the insurance and shopping coupons. The availability of the
rewards to customers depends on the duration (number of years) of the contracts,
their online account status (whether or not they already have an online account),
and their VIP membership status. The policies on how rewards are o↵ered to a
customer are as follows.

(R1) If the customer has an online account then either a discount of 3% or a
100$ coupon is o↵ered.

(R2) If the customer is a VIP then a discount of at least 5% and a coupon
valued between 50$ and 100$ are o↵ered.

(R3) If the customer is not a VIP and the contract duration is less than 2 years
then either a discount of less than 5% or a coupon valued between 30$ and
50$ is o↵ered.

(R4) If the customer is a VIP and the duration of the contract is at least 2
years then a discount of at least 7% and a 50$ coupon are o↵ered.

Each rule comprises a constraint on the input and a constraint on the output,
imitating logical implication. In particular, the rules are non-deterministic, i.e.,
given a rule and some input, there could be more than one satisfying output.

The original publication is available at http://dx.doi.org/10.1007/978-3-319-25423-4_4
Appeared in Proceedings of the ICFEM2015 Conference © Springer-Verlag

2

This type of specification rules is particularly useful in the early system de-
sign process, where requirements are obscure and the system details cannot be
decided. Non-determinism is essentially what makes specification rules di↵erent
from production rules used in Business Rule Management Systems (BRMSes) [7].
Production rules are designed for execution, and hence they are necessarily deter-
ministic. More discussion on the similarities and di↵erences between specification
rules and production rules can be seen in Section 6.

Given a set of rules, i.e., a rule base, various properties can be statically
analysed. One of the most important properties of a rule base is consistency :
the rule base should be conflict-free, i.e., there must be some possible output
for any valid input. Otherwise, the regulations represented by the rule base are
infeasible and cannot be implemented. In the example of the vehicle insurance
company, the policy is inconsistent. More specifically, when a customer is a VIP
with a 3-year contract and an online account, there are no possible values for
the insurance discount and the shopping coupon satisfying the rewarding policy.

This paper focuses on the consistency analysis of a special type of specifica-
tion rules, namely those where the output constraints do not refer to the input
(e.g., the vehicle insurance example). This type of specification rules is su�-
cient to stipulate many policies in financial and public sectors such as taxation
regulations or insurance policies. Consistency analysis of this type of rules is a
challenging problem. In the worst cases, there can be exponentially many set of
inconsistent rules within a rule base. Moreover, even in the case where the rule
base is consistent, one (potentially) has to consider every combination of the
rules. Our motivation is to develop some program for e�ciently validating the
consistency of specification rules.

Within our knowledge, there are no existing technologies for formally verify-
ing consistency of non-deterministic specification rules. However, given the fact
that each rule is made up of an input constraint and an output constraint, the
consistency of rules is related to the satisfiability of constraints. Recent advance-
ment in the field of SMT solvers enables the possibility of checking satisfiability
for a large and complex set of constraints of di↵erent types [4]. In particular,
SMT solvers have been showed to be applicable to hardware designs, programs
verification, etc. Various SMT-based problems have been investigated. Amongst
them is “infeasibility analysis”, the study about constraint sets for which no sat-
isfying assignments exist. Given an unsatisfiable constraint set, useful informa-
tion about this set includes to identify where the “problem” occurs. There exist
e�cient algorithms for extracting a Minimal Unsatisfiable (sub-)Set (MUS), i.e.,
the unsat-core, of an unsatisfiable constraint set [6,13,15]. Recently, algorithms
for finding all MUSes have been proposed [3,10,11].

In order to validate the consistency of a rule base, we enumerate all Minimal
Inconsistent Sets (MISes) of the rule base. A MIS is a set of inconsistent rules
that is minimal, with respect to the set-inclusion ordering. Similar to the MUSes
of constraints, the MISes of rules identify where the problems occur within the
rule base. By exploring the relationship between the MISes of the rule base, the
MUSes of the output constraints, and satisfiability of individual input constraint,

3

we reduce the problem of enumerating the MISes to that of the MUSes of the
output constraints. We use SMT solvers as black-boxes for solving satisfiability
problems. Furthermore, our approach is constraint-agnostic, i.e., independent of
the type of the input and output constraints.

We identify the relationship between the MISes of the rules, the MUSes
of the output constraints, and the satisfiability of the input constraints. Our
contribution is a novel algorithm for fast enumeration of MUSes. We compare our
algorithm against the state-of-the-art program for MUSes enumeration from [10]
using some publicly available benchmarks. The correctness of our approach is
ensured by the formalisation of the algorithms using the Event-B modelling
method [1] and the mechanical proofs using the supporting Rodin platform [2].
A more detailed version of this paper including the Event-B formalisation can
be found elsewhere [9].

The rest of the paper is structured as follows. In Section 2, we present some
background information including the problem of constraints satisfiability and
rules consistency. In Section 3, we discuss the relationship between MISes and
MUSes, showing that the problem of finding MISes can be reduced to enu-
merating MUSes. In Section 4, we present a novel and e�cient algorithm for
enumerating MUSes. In Section 5, we give our empirical analysis of the new al-
gorithm and its application in finding MISes. Finally, we draw some conclusions
in Section 6.

