
Event-B Patterns and Their Tool Support

Thai Son Hoang, Andreas Fürst and Jean-Raymond Abrial
Department of Computer Science

Swiss Federal Institute of Technology Zurich (ETH-Zurich)
CH-8092, Zurich, Switzerland

Email: htson@inf.ethz.ch afuerst@student.ethz.ch jabrial@inf.ethz.ch

Abstract—Event-B has given developers the opportunity
to construct models of complex systems which are correct
by construction. However, there is no systematic approach,
especially in terms of reusing, which could help with the
construction of these models. We introduce the notion of design

patterns within the framework of Event-B to shorten this gap.
Our approach preserves the correctness of the models which is
critical in formal methods and also reduces the proving effort.
Within our approach, an Event-B design pattern is just another
model devoted to the formalisation of a typical sub-problem.
As a result, we can use patterns to construct a model which
can subsequently be used as a pattern to construct a larger
model. We also present the interaction between developers and
the future tool support within the associated Rodin Platform of
Event-B. The approach has been applied successfully in some
medium-size industrial case studies.

Keywords-Event-B; design patterns; reuse;

I. INTRODUCTION

The purpose of our investigation here is to study the
possibility of reusing models in formal modelling. Currently,
formal methods are applicable to various domains for con-
structing models of complex systems. However often they
lack some systematic methodological approaches, in partic-
ular in reusing existing models, for helping the development
process. The objective in introducing design patterns within
formal methods in general, and to Event-B in particular, is
to overcome this limitation.

The idea of design patterns in software engineering is to
have a general and reusable solution to commonly occurring
problems. In general, a design pattern is not necessarily a
finished product, but rather a template on how to solve a
problem which can be used in many different situations.
Design patterns are further populated in object-oriented
programming [1]. The idea is to have some pre-defined
solutions, and incorporate them into the development with
some modification and/or instantiation. We want to borrow
this idea into formal methods and in particular to Event-
B. Moreover, the typical elements that we want to reuse are
not only the models themselves, but also (more importantly)
their correctness in terms of proofs associated with the
models. In our earlier investigation [2], we have already
worked on several examples to understand the usefulness
and applicability of the approach. We extend this work and
formalise the process in this paper.

Our contribution here is the methodology for reusing
existing models in Event-B. Our approach allows developers
to reuse any existing models (which we called “design
patterns”) in a way that preserves the correctness of models,
hence we can save effort on not only modelling but also on
proving these models correct.

The examples that we used in this paper are models for
communication protocols. Note that, however, the approach
is general and its applicability is not limited to this domain.

The structure of the paper is as follows. Section II gives
a short introduction to Event-B. Section III presents a
case study to illustrate the motivation for our approach.
Section IV gives an overview of the formalisation of the
approach in Event-B. The list of patterns which are used
in our industrial case studies is presented in Section V.
Section VI briefly mentions the tool support. Finally, in
Section VII we review related work and point out future
directions.

II. THE EVENT-B MODELLING METHOD

Event-B [3], unlike classical B [4], does not have a fixed
syntax. Instead, it is a collection of modelling elements
that are stored in a repository. Still, we present the basic
notation for Event-B using some syntax. We proceed like
this to improve legibility and help the reader remembering
the different constructs of Event-B. The syntax should be
understood as a convention for presenting Event-B models
in textual form rather than defining a language.

Event-B models are described in terms of the two basic
constructs: contexts and machines. Contexts contain the
static part of a model whereas machines contain the dynamic
part. Contexts may contain carrier sets, constants, axioms,
where carrier sets are similar to types [5]. In this article, we
simply assume that there is some context and do not mention
it explicitly. Machines are presented in Section II-A, and
machine refinement in Section II-B.

A. Machines
Machines provide behavioural properties of Event-B mod-

els. Machines may contain variables, invariants, and events.
Variables v define the state of a machine. They are con-
strained by invariants I(v). Possible state changes are de-
scribed by means of events. Each event is composed of

Thai Son Hoang
The original publication is available at http://doi.ieeecomputersociety.org/10.1109/SEFM.2009.17
Appeared in Proceedings of the SEFM 2009 conference © IEEE Computer Society

Thai Son Hoang

a guard G(v) and an action S(v)1. The guard states the
necessary condition under which an event may occur, and
the action describes how the state variables evolve when the
event occurs. An event can be represented by the following
form

evt b= when G(v) then S(v) end (1)

The short form

evt b= begin S(v) end (2)

is used if the guard always holds. A dedicated event of the
form (2) is used for initialisation.

