The original publication is available at http://link.springer.de/link/service/series/0558/bibs/2651/26510240.htm
Appeared in Proceedings of the ZB2003 Conference © Springer-Verlag

Probabilistic invariants
for probabilistic machines

Thai Son Hoang!, Zhendong Jin!, Ken Robinson',
Annabelle Mclver?, and Carroll Morgan?!

1 School of Computer Science & Engineering, University of New South Wales,
NSW 2052 Australia;
{htson, zjin, kenr, carrollm}@cse.unsw.edu.au
2 Department of Computing, Macquarie University,
NSW 2109 Australia;
anabel@ics.mq.edu.au

Abstract. Abrial’s Generalised Substitution Language (GSL) [4] can be
modified to operate on arithmetic expressions, rather than Boolean pred-
icates, which allows it to be applied to probabilistic programs [13]. We
add a new operator ,@ to GSL, for probabilistic choice, and we get the
probabilistic Generalised Substitution Language (pGSL): a smooth exten-
sion of GSL that includes random algorithms within its scope.

In this paper we begin to examine the effect of pGSL on B’s larger-scale
structures: its machines. In particular, we suggest a notion of probabilistic
machine invariant. We show how these invariants interact with pGSL, at
a fine-grained level; and at the other extreme we investigate how they
affect our general understanding “in the large” of probabilistic machines
and their behaviour.

Overall, we aim to initiate the development of probabilistic B (pB), com-
plete with a suitable probabilistic AMN (pAMN). We discuss the practi-
cal extension of the B-Toolkit [5] to support pB, and we give examples to
show how pAMN can be used to express and reason about probabilistic
properties of a system.

Keywords: Probability, program correctness, generalised substitutions,
weakest preconditions, the B Method (B), probabilistic algorithms.

1 Introduction

Abrial’s Generalised Substitution Language (GSL) [4] is a weakest-precondition
based method of describing computations and their meaning; it is complemented
by the structures of Abstract Machines, together with which it provides a frame-
work for the development of mathematically verified systems.

GSL can be extended to the probabilistic Generalised Substitution Language
(pGSL), in which the standard Boolean values—representing certainty—are re-
placed by real values—representing probabilities. In principle, the standard ma-
chines of the B Method (B) can be extended to probabilistic B (pB) machines,
which would allow us to implement random algorithms, or to model faulty (un-
reliable) operations. For practical use, we need to extend the standard toolkit

Thai Son Hoang
The original publication is available at http://link.springer.de/link/service/series/0558/bibs/2651/26510240.htm
Appeared in Proceedings of the ZB2003 Conference © Springer-Verlag

Thai Son Hoang

to be able to generate proof obligations for the probabilistic constructs, and to
enable proofs to be conducted in the standard set of Booleans extended by the
set of reals.

This paper is concerned with the development and tool support of proba-
bilistic machines based on pGSL. There are many foundational issues on prob-
abilistic computational models that are not the subject of this paper and are
not addressed here; more complete references may be found elsewhere [13]. The
theory on which this paper is based [9] requires that those real values—which
we call “expectations”—are non-negative and bounded. To avoid clutter in the
exposition, however, our examples below do not necessarily adhere to those con-
straints.

The contribution of this paper is to extend the concept of invariant to proba-
bilistic machines, based on the theory of pGSL: we define probabilistic invariants;
we set out the proof obligations for maintaining such invariants by extending the
current rules in the B; we give informal interpretations of the meaning of those
invariants in practice; we develop a machine construct and give examples of how
to use it; we highlight possible pitfalls; and we suggest approaches to correct
them.

2 An Introduction to Probability and pGSL

2.1 Elementary Probability Theory

We briefly review and define some elementary concepts in probability theory [6]:
the principal concepts we need are distribution and expectation.

Experiment: Any process of observation or measurement.

Outcomes: The results obtained from an experiment.

Sample space: The set of all possible outcomes of an experiment.

Event: A subset of the sample space.

Probability distribution (discrete): A normalised function from the
sample space to [0, 1] giving the probability of each outcome.

Random variable: Any function from the sample space into the reals.