2 Background

2.1 Constraints Satisfiability

In this paper, we often discuss satisfiability problems related to di↵erent generic
sets of constraints. For each set of constraints, the constraint type and variables
domain are omitted. In general, we will consider some indexed set of constraints
C = {C 1,C 2, . . . ,Cn}. Each constraint C i specifies some restrictions on the
problem’s variables. Constraint C i is satisfied by any assignment A of the vari-
ables that meets C i’s restriction. We use the notation sat(A,C) to denote the
fact that A satisfies C , and unsat(A,C) otherwise.

Given a set of constraints Cs ✓ C, if there exists some assignment satisfying
every constraint in Cs then Cs is said to be satisfiable (SAT). Otherwise, Cs is
unsatisfiable (UNSAT). More formally, given a set of constraints Cs, we have

SAT(Cs) b= 9A · 8C 2 Cs · sat(A,C) , and (1)

UNSAT(Cs) b= 8A · 9C 2 Cs · unsat(A,C) . (2)

In this paper, we will be interested in two special types of sets of con-
straints, namely: Maximal Satisfiable (sub-)Set (MSS) and Minimal Unsatisfiable
(sub-)Set (MUS). A set of constraints Cs is an MSS if it is a satisfiable subset
of C and cannot be expanded without compromising satisfiability, i.e.,

MSS(Cs) b= SAT(Cs) ^ (8S ·S ✓ C ^ Cs ⇢ S) UNSAT(S)) .1 (3)

4

Conversely, a set of constraints Cs ✓ C is a MUS if it is an unsatisfiable subset
of C and is minimal with respect to the set-inclusion ordering, i.e.,

MUS(Cs) b= UNSAT(Cs) ^ (8S ·S ✓ C ^ S ⇢ Cs) SAT(S)) . (4)

MUSes are valuable since they indicate the core reason for unsatisfiability of a
constraint set. In particular, as showed in Section 3, MUSes play an important
role in verifying rules consistency.

2.2 Rules Consistency

Consider a generic set of rules R = {R1,R2, . . . ,Rn}, where n is a positive
number. Each rule Ri consists of a constraint I i over the input variables and a
constraint O i over the output variables. The set of input and output variables
are disjoint. The types of constraints are not specified.

Definition 1 (Rule Satisfiability). A rule R = (I ,O) is satisfied by an as-
signment A

x

of the input variables and an assignment A
y

of the output variables
—denoted as rsat((A

x

,A

y

),R)— if either A

x

does not satisfy I or A

y

satisfies
O, i.e., rsat((A

x

,A

y

),R) b= unsat(A
x

, I) _ sat(A
y

,O).

A subset of rules Rs ✓ R is “consistent” (Consistent) if for every input as-
signment, there exists some output assignment such that the assignments satisfy
all rules in Rs. Otherwise, it is inconsistent (Inconsistent). For convenience, when
the generic set of rules R is known, we identify its subsets by sets of indices, i.e.,
subsets of the range 1 .. n. The consistency definition is lifted accordingly to sets
of indices.

Definition 2 (Rule Consistency). Given a set of indices S ✓ 1 .. n,

Consistent(S) b= 8A
x

·9A
y

·8i 2 S ·rsat((A
x

,A

y

),Ri) , and (5)

Inconsistent(S) b= 9A
x

·8A
y

·9i 2 S ·¬rsat((A
x

,A

y

),Ri) . (6)

From now on, we will use set of rules and set of rule indices interchangeably.
Given an inconsistent rule base R, some indicating facts about R should be

given to “explain” R’s inconsistency. We define the following notion of Minimal
Inconsistent Set (MIS) of a set of rules, the inconsistent core of R.

Definition 3 (MIS). Given a set of rules S ✓ 1 .. n, S is a MIS if and only if
S is inconsistent and is minimal with respect to the set-inclusion ordering, i.e.,
MIS(S) b= Inconsistent(S) ^ (8T ·T ⇢ S) Consistent(T)).

Clearly, a rule base R without any MIS is consistent. In the case where R is
inconsistent, ideally, all MISes of R should be found. In general, the problem of
finding all MISes is intractable: the number of MISes may be exponential in the
size of the rule base. Our main objective is to quickly enumerate MISes.

1 S ⇢ T means that S is a proper-subset of T .

5

Example 1. Consider the rewarding policy mentioned in Section 1. The input
and output constraints of the rules can be formalised as follows.

Rule Input constraint Output constraint
R1 account discount = 3 _ coupon = 100
R2 V IP discount � 5 ^ coupon 2 50 .. 100
R3 ¬V IP ^ duration < 2 discount < 5 _ coupon 2 30 .. 50
R4 V IP ^ duration � 2 discount � 7 ^ coupon = 50

In the above example, input assignment “account, V IP, duration := F,T, 1” and
output assignment “discount, coupon := 5, 50” satisfy all rules. The set of rules
is inconsistent (as mentioned before) and has one MIS, i.e., {R1,R4}.

3 Relationship between MISes and MUSes

In this section, we investigate the relationship between MISes and satisfiabil-
ity problems on the input and output constraints. Since the input and output
variables are disjoint, satisfiability problems on input constraints and output
constraints are independent. Given a set of rules S, the following lemmas ex-
press some relationships between the consistency of S and the satisfiability of
S’s input and output constraints. The lemmas can be proved directly from the
corresponding definitions. Below, we use the notation C [S] for {C i | i 2 S}
(similarly for I [S] and O [S]).