The action of an event is composed of several assignments
of the form

x := E(v) (3)
x :2 E(v) (4)
x :| Q(v, x0) , (5)

where x are some variables, E(v) expressions, and Q(v, x0)
a predicate. Assignment form (3) is deterministic, the other
two forms are non-deterministic. Form (4) assigns x to an
element of a set, and form (5) assigns to x a value x0

satisfying a predicate. The effect of each assignment can
also be described by a before-after predicate:

BAP
�
x := E(v)

�
b= x0 = E(v) (6)

BAP
�
x :2 E(v)

�
b= x0 2 E(v) (7)

BAP
�
x :| Q(v, x0)

�
b= Q(v, x0) . (8)

A before-after predicate describes the relationship between
the state just before an assignment has occurred (represented
by un-primed variable names x) and the state just after the
assignment has occurred (represented by primed variable
names x0). All assignments of an action S(v) occur simulta-
neously which is expressed by conjoining their before-after
predicates, yielding a predicate A(v, x0). Variables y that
do not appear on the left-hand side of an assignment of
an action are not changed by the action. Formally, this is
achieved by conjoining A(v, x0) with y0 = y, yielding the
before-after predicate of the action:

BAP
�
S(v)

�
b= A(v, x0) ^ y0 = y . (9)

Later, in proof obligations, we represent the before-after
predicate BAP

�
S(v)

�
of an action S(v) directly by the

predicate

S(v, v0) .

Proof obligations serve to verify certain properties of a
machine. Here a proof obligation is presented in the form of
a sequent: “hypotheses” ` “goal”. The intuitive meaning of
this sequent is that under the assumption of the hypotheses,
the goal holds.

1For simplicity, we do not treat events with parameters.

For each event of a machine, the following proof obliga-
tion which guarantees feasibility must be proved.

I(v)
G(v)

`
9v0 · S(v, v0)

FIS

By proving feasibility, we achieve that S(v, v0) provides an
after state whenever G(v) holds. This means that the guard
indeed represents the enabling condition of the event.

Invariants are supposed to hold whenever variable values
change. Obviously, this does not hold a priori for any
combination of events and invariants and, thus, needs to
be proved. The corresponding proof obligation is called
invariant preservation:

I(v)
G(v)
S(v, v0)

`
I(v0)

INV

Similar proof obligations are associated with the initialisa-
tion event of a machine. The only difference is that the
invariant and guard do not appear in the antecedent of the
proof obligations (FIS) and (INV).

B. Machine Refinement

Machine refinement provides a mean to introduce more
details about the dynamic properties of a model [5]. For
more on the well-known theory of refinement, we refer to the
Action System formalism that has inspired the development
of Event-B [6]. We present some important proof obligations
for machine refinement.

A machine CM can refine at most one other machine
AM . We call AM the abstract machine and CM a concrete
machine. The state of the abstract machine is related to the
state of the concrete machine by a gluing invariant J(v, w),
where v are the variables of the abstract machine and w the
variables of the concrete machine.

Each event ea of the abstract machine is refined by one or
more concrete events ec. Let abstract event ea and concrete
event ec be:

ea b= when G(v) then S(v) end

ec b= when H(w) then T (w) end

Somewhat simplified, we can say that ec refines ea if the
following conditions hold.

1) The concrete event is feasible. This is formalised by
the following proof obligation.

I(v)
J(v, w)
H(w)

`
9w0 ·T(w, w0)

FIS REF

2) The guard of ec is stronger than the guard of ea. This
is formalised by the following proof obligation.

I(v)
J(v, w)
H(w)

`
G(v)

GRD

3) The abstract event can always “simulate” the concrete
event and preserve the gluing (concrete) invariant. This
is formalised by the following proof obligation.

I(v)
J(v, w)
H(w)
T(w, w0)

`
9v0 · S(v, v0) ^ J(v0, w0)

SIM

For the initialisation, the corresponding proof obligations
are analogue. The proofs of these above obligations ensure
the correctness of the refinement model with respect to the
abstract model and the gluing invariant between them.