Characteristic function: The characteristic function of an event is a
random variable that takes value 1 for outcomes in the event, and 0
otherwise. Given an event pre (written as a predicate) the expression
(pre) is the characteristic function of that event.

Expected value (discrete): If f is a bounded random variable and p is
a discrete distribution, both over sample space S, then the expected
value of f over pu is defined:

PNIOENIOR

seS
This simplified presentation is sufficient for our purpose here.
As a consequence of the above definitions, it can be shown that the expected

value of a characteristic function over a distribution is equal to the probability
assigned to its underlying set by the distribution.

The probabilistic generalised substitution language pGSL acts over “expectations”
rather than predicates. Expectations are bounded, non-negative, real-valued functions
of the state space; with the exception that when dealing with miracles they can take a
formal value co.

[z:= E]exp The expectation obtained after replacing all free
occurrences of zin exp by F, renaming bound vari-
ables in exp if necessary to avoid capture of free
variables in E.

[y,z:=F, Eexp The expectation obtained after replacing all free
occurrences of yand z in exp by F and E respectiv-
ley, renaming bound variables in ezrp if necessary
to avoid capture of free variables in ' and F.

[pre | prog]exp (pre) x [prog]ezp, where 0 x oo = 0.

[prog, [prog,]ezp [prog,|ezp min [prog,]exp

[pre => prog|exp 1/ (pre) x [prog|exp, where co X 0 = oo.

[SKIP]ezp exp

[prog, p® prog,|exp p X [prog,Jezp + (1—p) X [prog,]exp

[Qy - pred = prog]ezp (min y | pred - [prog]exp), where y does not occur
free in exp.

prog; & prog, [prog,]exp = [prog,]ezp for all exp

e exp is an expectation (possibly but not necessarily (pred) for some predicate pred);
pre is a predicate (not an expectation);

(pre) denotes the predicate pre converted to an expectation, here restricted to the
unit interval: (false) is 0 and (true) is 1.

X is multiplication;

prog, prog, , prog, are probabilistic generalised substitutions;

p is an expression over the program variables (possibly but not necessarily a con-
stant), taking a value in [0, 1]; and

z is a variable.

y is a variable, or a vector of variables.

E is an expression.

F is an expression, or a vector of expressions

We give the definitions including infeasible or “miraculous” commands [12, Sec. 1.7],
but omit them in the main text for brevity. Also, with these definitions, monotonicity is
maintained; instead of conjuntivity, we have a more general property sublinearity [13].
We do not use sublinearity here.

Fig. 1. pGSL—the probabilistic Generalised Substitution Language [13]

2.2 Brief Introduction to pGSL

pGSL is a logic for reasoning about programs operating over a computational
model in which initial states are taken to final distributions over states (or, in
the case of demonic programs, to sets of final distributions). The details of that
model can be found elsewhere [10].

For the details of pGSL itself we first refer the reader to our companion paper
[11, Sec. 2.1 and Sec. 2.2]. Fig. 1 gives a summary of substitutions in pGSL.

2.3 Probabilistic pGSL Extends Standard GSL

Recall that in (standard) GSL we typically deal with conclusions of the form
pre = [prog]post, which means “the final state is guaranteed to satisfy post if
the initial state satisfied pre”. In pGSL, instead we have conclusions of the form
preE = [prog|postE, which means “the expected value of postE in the final state
is at least the expected value of preE in the initial state”. In fact, the pGSL
interpretation generalises the standard interpretation, as we now show.

Suppose our pre- and post-expectations are “standard”, that is they are of
the form (pre) and (post). In that case, our second interpretation becomes “the
expected value of (post) in the final state is at least the expected value of (pre)
in the initial state”. But we know from elementary probability theory (Sec. 2.1)
that the expected value of a characteristic function of a predicate (for us, a
predicate is the same as a subset of state space—that is, it is an event) is just
the probability that the predicate holds: so we have really said “the probability
that post holds in the final state is at least the probability that pre held in the
initial state”.

For standard programs, predicates either hold (probability 1) or they do not
(probability 0). And for z, y in {0,1} to say z < y is only to say “y is 1 if z was
1”7. Thus, for those specifically, we have said “the probability that post holds in
the final state is 1 if the probability that pre held in the initial state was 1”—and
this is just the usual interpretation in standard GSL.