Lemma 1. SAT(I [S]) ^ UNSAT(O [S])) Inconsistent(S)

Lemma 2. SAT(O [S])) Consistent(S)

In general, S’s consistency cannot be directly determined by the satisfia-
bility/unsatisfiability of its input and output constraints. In particular, when
UNSAT(I [S]) and UNSAT(O [S]), S’s consistency is determined by the consis-
tency of S’s proper-subsets. Consider Example 1, {R1,R2,R3} and {R1,R3,R4}
have unsatisfiable input and output constraints, but only the former one is con-
sistent. To avoid iterating the subsets of rules, we prove the following theorem.

Theorem 1 (MISes and MUSes). MIS(S) , MUS(O [S]) ^ SAT(I [S]).

Proof (Sketch).

1. From left to right : Assume MIS(S), we have Inconsistent(S). We infer that
SAT(I [S]) since if UNSAT(I [S]), one of S’s proper-subset must be inconsis-
tent, hence S cannot be minimal. We have UNSAT(O [S]) since if SAT(O [S])
then Consistent(S) (Lemma 2). Subsequently, MUS(O [S]), since otherwise
there exists a set T ⇢ S such that UNSAT(O [T]). From Lemma 1, we have
Inconsistent(T), and hence S is not minimal inconsistent.

2. From right to left : Assume MUS(O [S]) and SAT(I [S]). We deduce that
Inconsistent(S) from Lemma 1. For every T ⇢ S, we have SAT(O [T]), hence
Consistent(T) (Lemma 2). As a result, S is minimal inconsistent. ut

6

getSet b=
output: a new unexplored subset or null if all subsets have been explored.

1. if SAT(Ps) // If there are some unexplored subset, then
2. m getModel(Ps); // get a model
3. return {i | m(x i) = True}; // return the unexplored subset from the model
4. else // If all subsets have been explored, then
5. return null ; // return null

addLowerBound(S) b=
precondition: S ✓ 1 .. n
e↵ect: Mark subsets of S explored

1. Ps := Ps [
��W

i/2S x i

�
;

addUpperBound(S) b=
precondition: S ✓ 1 .. n
e↵ect: Mark supersets of S explored

1. Ps := Ps [
��

¬
V

i2S x i

�
;

Fig. 1: Operations of the powerset manager

Theorem 1 reduces the problem of enumerating MISes to finding the MUSes
of the output constraints, and then checking the satisfiability of the input con-
straints corresponding to each MUS found. As a result, the quicker output con-
straints’ MUSes are discovered, the faster we can enumerate MISes. In the next
section, we present a novel and e�cient algorithm for enumerating MUSes.

4 An E�cient Algorithm for Enumerating MUSes

In general, enumerating MUSes is a well-known problem and potentially in-
tractable (since the number of MUSes may be exponential in the number of con-
straints). A detailed discussion on existing approaches for enumerating MUSes
can be found in [10], including both constraint-specific and constraint-agnostic
algorithms. In this paper, we present our algorithm for fast enumeration of
MUSes, inspired by the state-of-the-art algorithm MARCO [10].

The main feature of MARCO is the use of a powerset manager maintaining a
powerset map for selecting subsets to be explored. Given, a constraint set C, the
powerset map is a set of propositions Ps over a collection of indexed variables x i,
with i 2 1 .. n where n is the number of constraints in C. There are three basic
operations for the powerset manager (Figure 1). In getSet, the powerset manager
utilises the capability of the constraint solver to return a model for a satisfiable
set of constraints, which corresponds to an unexplored subset (a subset required
to be validated). Operations addLowerBound and addUpperBound are for pruning
the unexplored subsets. Operation addLowerBound (resp. addUpperBound) marks
all subsets (resp. supersets) of the input set S as explored (no longer need to be
validated).

4.1 The MARCO algorithm

Intuitively, for each iteration, MARCO (Figure 2) gets a new unexplored subset
S from the powerset manager. If C[S] is satisfiable, MARCO uses a grow sub-

7

MARCO b=
e↵ect: Output MUSes of C as they are found

1. S getSet(); // S is an unexplored subset
2. while S 6= null // While there is some unexplored subset S ,
3. if SAT(C[S]) // if S is satisfiable,
4. mss grow(S); // grow S to obtain an MSS
5. addLowerBound(mss); // add the found mss as a lower bound
6. else // if S is unsatisfiable,
7. mus shrink(S); // shrink S to obtain a MUS
8. yields mus; // yields the found MUS
9. addUpperBound(mus); // add the found mus as an upper bound

10. S getSet(); // Get a new unexplored subset S

Fig. 2: The MARCO algorithm

routine to obtain an MSS, and adds this MSS as a lower bound to restrict future
iterations. Otherwise, i.e., if C[S] is unsatisfiable, MARCO uses a shrink sub-
routine to obtain a MUS, yields this MUS, and adds the found MUS as an upper
bound. The correctness of the MARCO algorithm relies on the fact that MUS
cannot be a subset of an MSS or a (strict-)superset of another MUS. At each
iteration, the powerset manager is restricted hence the algorithm terminates.