In the course of refinement, often new events ec are
introduced into a model. New events must be proved to
refine the implicit abstract event skip that does nothing.

skip b= begin SKIP end

Moreover, it may be proved that new events do not
collectively diverge, but this is not relevant here.

III. REQUEST/CONFIRM PROTOCOL

In this section, we look at the development of a simple
protocol, namely Request/Confirm in order to understand
what we mean by design patterns and how to apply them
in system development. Section III-A first gives an informal
description of the protocol together with its formal specifi-
cation in Event-B, then identifies similar fragments of the
formal model that leads to the idea of using patterns. In
Section III-B we formally present a pattern, namely single-
message communication, including its specification and re-
finement. Finally, we illustrate how the pattern is reused
(twice) in our development of the actual Request/Confirm
protocol in Section III-C.

A. Description and Formal Specification
There are two parties participating in this protocol namely

the Sender and the Receiver. The protocol contains two steps
as follows.

1) First, the Sender sends a request to the Receiver.
2) After receiving this request, the Receiver sends a

confirmation back to the Sender.
Formally, we can use two Boolean variables to represent

the state of the protocol: req to indicate that requesting
has occurred, and conf to indicate that confirmation has
occurred.

There is an invariant stating that if confirmation has
happened then requesting must have happened. The state
of the formal model is as follows.

variables: req, conf

invariants:
ReqCnf 0 1: conf = TRUE) req = TRUE

The dynamic system can be seen in Figure 1:

req = F
conf = F
gfed`abc

req = T
conf = F
gfed`abc

req = T
conf = T
gfed`abc

requests ((confirms ((

Figure 1. Request/Confirm protocol

The “requesting” phase starts when both variables are
FALSE and changes the value of req to TRUE. The
“confirmation” phase starts after the “requesting” phase and
changes the value of conf variable from FALSE to TRUE.
This is formalised as the following two events requests

and confirms, representing the requesting phase and the
confirmation phase, respectively.

requests

when
req = FALSE

then
req := TRUE

end

confirms

when
req = TRUE
conf = FALSE

then
conf := TRUE

end

The specification of the above two events are very similar,
except for the additional guard req = TRUE of the event
confirms. Note that the guard of requests implies conf =
FALSE (due to the invariant ReqCnf 0 1 and contraposi-
tion). The two events both correspond to transferring some
information from one side to another which we call single-
message communication. Hence if we have a development
for this type of communication (to be formalised in the next
section), we can instantiate it twice: one for the “requesting”
phase, one for the “confirmation” phase.

B. Single-Message Communication
This section presents the development of a communica-

tion between two parties A and B for transferring some
information (once) from A to B.

The specification of this protocol contains only one
Boolean variable trans. The value of the variable is TRUE
when the communication has occurred.

variables: trans

invariants:
SglCom 0 1: trans 2 BOOL

This single-message communication can be seen in Fig-
ure 2.

trans = Fgfed`abc trans = Tgfed`abc

transfers ((

Figure 2. Single-Message Communication

There is only one event in this model to change the value
of variable trans accordingly.

transfers

when
trans = FALSE

then
trans := TRUE

end

However this is only the abstraction of this protocol. In
fact, the message needs to be sent via a channel between
the two parties. This is illustrated in Figure 3. Here the
diagram is about different parties (not states) and messages
sent between them.

Agfed`abc channel Bgfed`abc

sends

%%
receives ((

Figure 3. Communication via a channel

We use three Boolean variables to represent the state of
the refinement.

• sent: TRUE if A has already sent the message.
• chan: TRUE if there is a message in the channel

waiting to be received.
• recv: TRUE if B has already received the message.
At this point, we have a decision to make about refinement

of the abstract transfers event. It could be refined by the
event corresponding to “sends” or it could be refined by
the event corresponding to “receives”. We present here

the refinement of transfers when sending, but the other
alternative is also possible. As a result of this choice, we
have the following gluing invariant.

invariants:
SglCom 1 1: trans = sent

We also have two technical invariants about the properties of
the protocol. Firstly, if B has received the message then A
must have sent the message. Secondly, if there is a message
in the channel then A must have sent the message, but B
has not yet received the message.

invariants:
SglCom 1 2: recv = TRUE) sent = TRUE
SglCom 1 3: chan = TRUE)

sent = TRUE ^ recv = FALSE

The events sends and receives are straightforward as
follows.

sends

refines transfers
when

sent = FALSE
then

sent := TRUE
chan := TRUE

end

receives

when
chan = TRUE

then
chan := FALSE
recv := TRUE

end

The event sends is enabled if A has not yet sent the
message. The action of the event specifies that A now sent
the message and the message is in the channel. For event
receives, it is enabled when there is a message in the
channel. The action of the event removes the message from
the channel and indicates that B has received the message.
Note that event receives here is a new event (i.e. it refines
skip).