2.4 Some pGSL Idioms

In this paper, we will be dealing with conclusions of the form

etp = [proglexp (1)

for some expectation exrp and probabilistic substitution prog. By analogy with
the standard case,
pred = [prog|pred,

we call exp an invariant of prog.

For example, we toss a fair coin and want to estimate the number of heads
that turn up. Let nn be the number of times that we toss the coin and cc be the
number of times that head turns up. Considering the expectation nn — 2 X cc,
we calculate

[cci=cc+1 1& cci= cc

n = 4 1 }(nn—2><cc)

parallel substitution®

[(cc:=cc+ 1| nn:=nn+1) 5
| 18 (cci=ce [| nn = nn+1) (nn—2 x cc)

= (1/2)((nn4+1) =2 x (cc+ 1)) 1® and :=
+ (1/2)((nn+1) — 2 x cc)

= nn—2 X cc arithmetic

According to our interpretation (Sec. 2.3) of pGSL, this calculation shows that
the expected value of nn — 2 X cc is never decreased by this operation. If we
initialise nn and cc both to 0 then that expectation is initially 0—then we have
shown that the expected value of nn — 2 X cc is never negative. In other words,
the expected value of cc is never greater than nn/2.

Such interpretations will be crucial to our understanding of “probabilistic
invariant”.

3 Using pGSL: Probabilistic Machines

In earlier sections we introduced pGSL and explained its use of expectations to
interpret individual probabilistic substitutions. Here we focus on our main topic:
the meaning of these expectations when used as “invariants” for a pB machine.

We begin with a standard specification—the well-known “library” example—
and use that as a basis against which we can contrast a probabilistic version.
Our aim is, first, to show how probabilistic invariants capture its probabilistic
properties and, second, to highlight some of the unexpected and subtle issues
that can arise.

3.1 A Simple Library in B

Consider the specification of a simple Library in Fig. 2. The state of the machine
contains three variables, namely booksInLibrary, loansStarted and loansEnded
representing: the number of books in the library; the number of book loans
initiated by the library; and the number of book loans completed by the library,
respectively. To keep the example simple, we ignore other functions of the library.

3 Here we apply the simple rule to integrate parallel substitution (]|) with probabilistic
choice substitution (,,®):
Provided S, T, U are all standard, we have:

(Sp@ TN U= (S U)p (T U) .

MACHINE StandardLibrary (totalBooks)
VARIABLES
booksInLibrary , loansStarted , loansEnded
INVARIANT
booksInLibrary € N A loansStarted € N A loansEnded € N A

loansEnded < loansStarted N

booksInLibrary + loansStarted — loansEnded = totalBooks
INITIALISATION
booksInLibrary := totalBooks || loansStarted := 0 || loansEnded := 0

OPERATIONS
StartLoan =

PRE booksInLibrary > 0 THEN
booksInLibrary := booksInLibrary — 1 ||
loansStarted = loansStarted + 1

END ;

EndLoan =
PRE loansEnded < loansStarted THEN
booksInLibrary := booksInLibrary + 1 ||
loansEnded := loansEnded + 1
END
END

Fig. 2. Standard specification of a Library

Initially, booksInLibrary has value totalBooks (a parameter of the machine). Both
loansStarted and loansEnded are assigned 0 initially.

We have two operations that can modify the state of the machine, START-
LoAN, for starting a loan of a book, and ENDLOAN, for ending the loan of a
book. The STARTLOAN operation has a precondition that there are books avail-
able for loan; it decrements the books held and increments the book loans. The
ENDLOAN operation is complementary in the obvious way.

The (standard) invariant of this machine is

booksInLibrary + (loansStarted — loansEnded) = totalBooks , (2)

in which the term loansStarted — loansEnded is an abstraction of the number of
books that are in the on-loan database of the library—that is, books that are
recorded as on loan.