The sub-routines grow and shrink can be any o↵-the-shelf methods for finding
an MSS (from a satisfiable seed) and a MUS (from an unsatisfiable seed). For
example, the operation growLin in Figure 3 gradually adds new elements to a
satisfiable subset S if this preserves satisfiability. Conversely, shrinkLin removes
elements step-by-step from an unsatisfiable subset S if it preserves unsatisfiabil-
ity. Both growLin and shrinkLin are not the most e�cient implementation for grow
and shrink sub-routine. For instance, the shrinkBin operation in Figure 3 and its
sub-routine reduce perform binary search and potentially return a MUS faster
than shrinkLin. A similar binary search algorithm exists for the grow routine.
The MARCO algorithm and various grow and shrink routines are not novel.

Example 2. A possible execution trace forMARCO (using growLin and shrinkBin)
applied to the output constraints of the rules R1–R4 in Example 1 is below. At
each step, we show the seed obtained from the powerset manager and its sat-
isfiability status. Depending on the satisfiability status of the seed, a growing
or a shrinking sub-routine is called to obtain an MSS or a MUS. We also re-
port the number of SMT calls (the number of times that the SMT solver is
called to check the problem constraints) and the number of SAT calls (querying
the powerset manager). For example, in Step 2, the powerset manager returns
{R3,R4} (at a cost of 1 SAT call) and checking satisfiability of this seed costs 1
SMT call. Afterwards, it takes 2 SMT calls to grow the seed to obtain the MSS
{R2,R3,R4}.

8

growLin(S) b=
precondition: SAT(C[S])
return: an MSS of C

1. foreach i /2 S
2. if SAT(C[S [{i}])
3. S := S [{i};
4. return S ;

shrinkLin(S) b=
precondition: UNSAT(C[S])
return: a MUS of C

1. foreach i 2 S
2. if UNSAT(C[S \ {i}])
3. S := S \ {i};
4. return S ;

shrinkBin(S) b=
precondition: UNSAT(C[S])
return: a MUS of C

1. return reduce(S ,?);

reduce(A,B) b=
precondition: UNSAT(C[A [B])
return: a minimal a such that

a ✓ A ^ UNSAT(C[a [B])
1. C := A/2; 2

2. if UNSAT(C[C [B])
3. return reduce(C ,B);
4. D := A \ C ;
5. if UNSAT(C[D [B])
6. return reduce(D ,B);
7. C1 reduce(C ,D [B);
8. D1 reduce(D ,C1 [B);
9. return C1 [D1 ;

Fig. 3: Various grow and shrink routines

Step Seed (Satisfiability status) MSS MUS SMTs SATs
1 get seed ? (SAT) 1 1

growing {R1,R2} 4
2 get seed {R3,R4} (SAT) 1 1

growing {R2,R3,R4} 2
3 get seed {R1,R3,R4} (UNSAT) 1 1

shrinking {R1,R4} 4
4 get seed {R1,R2,R3} (UNSAT) 1 1

shrinking {R1,R2,R3} 4
5 get seed {R1,R3} (SAT) 1 1

growing {R1,R3} 2
6 get seed null 1

Total 3 MSSes 2 MUSes 21 6

4.2 The MUSesHunter Algorithm

Notice that, in the MARCO algorithm, the powerset manager is only used for
retrieving unexplored subsets. In particular, during the process of growing and
shrinking seeds, many satisfiability checks are spurious: the sets are either super-
sets of some found MUS or subsets of some found MSS. Satisfiability checking
of the problem constraints (possibly involving theories) is more expensive than
querying the powerset manager (concerning only Boolean constraints). Further-
more, during the process of growing, often unsatisfiable subsets are found. By
calling shrink sub-routine on these unsatisfiable subsets, we can get MUSes faster.
The challenge is to ensure that by shrinking immediately, we obtain a new MUS.

The MUSesHunter algorithm can be seen in Figure 4. Compared to MARCO,

9

MUSesHunter b=
e↵ect: Output MUSes of C as they are found

1. S getSet(); // S is an unexplored subset
2. while S 6= null // While there is some unexplored subset S
3. if SAT(C[S]) // if S is satisfiable
4. set growHyb(S); // grow/shrink S to have an MSS or a MUS
5. if set is an MSS // if set is an MSS
6. addLowerBound(set) // Add set as a lower bound
7. else // if set is a MUS
8. yields set; // yields set as a new MUS
9. addLowerBound(set); // add set as a lower bound

10. addUpperBound(set); // add set as an upper bound
11. else // if S is unsatisfiable
12. mus shrinkBinPS(S); // shrink S to obtain a MUS
13. yields mus; // yields mus as a new MUS
14. addUpperBound(mus); // Add the found mus as an upper bound.
15. addLowerBound(mus); // Add the found mus as a lower bound.
16. S getSet(); // Get a new unexplored subset S

Fig. 4: The MUSesHunter algorithm

the main di↵erence is the use of the powerset manager within the growHyb
and shrinkBinPS sub-routines. In particular, growHyb returns either a MUS or
an MSS. In the subsequent, we outline the implementation of shrinkBinPS and
growHyb. First, we extend the powerset manager with satisfiability checking.

Satisfiability checking with powerset manager. The following operation is added
to the powerset manager in order to check if a set of constraint S need to be
explored. This is done by checking the satisfiability of the set of propositions Ps
together with the constraint representing S .

isUnexplored(S) b=
precondition: S ✓ 1 .. n
output: T if S is an unexplored subset

1. return SAT(Ps [{(
V

i2S

x i) ^ (
V

i/2S

¬x i)});

Theorem 2 states an important property of MUSesHunter, in particular, for the
explored subsets filtered out by the powerset manager.