C. Using the Pattern for the Protocol
In this section, we see how the pattern developed in

Section III-B s used for developing the Request/Confirm
protocol of Section III-A. There are four steps in doing this.

1) Firstly, we need to “match” the specification of the
pattern with the problem.

2) Secondly, we need to “syntactically check” the match-
ing to see if the pattern is applicable.

3) Thirdly, we could “rename” the variables and events
in the refinement of the pattern to avoid name clash
(since we can instantiate the same pattern many times).
This step is optional.

4) Lastly, we “incorporate” the renamed refinement of
the pattern to create a refinement of the problem.

As mentioned before, we can instantiate the single-
message pattern twice for the Request/Confirm protocol:
one for the “requesting” phase and one for the “confirming”
phase.

1) Pattern for “Requesting” Phase: We follow the dif-
ferent steps to incorporate a single-message communication
pattern for the “requesting” phase.

1) As a first step we need to identify the “matching”
between the specification of the pattern and the prob-
lem. The matching here is straightforward with the
variable trans and event transfers of the pattern match
with variable req and event requests of the problem
accordingly.

pattern problem

trans req
transfers requests

2) The second step is to syntactically check the validity
of the pattern. This should be done automatically by
a tool. At the moment, we can assure ourselves that
this step is valid.

3) The third step is to rename the variables and events
of the pattern refinement according to the following
rules.

original renamed as

sent S sent req
chan S2R chan req
recv R recv req
sends S sends request

receives R receives request

4) In the last step, we incorporate the renamed refinement
of the pattern to create a refinement of the problem.
The result is the following model.

variables: S sent req,
S2R chan req,
R recv req

invariants:
ReqCnf 1 1: req = S sent req
ReqCnf 1 2: R recv req = TRUE)

S sent req = TRUE

ReqCnf 1 3: S2R chan req = TRUE)
S sent req = TRUE ^
R recv req = FALSE

S sends request

refines requests
when

S sent req = FALSE
then

S sent req := TRUE
S2R chan req := TRUE

end

R receives request

when
S2R chan req = TRUE

then
S2R chan req := FALSE
R recv req := TRUE

end

confirms

refines confirms
when

S sent req = TRUE
conf = FALSE

then
conf := TRUE

end

Note that in the resulting refinement, the event confirms

needs to take into account the fact that variable req has been
matched with variable trans of the pattern specification, and
this variable is refined to S sent req.

2) Pattern for “Confirming” Phase: We now follow
similar steps to use a single-message communication pattern
for the “confirming” phase.

1) The matching is as follows
pattern problem

trans conf
transfers confirms

2) Similarly, we assure that the syntax checking for the
matching is successful.

3) We rename the refinement of the pattern according to
the following rules.

original renamed as

sent R sent conf
chan R2S chan conf
recv S recv conf
sends R sends confirmation

receives S receives confirmation

4) We incorporate the renamed pattern refinement with
the problem to obtain the following model.

variables: S sent req,
S2R chan req,
R recv req,
R sent conf,
R2S chan conf,
S recv conf

invariants:
ReqCnf 2 1: conf = R sent conf

ReqCnf 2 1: S recv conf = TRUE)
R sent conf = TRUE

ReqCnf 2 1: R2S chan conf = TRUE)
R sent conf = TRUE ^
S recv conf = FALSE

S sends request

status extended

R receives request

status extended

R sends confirmation

refines confirms
when

S sent req = TRUE
R sent conf = FALSE

then
R sent conf := TRUE
R2S chan conf := TRUE

end

S receives confirmation

when
R2S chan conf = TRUE

then
R2S chan conf := FALSE
S recv conf := TRUE

end

In the above, the extended events mean they extend the cor-
responding abstract version (with the possibility of having
more guards and more actions).