3.2 Adding Probabilistic Properties

In the Boolean world of standard B, the operations and invariants express cer-
tainty: books are either in the library or they are on loan; they can’t be anywhere

MACHINE ProbabilisticLibrary (totalBooks)
SEES Real TYPE
CONSTANTS pp
PROPERTIES pp € REAL A pp <real (1) Areal (0) < pp
VARIABLES
booksInLibrary , loansStarted , loansEnded , booksLost
INVARIANT
booksInLibrary € N A loansStarted € N A loansEnded € N A booksLost € N A
loansEnded < loansStarted N
booksInLibrary + booksLost + loansStarted — loansEnded = totalBooks
EXPECTATIONS
real (0) = pp x real (loansEnded) — real (booksLost)
INITIALISATION
booksInLibrary , loansStarted , loansEnded , booksLost := totalBooks , 0 , 0 , 0

OPERATIONS
StartLoan =

PRE booksInLibrary > 0 THEN
booksInLibrary := booksInLibrary — 1 ||
loansStarted := loansStarted + 1

END ;

EndLoan =
PRE loansEnded < loansStarted THEN
PCHOICE pp OF
booksLost := booksLost + 1

OR
booksInLibrary := booksInLibrary + 1
END ||
loansEnded := loansEnded + 1
END

END

Fig. 3. Simple probabilistic Library

else. In a real library, books are occasionally lost. In this section, we discuss how
that can be modelled in pB.
One approach might be to add a Lose operation of the form

Lose = booksInLibrary := booksInLibrary — 1 | (3)

and to arrange that every so often LOSE is invoked, with some probability. The
problem with this is that we have no way in B (or in pB for that matter) of
modelling a probabilistically invoked operation.

‘We can however model operations with probabilistic effects in pB, and so we
take that approach.

The loss of a book will be modelled by altering the ENDLOAN operation so
that, with some probability pp, the user fails to return a book to the library; in
that case the effect of ENDLOAN is to consider the book lost.

With the introduction of probabilistic-choice substitution (in Sec. 2), we can
specify this behaviour within the ENDLOAN operation. The PCHOICE con-
struct is the probabilistic AMN (pAMN) counterpart of ,&. In this operation,
the chance of a book being lost is pp—where booksInLibrary fails to increase;
the other 1—pp of the time, booksInLibrary increases as normal. The variable
booksLost is introduced to record the number of books lost and is initialised to
0. In the case of losing a book, booksLost will increase accordingly. We replace
the standard substitution booksInLibrary := booksInLibrary 4+ 1 with

PCHOICE pp OF
booksLost := booksLost + 1
OR
booksInLibrary := booksInLibrary + 1
END

With the introduction of the variable booksLost, we must of course adjust the
standard invariant, to include the new variable:

(booksInLibrary + booksLost)
+ (loansStarted — loansEnded) (4)
= totalBooks .

The first term on the left-hand side is the number of books not in the on-
loan database; the second term is the number of books that are in the on-
loan database. This specification is simply modelling the effect of loss, without
attempting to identify where it occurs. In practice, loss could be the consequence
of a faulty (unreliable) loan or return operation. At some point, “loss” needs to
be recognised and that is modelled by the probabilistic booksLost:=booksLost+1.

3.3 The EXPECTATIONS Clause

In Fig. 1 we introduced a new EXPECTATIONS clause into pAMN for declaring
the probabilistic invariant. It gives an expression V over the program variables,
denoting the random-variable invariant, and an initial expression e which is
evaluated over the program variables when the machine is initialised. We write
it e = V. Its interpretation is that the expected value of V| at any point, is
always at least the value of e initially. The value of e can be dependent on the
context of the machine (machine’s parameters, constants, etc.), but often e will
just be a constant.

3.4 What Do Probabilistic Invariants Guarantee?

We answer that by analogy with standard invariants, which we review first.

Suppose a machine has initialisation INIT and two operations OpX and OPY. If
we satisfy the standard proof obligations with respect to some invariant I, viz.

true = [INIT|I

I = [OPX]I
I = [OPY]I, (5)
then we are assured that
true = [INIT; OP?; OP?; ...; OP?]] (6)

holds for any (finite) sequence of operations OP? each chosen from {OpX, OPY}.
It doesn’t matter when the choice between “do OPX now”, “do OPY now” and
“stop now” is made—that is whether the sequence of operations is chosen in
advance or whether it is evolved “on-the-fly” on the basis of the machine state
and/or outputs produced so far by the operations already executed.