Theorem 2 (Explored subsets of constraints). For the MUSesHunter algo-
rithm, given a subset of constraints S , we have

¬isUnexplored(S) ,
(9L·SAT(C[L]) ^ S ✓ L)

_ (9M ·MUS(C[M]) ^ S ⇢ M)
_ (9M ·MUS(C[M]) ^M ✓ S) .

(7)

Proof (Sketch). This fact is trivial invariant of the MUSesHunter algorithm since
the set of unexplored subsets can only be pruned in the following two cases:

10

1. An MSS is added as a lower bound.
2. An MUS is added as a lower bound and an upper bound.

As a result, a set S is explored if and only if either (a) S is a subset of an MSS
(some satisfying set L), or (b) S is a subset of some MUS M , or (c) S is a
superset of some MUS M . ut

The following Lemmas are consequences of Theorem 2.

Lemma 3 (Satisfiability during shrink). Given sets of constraints S and T ,
if isUnexplored(S), T ✓ S, and ¬isUnexplored(T), then SAT(C[T]).

Proof. From ¬isUnexplored(T), apply Theorem 2, we have three cases as follows.

1. There exists L where SAT(C[L]) ^ T ✓ L, we have SAT(C[T]) trivially by
anti-monotonicity of SAT.

2. There exists M where MUS(C[M]) ^ T ⇢ M , we have SAT(C[T]) trivially
by definition of MUS (4).

3. There exists M where MUS(C[M])^M ✓ T . From T ✓ S, we obtain M ✓ S.
Apply Theorem 2, we have ¬isUnexplored(S) which is a contradiction.

Lemma 4 (Unsatisfiability during grow). Given sets of constraints S and
T , if isUnexplored(S), S ✓ T , and ¬isUnexplored(T), then UNSAT(C[T]).

The proof of Lemma 4 is similar to that of Lemma 3 and is omitted.
Lemma 3 and Lemma 4 allow us to use the powerset manager to replace

some of the satisfiability checks during shrinking and growing sub-routines.

The shrinkBinPS sub-routine. Comparing the subsequent reducePS with the
reduce sub-routine, before checking satisfiability of C [B (Line 3) and D [B
(Line 6), we first check if these subsets are unexplored. Lemma 3 ensures that if
they are already explored, they are satisfiable.

shrinkBinPS(S) b=
precondition: UNSAT(C[S]) ^ isUnexplored(S)
output: a MUS of Cs

1. return reducePS(S ,?);

reducePS(A,B) b=
precondition: UNSAT(C[A [B]) ^ isUnexplored(A [B)
output: a minimal a ✓ A ^ UNSAT(C[a [B])

1. C := A/2; // C is a half of A
2. if isUnexplored(C [B) // If C [B is unexplored,
3. if UNSAT(C[C [B]) // if C [B is unsatisfiable,
4. return reducePS(C ,B); // recursively reduce C with B
5. D := A \ C ; // D is the di↵erence between A and C
6. if isUnexplored(D [B) // If D [B is unexplored,
7. if UNSAT(C[D [B]) // if D [B is unsatisfiable,
8. return reducePS(D ,B); // recursively reduce D with B
9. C1 reducePS(C ,D [B); // C1 is the result of reducing C with D [B

10. D1 reducePS(D ,C1 [B); // D1 is the result of reducing D with C1 [B
11. return C1 [D1 ; // return the union of C1 and D1

11

The growHyb sub-routine. The following growHyb returns either a new MSS or
a new MUS. It is based on the growLin routine showed earlier.

growHyb(S) b=
precondition: SAT(C[S]) ^ isUnexplored(S)
return: an MSS or a MUS of C

1. foreach c /2 S // For each c not in S ,
2. if isUnexplored(S [{c}) // if S [{c} is unexplored
3. if SAT(C[S [{c}]) // if S [{c} is satisfiable,
4. S := S [{c}; // add c to S
5. else // if S [{c} is unsatisfiable
6. return shrinkBinPS(S [{c}); // shrink to find a MUS
7. return S ; // return S which is an MSS

Similar to the reducePS sub-routine, before checking satisfiability for S [{c}
(Line 3), the growHyb sub-routine checks if it is unexplored. Lemma 4 ensures
that if S [{c} is already explored, it is unsatisfiable. Moreover, the fact that
S [{c} is unexplored guarantees that shrinkBinPS (Line 6) returns a new MUS.

Example 3. An example execution trace for the MUSesHunter algorithm (using
growHyb and shrinkBinPS) applying to the set of output constraints for the rules
R1–R4 in Example 1 is below.