There are some differences between this application of
the single-message pattern for this phase compares with the
application in Section III-C1.

• The matching between transfers and confirms is not
exact. In fact the event confirms syntactically contains
transfers (with the matching of the variables).

• The additional guard, i.e. S sent req = TRUE is
kept when incorporating the pattern refinement into the
development.

• This guard is in fact a “cheat” in the model since event
R sends confirmation supposes to be corresponding
to the Receiver whereas the guard refers to variable
S sent req which is a variable of the Sender. This
problem will be handled by a standard refinement step
in the next section.

3) Removing the “Cheating” Guard: The cheating guard,
i.e.

S sent req = TRUE

can be removed and replaced by the following guard which
uses the variable of B:

R recv req = TRUE .

The reasoning for guard strengthening is based on the
following invariant.

R recv req = TRUE) S sent req = TRUE

This step is a standard refinement in Event-B. The final
model of R sends confirmation is as follows.

R sends confirmation

refines R sends confirmation
when

R recv req = TRUE
R sent conf = FALSE

then
R sent conf := TRUE
R2S chan conf := TRUE

end

IV. PATTERN INCORPORATION IN EVENT-B
In this section, we summarise the idea of incorporating

patterns into Event-B developments. The process can be seen
in Figure 4.

First of all, in our notion, a pattern is just a development
in Event-B including specification p0 and a refinement p1.
During a normal development in Event-B, at refinement mn,
developers can match part of the model with the pattern
specification p0. As a result of this matching, the refinement
p1 can be incorporated to create the refinement mn+1 of mn

(with possible “renaming” to avoid name clashes).

Init. Model (m0)

Ref. 1 (m1)

Ref. n (m
n

)

Ref. n + 1 (m
n+1)

Pattern Spec. (p0)

Pattern Ref. (p1)

refines

OO

refines

OO

refines

OO
matching

syntax checking
oo

refines

OO

renaming
incorporating

//

Figure 4. Using Patterns in Event-B

Moreover, we have presented here the incorporation of
each single-message communication protocol separately.
However, it is possible that they could be incorporated at
the same time. In other words, there can be more than
one pattern that can be matched at the same time with the
problem at hand. There are side conditions to guarantee that
the patterns do not interfere with each other, e.g. there should
be no name clashes.

A. Formalisation of the Approach
We assume that we have the following patterns containing

a specification p0 and its refinement p1 as follows.

p0

variables v
invariants J(v)

p

when L(v) then
T (v, v0)

end

p1

variables w
invariants

v = X(w)
K(v, w)

q

when M(w) then
U(w, w0)

end
We assume that the pattern specification p0 has some

variables v with invariant J(v). We consider a particular
event p with guard L(v) and some actions T (v, v0). In the
refinement p1 of p0, variable v is data refined by variable w
with gluing invariant separated in to v = X(w) and K(v, w).
Here we made the assumption that the gluing invariant can
be functionally expressed as v = X(w) with some other
extra invariant K(v, w). This assumption is valid for all our
examples so far and could be relaxed later. Event p is refined
by event q with concrete guard M(w) and some actions
U(w, w0).

We assume that we have arrived at a refinement level
in a particular development which we called problem spec-
ification mn. The machine has some variables b which
we intend to match with the above pattern. Moreover, this
problem specification could have some other variables c

which we have to keep when incorporating the pattern into
the development. We do not need to consider the invariant
for this machine hence this is left out.

mn

variables b, c

e

when
H(b)
N(b, c)

then
R(b, b0)
S(b, c, c0)

end

We consider the event e of the problem specification
which is going to be matched. The event is separated into
the parts which are matched with the event p of the pattern
specification, taken into account the decision that variable
b is matched with variable v of the pattern specification.
Here we say that every variables in the pattern need to be
matched with some variables in the problems. However, this
condition can be relaxed to make the approach more flexible
(see future work in Section VII). Hence the guard of the
events are separated into H(b) and N(b, c) where H(b) is
matched with guard L(v) of event p. Similarly, the action is
separated into R(b, b0) –which is a match of T (v, v0)– and
S(b, c, c0). The validity of this matching can be syntactically
checked and/or even can be “discovered” by a tool. The
matching and the extraction from the gluing invariant can
be summarised as follows.