The fact that (5) assures (6) is in fact the soundness of the (standard) in-
variant technique.

For soundness of the probabilistic invariant technique clearly there must be a
similar situation—that is a probabilistic version of (5) and (6)—with the first
implying the second: it is that if

E = [IntT)I
I = [OpX]I
I = [OPY]I, (7)
then we are assured that
E = [IntT; OP?; OP?; ...; OP?]] (8)
for any finite sequence Opr?; OP7?; ...; OP? of operations, no matter when or

how chosen. (Recall that E is some “initial” expression, possibly depending on
parameters to the machine.)

It might be surprising that in the probabilistic case the “when/how” makes
a crucial difference; we show by example that it does.* Consider the Counter
machine shown in Fig. 4

This machine fails to satisfy our probabilistic proof obligations (7) even
though

0 = [INtT; OP?; OP?; ...; OP?](count) (9)

4 Tt can be shown that it makes no difference in the standard case whether the oper-
ations are chosen beforehand or on-the-fly—the proof obligations are the same.

10

MACHINE Counter
SEES

Int_TYPE , Real_TYPE
VARIABLES

count
INVARIANT

count € INT
INITIALISATION

count := 0

OPERATIONS
cc +— OpX =

PCHOICE frac (1,2) OF
count := count + 1 ||
cc := count

OR
count := count — 1 ||
cc 1= count

END ;

OpY = count := 0
END

Fig. 4. The Counter Machine

is trivially true, for any finite sequence Op?; OP?; ...; OP? of operations chosen
in advance.

The machine fails to satisfy (7) because count = [OPY](count) cannot be
proved. And the reason that it must fail is that (9) is not true—for this machine—
if the operations can be chosen on-the-fly: consider for example the program
fragment

Prog = INIT; (10)
¢ +— OPX;
IF ¢ =1 THEN OrY ELSE OprX END.
The IF-statement represents a choice, on-the-fly, of whether to execute OrX or
OPY as the second operation; and it is readily verified that the expected value

of count after (10) is —0.5, which fails the instantiation (9) of the general (8) for
this machine. That is, we do not have 0 = [Prog|(count).

Thus the answer to the title of this section is that

probabilistic invariants guarantee (8) provided (7) holds.

11

The strong constraint “no matter how the operations are chosen” in (4) is abso-
lutely necessary: the (usual) situation is that our machine must behave correctly
no matter what environment makes use of it. A system containing code like (10)
is a perfectly reasonable use of MACHINE Counter—and any such system, if it
depended on the expected value of count being non-negative afterwards, would
fail.

3.5 A Probabilistic Invariant for the Library

In this section, we try to find the probabilistic invariant for a probabilistic library
(Fig. 3) by “informal” reasoning.

With the introduction of probabilistic choice substitution in the new END-
LOAN operation, we want an estimated upper bound for the number of books
lost. Informally, we believe that pp * loansEnded is the expected value of the
number of books actually lost. That informal reasoning leads to:

the expected value of ppxloansEnded—booksLost is at least 0.

Thus we define V' = pp xloansEnded — booksLost to be the expected-value invari-
ant of the probabilistic library machine. The initial value for V is 0 (established
by the initialisation).

When we claim that V is an expected-value invariant for this machine, we
mean that, if we check the value of V many times during the running of opera-
tions of the Library, then the average of our observation of V will be at least 0. As
explained in Sec. 3.4 that is the intended meaning of our probabilistic invariant.
From that we can conclude for our probabilistic library machine, the expected
number of books lost (value of booksLost) is bounded above by pp*loansEnded.

3.6 Proof Obligations
Recall that the proof obligations for a non-probabilistic machine are:

N1: The initialisation needs to establish the invariant given the context of the
machine (information about sets and constants)

[Inat]1 .
N2: The operations need to maintain the invariant
I=[0p]I.