Step Seed (Status) MSS MUS SMTs SATs
1 get seed ? (SAT) 1 1

growing {1, 2, 3} (UNSAT) 3 3
shrinking {1, 2, 3} 2 4

2 get seed {4} (SAT) 1 1
growing {1, 4} (UNSAT) 1 1
shrinking {1, 4} 2

3 get seed {2, 3, 4} (SAT) 1 1
growing {2, 3, 4} 1

4 get seed null 1

Total 1 MSSes 2 MUSes 9 15

4.3 Comparing MARCO and MUSesHunter

The main novelty ofMUSesHunter compared toMARCO is the use of the powerset
manager for checking satisfiability of the problem constraints. In particular, the
powerset manager allows MUSesHunter to produce MUSes even in the case where
the original seed is satisfiable, where MARCO must always produce MSSes. For
our purpose of enumerating MUSes, finding a MUS is more valuable than MSS.
When a MUS is found,MUSesHunter blocks both its super-sets as well as subsets,
where MARCO only blocks the super-sets of MUS. As a result, MUSesHunter
prunes the search space much faster than MARCO. Comparing the traces for
MARCO and MUSesHunter in Example 2 and Example 3, MUSesHunter does
not need to find all MSSes before termination. In fact MSSes found by MARCO
such as {R1,R2} and {R1,R3} are spurious, i.e., they are subset of the MUS
{R1,R2,R3}, and does not require to be considered in searching for MUSes. For
MARCO, MUS can be also added as a lower bound. Focusing on enumerating
MUSes without finding all MSSes was mentioned as future work in [10].

12

5 Empirical Analysis

We implement our algorithms for finding MUSes and MISes using Java. In par-
ticular, for constraint solving (i.e., for the powerset manager and for satisfiability
checks of the problem constraints), we use SMTInterpol [8]. We first compare
the performance of the MUSesHunter and MARCO algorithms (Section 5.1). Af-
terwards, we evaluate the performance of developed MISes finder program with
MUSesHunter using examples extracted from real-world policies (Section 5.2).

5.1 MUSesHunter vs. MARCO

Both algorithms were implemented using the same underlying infrastructure,
sharing as much code as possible. For growing and shrinking, MARCO uses
growLin and shrinkBin sub-routines, whereas MUSesHunter uses growHyb and
shrinkBinPS sub-routines. Both algorithms use a powerset manager built on top
of SMTInterpol without any modification, e.g., it is not biased towards produc-
ing large unexplored sets (which will be beneficial for MARCO). The experiments
were performed on a VMWare Virtual Machine with 4x2.7GHz CPUs running
Linux. Each program was executed with 3GB heap memory limit and an 1800-
second timeout. There is no timeout for individual constraints satisfiability check.
We selected 473 samples (from 4 to 881 constraints) selected from SMT-LIB for
quantifier-free linear integer arithmetic (QF LIA).3 Even though our algorithm
is constraint-agnostic, we have chosen the QF LIA fragment of the SMT-LIB
benchmarks since the input and output constraints of our rule verification case
studies are within this sub-logic. We also restrict our evaluation to the sets of
benchmarks where the SMT solver (SMTInterpol in our implementation) can
verify their satisfiability in a reasonable time. We plan to evaluate our algorithm
against other benchmarks in the future.

Overall. The summary of the results for running the two algorithms is in Ta-
ble 1. While the numbers of cases where the algorithms terminate and find all
MUSes are comparable, MUSesHunter tends to run out of memory (hitting bad
seeds) whereas MARCO tends to run out of time (making too many expensive
SMT calls) more often. However, in most cases, MUSesHunter usually finds more
MUSes than MARCO. In particular, MARCO does not find any MUSes in over
20% of the samples (105 cases), whereas that percentage for MUSesHunter is 6%
(21 cases). This is the direct e↵ect of growHyb: it can produce MUSes even in
the case where the original seed is satisfiable. On average, MUSesHunter found
almost twice as many MUSes as MARCO.

Comparing the number of SMT calls for checking satisfiability of the problem
constraints and SAT calls for the powerset manager, there is a clear di↵erence
between the two programs. MUSesHunter makes heavy use of the powerset man-
ager as a substitute for checking satisfiability of the problem constraints. Even
thoughMUSesHunter’s total number of satisfiability calls is twice as many as that

3 Available from http://smtlib.cs.uiowa.edu/benchmarks.shtml.

http://smtlib.cs.uiowa.edu/benchmarks.shtml

13

MUSesHunter MARCO
Find all (no. of samples) 160 (34%) 139 (29%)
Timeout (no. of samples) 250 (53%) 308 (65%)

Find none 21 (8%) 104 (34%)
Find 1 33 (13%) 76 (25%)

Find > 1 196 (78%) 128 (42%)
Out-of-memory (no. of samples) 63 (13%) 26 (5%)

Find none 0 (0%) 1 (4%)
Find 1 9 (14%) 0 (0%)

Find > 1 54 (86%) 25 (96%)
Total (no. of samples) 473 473
Max MUSes found per sample 29740 18646
Average MUSes found per sample 1050 533
Total satisfiability calls 7749472 3127773

SATs (powerset manager) 6472339 (84%) 82628(3%)
SMTs (constraints satisfiability) 1277133 (16%) 3045145(97%)

Table 1: Empirical analysis summary

(a) Running time comparison (b) MUSes found comparison

Fig. 5: Running time and MUSes found comparison

of MARCO, solving satisfiability problems in the powerset manager (related to
Boolean constraints) are much faster than checking satisfiability of the problem
constraints, which are (in our experiments) QF LIA constraints.

Performance comparison between MUSesHunter and MARCO is as follows.