pattern problem
v b= b
p b= e

L(v) b= H(b)
T (v, v0) b= R(b, b0)

The refinement mn+1 of mn is generated by combining
the problem specification and the pattern refinement as
follows.

mn+1

variables w, c
invariants

b = X(w)
K(b, w)
J(b)

e

when
M(w)
N(X(w), c)

then
U(w, w0)
S(X(w), c, c0)

end

We must guarantee that the constructed machine mn+1

is indeed a refinement of the specification mn. The de-
tail proofs are in [7]. Intuitively, the proofs assume the
correctness of the problem specification mn, the pattern
specification p0 and the pattern refinement p1 in order to
prove the correctness of the problem refinement mn+1.

B. What We Gain with the Pattern Approach
So far, it seems that we have to do more work in order

to apply patterns: we have to develop the pattern separately
and incorporate that into the main development. But we do
have the following advantages.

• We do not need to prove that mn+1 is a refinement of
mn. This is because we have already done this proof
when developing patterns.

• Moreover, we can reuse the pattern more than once. For
example, in the development of the Request/Confirm
protocol, we use the single-message communication
pattern twice, so we save doing proofs for one pattern.

• Since the pattern is just a normal Event-B development,
the meaning of the pattern is also intuitive. Moreover,
we can use any development as pattern in our approach.

The proof statistics related to the single-message commu-
nication and Request/Confirm protocol is in Table I. As we
can see, by developing the single-message pattern separately,
we have to prove 9 obligations. However, we do not need
to prove the model “Request/Confirm 1” (which has 19
obligations) since it is correct by construction. Hence in
total we save 10 obligations. Note that the number of proof
obligations for “Request/Confirm 1” is roughly twice that of
“Single 1”, since we use the single-message communication
pattern twice.

Models Total Auto. (%) Man. (%)
Single 0 0 0 (N/A) 0 (N/A)
Single 1 9 9 (100%) 0 (0%)
Request/Confirm 0 3 3 (100%) 0 (0%)
Request/Confirm 1 19 19 (100%) 0 (0%)
Request/Confirm 2 1 1 (100%) 0 (0%)

Table I
PROOF STATISTICS FOR SINGLE-MESSAGE AND REQUEST/CONFIRM

V. PATTERNS USED IN INDUSTRIAL CASE STUDIES

Our approach has been applied to formalise communi-
cation protocols from SAP. The examples are Buyer/Seller
B2B as described in [8] and Ordering/Supply Chain A2A
Communications. Overall, the number of proof saving by
the application of patterns is around 34% for both examples.
In this section, we give the description of other patterns that
have been used in these protocols.

• Section V-A presents the Request/Confirm/Reject pat-
tern.

• Section V-B presents the Multiple-Message Communi-
cation pattern.

• Section V-C presents the Multiple-Message Communi-
cation with Repetition pattern.

• Section V-D presents the Synchronous Multiple-
Message Communication pattern.

• Section V-E presents the Question/Response pattern.

A. Request/Confirm/Reject Pattern
The description of the protocol is as follows.
1) The Sender sends a request to the Receiver.
2) After receiving this request, the Receiver can either

send a “confirmation” back to the Sender if he agrees;
or the Receiver send a “rejection” back to the Sender
if he does not agree.

Using three Boolean variables req, conf and rej to repre-
sent the state, the protocol can be seen in Figure 5.

req = F
conf = F
rej = F
gfed`abc

req = T
conf = F
rej = F
gfed`abc

req = T
conf = T
rej = F
gfed`abc

req = T
conf = F
rej = T
gfed`abc

requests

✏✏

confirms

oo
rejects

//

Figure 5. Request/Confirm/Reject protocol

The development of this pattern used the single-message
communication pattern three times.

B. Multiple-Message Communication Pattern
The description of the protocol is as follows.
1) There are two parties: Sender and Receiver
2) The Sender can send many messages (multiple mes-

sage) to the Receiver.
3) The messages are different, in other words, there is no

resend.
4) To distinguish the freshness of the message, each

message is stamped with a sequence number.
5) The Receiver can only receive new messages.
6) The Receiver can discard any message.