For probabilistic machines, the same ideas will be applied, except that the
invariant now may take real values instead of Boolean. In order to prove that
the real invariant is bounded below, we have to prove the following:

P1: The initialisation needs to establish the lower bound of the probabilistic
invariant, given the context of the machine (information about sets and
constants)

12

e = [Init]V .

P2: The operations do not decrease the expected value of the probabilistic in-
variant, i.e. the expected value of the invariant after the operation is at least
the expected value before the operation

V= [0p]V .

We have to prove the above for each real-valued invariant. The standard
(Boolean) invariants can be treated the same as before (with probabilistic choice
substitution being treated as demonic). Consequently, proof obligations for the
probabilistic (expectation) and Boolean invariants may be generated, and proved,
separately.

3.7 Proving the Obligations

Here we only discuss the proof of maintenance of the probabilistic invariant:
V. 2 ppxloansEnded — booksLost . (11)

In the example in Fig. 3, consider the proof obligation for the initialisation
(P1).> We have to prove that

0 = [Initialisation]V .
Consider the right-hand side of the inequality:

[Initialisation] V

_ booksInLibrary, loansStarted, v
loansEnded, booksLost := totalBooks,0,0,0

_ booksInLibrary, loansStarted, pp * loansEnded

- loansEnded, booksLost := totalBooks,0,0,0 —booksLost

= ppx0—-0 substitution
= 0 arithmetic

So we have shown that the initialisation establishes the initial lower bound
for the probabilistic invariant.

For operation STARTLOAN, since the operation both increases loansStarted
and decreases booksInLibrary deterministically, and since the expected-value in-
variant does not contain loansStarted and booksInLibrary, we can easily prove
that the operation maintains the invariant.

We have to do similar reasoning with operation ENDLOAN, i.e. to prove that
V = [EndLoan]V (proof obligation P2). We calculate

5 All calculations use real numbers, but we will omit any type casting.

13

[EndLoan|V

(booksLost := booksLost + 1
pp®
booksInLibrary := booksInLibrary + 1) V

|
loansEnded := loansEnded + 1

parallel substitution with ,,®

(booksLost := booksLost + 1
|

loansEnded := loansEnded + 1) op % loansEnded
pp® —booksLost
(booksInLibrary := booksInLibrary + 1
|
i loansEnded = loansEnded + 1)
= _ D
booksLost := booksLost + 1 op * loansEnded
|l —booksLost
| loansEnded := loansEnded + 1
booksInLibrary := booksInLibrary + 1 op * loansEnded
+ (1 =pp) = |l —booksLost
| loansEnded := loansEnded + 1

parallel substitution and :=
pp * (pp * (loansEnded + 1) — (booksLost + 1))
+ (1 — pp) = (pp * (loansEnded + 1) — booksLost)

pp * loansEnded — booksLost arithmetic
v

So we have shown that V' = [EndLoan] V. (In fact, the expectation is unchanged
since there is no demonic nondeterminism).

In this example, we have specified a library system that includes the chance
of books being lost. From the probabilistic invariant, we can estimate the cost
of maintaining the library (the number of books lost). Furthermore, we have
discussed how we can reason about the specification and how to write it in pB.

3.8 What the Invariant Means

With the two calculations of the previous section we have established the math-
ematical validity of the invariant V for the machine of Fig. 3, in the sense that
the proof obligations are satisfied. How do we interpret that validity?

Recall Sec. 3.4: it means that over a large number of tests of the machine,
carried out by an adversary, who can choose to resolve demonic choice within

14

totalCost «— StockTake =

BEGIN
totalCost := cost X booksLost ||
booksInLibrary := booksInLibrary + booksLost ||
loansStarted := loansStarted — loansEnded ||
loansEnded := 0 ||
booksLost := 0

END

Fig. 5. STOCKTAKE operation

operations any way he wishes (although there is none in our example), and who
can choose to invoke operations in any order, we will observe that the average
value of V is at least the stated value.

In the machine of Fig. 3, we conclude therefore that the expected value of
pp * loansEnded — booksLost is at least 0; no matter what the adversary does.
We wrote the invariant that way so that we could give an expected upper bound
for booksLost—it is pp * loansEnded.