MUSesHunter better (%) MARCO better (%) Draw (%)
Both terminate 135 (97%) 4 (3%)
Not both terminate 254 (76%) 52 (16%) 28 (8%)
Total 389 (82%) 56 (12%) 28 (6%)

We separate the benchmarks into two categories according to whether or not
both algorithms terminate and find all MUSes. In the first case, an algorithm
is better if it terminates faster. In the second case, we compare the number of
MUSes that the algorithms found. Overall, MUSesHunter outperforms MARCO
by terminating faster or finding more MUSes (82%).

14

Fig. 6: MUSes found vs. Time

Both programs terminate. The comparison between the (log-scale) speed of
MUSesHunter and MARCO in the case where they both terminate can be seen in
Figure 5a. In most cases (97%), MUSesHunter terminates faster than MARCO.
Figure 6 compares the percentage of MUSes found against the time, both scaled
to the range 0 .. 1 for samples that MUSesHunter and MARCO terminate. For
MUSesHunter, it is typical that the MUSes are found early then subsequently,
only MSSes are found. For MARCO, in most cases, MUSes are found gradually.

One of the programs does not terminate. We focus on the number of MUSes
found by each algorithm. In 76% of cases, MUSesHunter found more MUSes
than MARCO. Figure 5b shows the comparison between the numbers of MUSes
found by MUSesHunter and MARCO for individual sample.

5.2 MISes Finder

We evaluate the MISes finder program on the following examples. With the
exception of the first one, all of them are extracted from industrial case studies
in financial and public sectors. The statistics can be seen as follows.

Example Size Time MUSes MSSes MISes SATs SMTs
Test sample 8 195 ms 5 12 3 78 57
Vehicle insurance 4 69 ms 2 1 1 9 15
Care insurance 15 403 ms 62 0 10 106 335
Vehicle tax 108 13.4 s 2590 2 0 7223 19345
Registration 725 1800s 436 1093 0 820455 373767

The performance of the MISes finder program largely depend on the underlying
MUSesHunter algorithm on finding MUSes of the output constraints. The last
two examples (namely Vehicle tax and Registration) are consistent. However,
MISes finder program does not terminate for the Registration example, fails to
verify the rule base. In this case, all 436 MUSes (none of them are MISes) are
found within 60 seconds. Afterwards, the program only found MSSes. Given the
size of the rule base, we do not expect the program found all MSSes within a
reasonable time. To validate this set of rules, we need to adopt some additional
techniques to reduce the complexity of the problem.

15

6 Conclusion

In this paper, we present our approach for validating the consistency of specifi-
cation rules describing the relationship between the system input and expected
output. Our method explores the relationship between MISes of rules and MUSes
of constraints. We developed a novel algorithm for fast enumeration of MUSes
during the validation process and evaluated it against MARCO [10], a state-of-
the-art algorithm for enumerating MUSes. Our approach is constraint-agnostic
and makes use of constraints solvers as black-boxes. Furthermore, we make use
of the well-known routines such as shrink and grow sub-routines to find MUSes
and MSSes. Any state-of-the-art implementation for these sub-routines can be
used within our algorithm. Since our algorithm relying on SMT solvers for sat-
isfiability checking, consistency verification of specifications rules will be limited
by the capability of the underlying SMT solvers.

Related work. The similarity between specification rules and production rules [7]
is in their composition: Each rule is composed of a guard (input constraints)
and an action (output constraints). The main di↵erence between them is the
fact that specification rules can be non-deterministic while production rules are
deterministic. Furthermore, the purpose of specification rules is to stipulate the
relationships between input and output of the system, hiding the system state.
The production rules often involve systems with explicit state (the working mem-
ory). Production rules are also written with some implicit rule execution engine
in mind, e.g., firing enabled rules repeatedly. In term of validation, di↵erent prop-
erties have been considered for production rules [14]. Due to their deterministic
nature, minimal inconsistency for production rules can only be pairwise.

In a more general context, Rule-Based Systems (RBSes) have been used in
the field of Artificial Intelligence and Knowledge Engineering [12] for knowledge
representation. Typically, an RBS contains a rule set and an inference control
mechanism including some conflict resolution strategy. Each rule imitates logical
implication and is used for backward or forward reasoning. Furthermore the
conflict resolution strategies ensure that in the case where two or more rules
can be activated at a time, only one is selected according to some pre-defined
criteria. This is also the main di↵erence between RBSes and the specification
rules under our consideration. Verification of RBSes is also extensively discussed
in [12]. A taxonomy of verifiable characteristics for RBSes is proposed concerning
various anomalies such as consistency, completeness, and (non-)redundancy. In
particular, the problem of conflicting and inconsistent rules are considered to
be special cases of nondeterminism and is deferred to the conflict resolution
mechanism. In fact, in some special representation of RBSes such as tabular
systems with no explicit negation, purely logical inconsistency never appears [12].

In order to find all MISes of a set of rules, we need to find all MUSes of
its output constraints. Comparison in [10] suggests the CAMUS algorithm [11]
can out-perform the MARCO algorithm in finding all MUSes. The disadvantage
of CAMUS is its inability to “enumerate” the MUSes, i.e., it can take a long

16

time before outputting any MUS. Hence CAMUS is unsuitable for any applica-
tion where incremental responses are required. However, its ability of finding all
MUSes quickly can be useful to validate a consistent set of rules. We plan to
investigate and evaluate CAMUS further.