C. Multiple-Message with Repetition Communication Pat-
tern

The description of the protocol is as follows.
1) There are two parties: Sender and Receiver
2) The Sender can send many messages (multiple mes-

sage) to the Receiver.
3) The messages can be the same, in other words, mes-

sages could be resent.
4) To distinguish the freshness of the message, each

message is stamped with a sequence number.

5) The Receiver can receive any message which is not
old.

6) The Receiver can discard any message.
The only difference with the Multiple-Message Commu-

nication (no repetition) is that no messages can be resent in
this protocol.

D. Synchronous Multiple-Message Communication Pattern

The description of the protocol is as follows.
1) There are two parties: Sender and Receiver
2) The Sender can send many messages (multiple mes-

sage) to the Receiver, but only one at a time.
3) The Sender is blocked in sending a new message until

the Receiver received the message in the channel.
4) The messages are different, in other words, there is no

resend.
5) To distinguish the freshness of the message, each

message is stamped with a sequence number.
The significant difference to the Multiple-Message Com-

munication (no repetition) is that the channel is either empty
or filled with at most one message. This also leads to a less
complex design of the channel.

trans = 0gfed`abc trans = 1gfed`abc trans = 2gfed`abc

transfer ((transfer ((

Figure 6. Synchronous Multiple-Message Communication

E. Question/Response Pattern

The description of the protocol is as follows.
1) There are two parties: Questioner and Responder
2) The protocol consists of an unbounded number of

rounds.
3) In each round, the Questioner transfers a message

(question) to the Responder, and in return, the Respon-
der transfers a message (response) to the Questioner.

4) The question message and the corresponding response
message have the same number.

The communication of the Questioner and Responder is
synchronous. Therefore the Questioner cannot transfer a new
question before the Responder has transferred a response
and vice versa. The pattern was developed by using two
synchronous multiple-message patterns.

VI. PROPOSED TOOL SUPPORT

The tool support for pattern approach should closely
follow the different steps for applying pattern.

• Matching. The tool assists developers in inputting the
matching between the problem and the specification.
This includes a dialog for the developers to choose the
matching between variables and events.

quest. = 0
resp. = 0
onmlhijk

quest. = 1
resp. = 0
onmlhijk

quest. = 1
resp. = 1
onmlhijk

quest. = 2
resp. = 1
onmlhijk

quest. = 2
resp. = 2
onmlhijk

question

WWWWW

++WWWWW

respond

ggggg

ssggggg

question

WWWWW

++WWWWW

respond

ggggg

ssggggg

Figure 7. Question/Response protocol with two rounds

• Syntax Checking. Consistency (e.g. types of variables,
signature of events, etc.) for the matching should be
verified at this step.

• Renaming. The tool assists developers in inputting
renaming patterns. This includes a dialog for the de-
velopers to give renaming pattern of variables and
events. Consistency (e.g. name clash) for this renaming
is verified at this step.

• Incorporation. Finally, the tool generate the refinement
of the problem according to the input in the previous
steps.

VII. RELATED AND FUTURE WORK

We applied our approach to two medium-size case stud-
ies from SAP, namely the Buyer/Seller B2B [8] and Or-
dering/Supply Chain A2A Communications. However, our
approach is general and is not be restricted to this specific
domain.

Our approach is related with decomposition [5], [9] where
developers can separate a model into sub-models and can
subsequently refine these sub-models independently. The
similarity with our approach is when some of the sub-models
already exist as some off-the-shelve components (patterns).
In this case the advantage of reusing is similar, however
decomposition is not intended for reusing.

Another related work to ours is “automatic refinement
tool” [10]. Our patterns which are simply a model which
encodes some design decision about refining a certain model.
However, the automatic refinement tool still requires proofs
in order to make sure that the proposed refinement is correct.
This approach does not necessarily preserve correctness.

As for future work, we are currently implementing the
support for this approach as plug-in for the Rodin Plat-
form [11]–[13] which is an open source platform based on
Eclipse. The current documentation for tool support is at
the Event-B wiki documentation system http://wiki.event-b.
org/index.php/Pattern. At the same time, we are going to

investigate more examples in other domains which could
benefit from our approach.