In general, we might wish to establish several such average-case inequalities.
For each one we would formulate a suitable probabilistic invariant and lower
bound; and each would generate its own proof obligations (P1), (P2) as above.

4 Pitfalls: Mixing Demonic and Probabilistic Choice

The validity of a probabilistic invariant assures us of a lower bound for its average
value over many sequences of machine-operation invocations. In this section we
show by example just how strong a requirement that is, given an adversarial
tester who has complete freedom in choosing which operations to invoke. We
show how the mathematical constraint of having to prove the invariant’s validity
guides us in the design of machines that are well-behaved even against such
adversaries.

4.1 StockTake Breaks the Probabilistic Invariant

Imagine that every year, the library needs to do a stocktake: update the number
of book lost, and reset the information about the status of the library. The
library wants to estimate the cost for doing such operations annually. Assuming
that the cost for replacing a book is a constant, cost, the operation STOCKTAKE
is defined in Fig. 5.

The STOCKTAKE operation is very similar to the initialisation, but with an
extra output to represent the cost for replacing the books lost. One can easily
prove that the operation maintains the standard invariant. The surprise comes

15

when trying to prove the obligation for maintaining the probabilistic invariant
by this operation. We have to prove that V = [StockTake] V. Consider the right-
hand side of that inequality (considering the effect of variables loansEnded and
booksLost only):

[StockTake] V

[loansEnded, booksLost := 0,01V

[loansEnded, booksLost := 0, 0]
(pp * loansEnded — booksLost)
= 0.
So to show the invariant does not decrease we must prove that
pp * loansEnded — booksLost = 0, (12)

which we cannot prove in this context. The question here is what did we do
wrong in the above operation.

4.2 Surprising Interaction of Demonic and Probabilistic Choice

To understand the failure to maintain the probabilistic invariant we will discuss
a number of aspects.

Initialisation is not forever It is first worth reviewing why we might have ex-
pected the STOCKTAKE operation to be satisfactory. We might have observed
that STOCKTAKE is very similar to the machine initialisation. In standard B it is
obvious that we can repeat the initialisation whenever we wish, and the standard
invariant will be maintained. However, maintaining the probabilistic invariant
means not decreasing the expected value. If the standard B invariant is viewed
in this light, it is a Boolean expression that is expected to evaluate to true (1)
after the initialisation. This represents a monotonic increase over its value before
initialisation, which was either false (0) or true (1). If the initialisation is re-run
as an operation it starts from an expected value of true (1) and so guarantees
not to decrease the expected value.

It is obvious that when we move to real-valued expectations, the obligation
of maintaining the expected value is stronger, and some notions taken from the
simpler Boolean context will fail.

The initialisation of a pB machine establishes the probabilistic invariant on
the assumption of a lower bound of the expectation; for the probabilistic library
machine this was 0. Since a sequence of operations monotonically increases the
probabilistic invariant it is presumptuous to expect that the initialisation, if run
again at an arbitrary time would maintain the invariant. Thus, in general, there
is no guarantee that an operation that duplicates the initialisation will maintain
the probabilistic invariant.

16

The effect of demonic nondeterminism It is worth reminding ourselves that
the choice of operations for a machine is demonically nondeterministic. As a
consequence the machines must be designed to ensure that undesirable operation
sequences do not lead to the violation of critical properties of machine behaviour.
It is precisely for this reason that we use invariance in both non-probabilistic and
probabilistic machines to establish that such critical properties are maintained
regardless of the choice of operation sequence.

The probabilistic library machine is intended to achieve an upper bound of
pp * loansEnded for booksLost. Before the addition of the STOCKTAKE operation
this was being controlled by the probabilistic choice in the ENDLOAN operation.
STOCKTAKE now provides an opportunity for demonic nondeterminism to sub-
vert that expectation, according to the following scenario. Suppose a malevolent
library administrator wishes to show that library loan system is “broken”: that
the rate of book loss is higher than the advertised claim of pp. If the administra-
tor adopts a policy of running STOCKTAKE whenever booksLost is large relative
to pp *x loansEnded, then the library managers will indeed see that system is
“broken”.