Future work. Other properties for specification rules include redundancy and
completeness. Similar to consistency, the problem of verifying redundancy and
completeness can also be reduced to enumerating MUSes and this is the next
logical step of our research. As mentioned before in Section 5.2, for the Registra-
tion example, our MISes finder program does not terminate. The main challenge
is in the size of the example (725 rules). A possible solution for validating this
set of rule is to syntactically decompose this set of rules into smaller sets. Rule
separation will drastically reduce the complexity of the MISes finding problem,
hence could be used as a pre-processing step for the current MISes finder pro-
gram. Moreover, the specification rules can be combined to stipulate system
requirements. We are currently investigating how consistency validation can be
composed/decomposed for such specification of combined rule bases.

Currently, our implementation uses SMTInterpol [8] as the underlying solver
of the powerset manager and for checking satisfiability of the problem con-
straints. While this is su�cient for our purpose, it would be of our interests
to investigate other SMT solvers in place of SMTInterpol. Another possible im-
provement for our implementation is to take advantage of the incremental check-
ing and backtracking ability of SMT solvers (i.e., using push/pop operations).

Parallelism has been considered for extracting a MUS [5,15]. In a similar
fashion, the problem of enumerating MUSes and MISes can take advantage of
parallel and/or distributed architectures. In particular, enumeration of MUSes
can be parallelised and distributed to a cluster. The essential point to consider
is how to correctly and e↵ectively use the powerset manager. Our formal model
suggests that having a parallel/distributed version of the program is possible.

Parallel/distributed version of the program is also a solution to another limi-
tation of the current MISes finder program. Currently, our MISes finder program
will terminate (without finding all MISes) if the underlying SMT solver cannot
solve a satisfiability problem (i.e., return unknown). This is often the case when
the solver gets a “bad seed” such that its performance is deteriorated. By trying
to solve several seeds at once, the MISes program can proceed even if some of the
seeds are bad. Moreover, if the bad seeds are not MUSes or MSSes, the program
can even terminate finding all MISes.

Often rule bases are developed step-by-step and subject to regular changes.
It is necessary for the consistency validation to be carried out in an incremental
fashion, where checks are only required to perform on the parts of the rule base
that are a↵ected by the changes. This is important for building a practical tool
set supporting the development of specification rules.

The correctness of our MISes finder program relies on the separation between
input and output constraints, in particular, the output constraints does not refer
to any input variable. This is su�cient to model several regulations and policies.
In the case where the output constraints refer to the input variables, our program

17

does not guarantee to find all MISes for a rule base. What can be inferred is
that any result of the program is an inconsistent set of rules (not necessarily
minimal). Further investigation is required to validate this general type of rules,
in particular, to consider solving constraints with quantifiers.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin:
An open toolset for modelling and reasoning in Event-B. STTT, 12(6):447–466,
November 2010.

3. J. Bailey and P. J. Stuckey. Discovery of minimal unsatisfiable subsets of con-
straints using hitting set dualization. In PADL 2005, volume 3350 of Lecture
Notes in Computer Science, pages 174–186. Springer, 2005.

4. C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Handbook of Satisfia-
bility, volume 185 of Frontiers in Artificial Intelligence and Applications, chapter
Satisfiability Modulo Theories, pages 825–885. IOS Press, 2009.

5. A. Belov, N. Manthey, and J. Marques-Silva. Parallel MUS extraction. In SAT
2013, volume 7962 of Lecture Notes in Computer Science, pages 133–149. Springer,
2013.

6. A. Belov and J. Marques-Silva. MUSer2: An e�cient MUS extractor. JSAT,
8(1/2):123–128, 2012.

7. B. Berstel and M. Leconte. Using constraints to verify properties of rule programs.
In ICST 2010, pages 349–354, 2010.

8. J. Christ, J. Hoenicke, and A. Nutz. SMTInterpol: An interpolating SMT solver.
In SPIN 2012, volume 7385 of Lecture Notes in Computer Science, pages 248–254.
Springer, 2012.

9. T.S. Hoang, S. Itoh, K. Oyama, K. Miyazaki, H. Kuruma, and N. Sato. Validating
the consistency of specification rules. http://deploy-eprints.ecs.soton.ac.uk/
465/, 2015.

10. M. H. Li�ton and A. Malik. Enumerating infeasibility: Finding multiple MUSes
quickly. In CPAIOR 2013, volume 7874 of Lecture Notes in Computer Science,
pages 160–175. Springer, 2013.

11. M. H. Li�ton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning, 40(1):1–33, 2008.

12. Antoni Ligeza. Logical Foundations for Rule-Based Systems, volume 11 of Studies
in Computational Intelligence. Springer, 2nd edition, 2006.

13. A. Nadel, V. Ryvchin, and O. Strichman. E�cient MUS extraction with resolution.
In FMCAD 2013, pages 197–200. IEEE, 2013.

14. B. Berstel-Da Silva. Verification of Business Rules Programs. Springer, 2014.
15. S. Wieringa. Understanding, improving and parallelizing MUS finding using model

rotation. In CP 2012, volume 7514 of Lecture Notes in Computer Science, pages
672–687. Springer, 2012.

http://deploy-eprints.ecs.soton.ac.uk/465/
http://deploy-eprints.ecs.soton.ac.uk/465/

	Consistency Verification of Specification Rules