Moreover, we also need to “instantiate” the context of
the pattern development. In our example so far the contexts
of the pattern and the problem are the same. However, we
would like to use the pattern in a more general context. For
example, the model of the communication for transferring
a certain (abstract) messages should be instantiated for and
kind of (concrete) messages, e.g. if the message is just a
Boolean, or if the message contains some numbers or some
complicated data structure. This requires that the context of
the pattern to be instantiated accordingly.

As mentioned before, it is not necessarily the case that all
the variables of the patterns need to be matched with some
variables in the patterns. It could be the case that only a part
of the variables needs to be matched or even none of them,
which corresponds to the case where we do super-position
refinement [5]. This makes the approach more flexible.

Moreover, we have specifically chosen to have the “syntax
checking” rather than raising proof obligations when ap-
plying patterns. In the future, if this turns out to be too
restrictive, we can choose to generate the corresponding
proof obligations, again for more flexibility.

ACKNOWLEDGMENT

This work has been supported by DEPLOY —an Euro-
pean Commission Information and Communication Tech-
nologies FP7 project [14]. We would like to thank Matthias
Schmalz for his useful and constructive comments.

We would like to thank anonymous reviewers for con-
structive comments to improve the quality of the paper.

REFERENCES

[1] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, Mar. 1995, iSBN-10: 0201633612 ISBN-13:
978-0201633610.

[2] J.-R. Abrial and T. S. Hoang, “Using design patterns in formal
methods: An Event-B approach,” in ICTAC, ser. Lecture Notes
in Computer Science, J. S. Fitzgerald, A. E. Haxthausen, and
H. Yenigün, Eds., vol. 5160. Springer, 2008, pp. 1–2.

[3] J.-R. Abrial, Modeling in Event-B: System and Software
Engineering. Cambridge University Press, 2009, to appear.

[4] ——, The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[5] J.-R. Abrial and S. Hallerstede, “Refinement, decomposition,
and instantiation of discrete models: Application to Event-B,”
Fundam. Inform., vol. 77, no. 1-2, pp. 1–28, 2007.

[6] R.-J. Back, “Refinement Calculus II: Parallel and Reactive
Programs,” in Stepwise Refinement of Distributed Systems, ser.
Lecture Notes in Computer Science, J. W. deBakker, W. P.
deRoever, and G. Rozenberg, Eds., vol. 430. Mook, The
Netherlands: Springer-Verlag, May 1989, pp. 67–93.

[7] A. Fürst, “Design patterns in Event-B and their tool sup-
port,” Master’s thesis, Deparment of Computer Science, ETH
Zurich, Mar. 2009, http://e-collection.ethbib.ethz.ch/view/eth:
41612.

[8] S. Wieczorek, A. Roth, A. Stefanescu, and A. Charfi, “Precise
steps for choreography modeling for SOA validation and
verification,” in Proceedings of the Fourth IEEE International
Symposium on Service-Oriented System Engineering, Decem-
ber 2008, http://deploy-eprints.ecs.soton.ac.uk/41/.

[9] M. Butler, Decompostion Structures for Event-B, ser. Lec-
ture Notes in Computer Science. Springer, 2009, vol.
5423, ch. Integrated Formal Methods, pp. 20–38, http://www.
springerlink.com/content/3202127567642301/.

[10] A. Requet, “BART: A tool for automatic refinement,” in ABZ,
ser. Lecture Notes in Computer Science, E. Börger, M. J.
Butler, J. P. Bowen, and P. Boca, Eds., vol. 5238. Springer,
2008, p. 345.

[11] J.-R. Abrial, “A system development process with Event-B
and the Rodin Platform,” in ICFEM, ser. Lecture Notes in
Computer Science, M. Butler, M. G. Hinchey, and M. M.
Larrondo-Petrie, Eds., vol. 4789. Springer, 2007, pp. 1–3.

[12] J.-R. Abrial, M. J. Butler, S. Hallerstede, and L. Voisin, “An
open extensible tool environment for event-b,” in ICFEM, ser.
Lecture Notes in Computer Science, Z. Liu and J. He, Eds.,
vol. 4260. Springer, 2006, pp. 588–605.

[13] Event-B.org, “The Rodin Platform,” http://www.event-b.org/.

[14] DEPLOY Project, “Industrial deployment of system engineer-
ing methods providing high dependability and productivity,”
http://www.deploy-project.eu.