Notice that in a probabilistic machine there can be times when loss rate will
be higher than expected. The problem with the above scenario is that the oper-
ation is chosen demonically to run only at those times. Consider the testing of
a system. We might suggest that a machine-tester, in selecting what operation
to run next, should not be able to see the current state of the machine.® We say
that the demonic choice (taken by the tester), of which operation to run next,
is omniscient if he is allowed to see the machine’s state, and oblivious if he is
not. Omniscient testing is clearly more severe than oblivious; so our proof obli-
gations, which are sufficient to guarantee correct behaviour under omniscient
testing, are stronger than alternative obligations we might formulate to guar-
antee survival under oblivious testing. (In fact, operation STOCKTAKE would
probably be admitted by proof obligations designed for oblivious testing.”)

Finally, we note that there is no difference between omniscient and oblivious
testing of standard machines: if a standard machine is guaranteed to survive
oblivious testing, then it is also guaranteed to survive omniscient testing. Only
for probabilistic® machines does the omniscient /oblivious distinction matter.

4.3 Capturing Long-Term Behaviour

In our failure to satisfy the proof obligation for STOCKTAKE, the mathematics is
in fact suggesting what we should do. Formally we introduce a new variable—call

5 That this is reasonable can be seen by testing a coin: it would be wrong to flip the
coin until heads shows, and then say “look, it always gives heads”.

7 We do not pursue the mathematical formulation of oblivious testing here, as the
notion of what “can be seen” and what cannot turns out to be surprisingly complex.
But we recognise it as a fruitful line of further research.

8 In fact, adding angelic choice also reveals the distinction: any two of probabilis-
tic/angelic/demonic are sufficient.

17

it “fiz” for now—with the sole purpose of being able to satisfy that obligation.
Routine calculation shows that we must modify the machine as follows: fiz is
given the value 0 initially; the value of fiz is unchanged in all other operations;
but in STOCKTAKE, we use fix to maintain information that is critical to the
expectation:

fiz := pp = loansEnded — booksLost + fix . (13)

The expectation invariant is modified as follows:
V' = ppx*loansEnded — booksLost + fix . (14)

The new expectation invariant has the lower bound 0 established by the
initialisation. Since the operations STARTLOAN and ENDLOAN do not change
the value of fiz, they will maintain invariant V' (in those cases fix acts as a
constant). For the STOCKTAKE operation, we can prove that it maintains the
probabilistic invariant V' (considering the changes for loansEnded, booksLost
and fiz only):

[StockTake] V'

[loansEnded, booksLost, fix := 0,0, pp * loansEnded — booksLost + fix] V'

[loansEnded, booksLost, fix := 0,0, pp * loansEnded — booksLost + fiz]
(pp * loansEnded — booksLost + fix)

= pp * loansEnded — booksLost + fix .

So V' = [StockTake] V'—that is, the STOCKTAKE operation does not decrease
the expected value of V.

But what is the interpretation of fiz? It is in fact a “running” long-term
surplus/deficit indicator of books lost compared with what we expected to lose;
and our new invariant tells us that we expect that indicator to be zero.

More abstractly, we see that the invariant is forcing us not to “lose infor-
mation” as the original version of STOCKTAKE did. The reason—we can now
see—is that meaningful statements about long-term behaviour can only be made
if there are variables which record it; and operations that somehow “erase” the
long-term behaviour will fail proof obligations.

In this specific case, we can say that—without fiz—a hostile library admin-
istrator could decide (demonic choice) to run STOCKTAKE only when the rate
of stolen books was “running high”, and so give a false picture in that “snap-
shot” of the long-term behaviour of the library. Including fix makes sure that
the snapshot includes all the behaviour up to that point.

5 Modifying the B-Toolkit

The B-Toolkit is a configuration management tool that assists a developer to
produce a logically consistent set of B machines. Some of the important ser-
vices provided by the tool are: analysis including syntax and type checking;

18

proof obligation generation; proof assistance (both automatic and interactive);
and machine markup. The replacement of GSL by pGSL—with the consequent
replacement of Abstract Machine Notation (AMN) by pAMN obviously affects
those processes. The changes required to adapt the B-Toolkit consisted of

Introduction of Real numbers: We use a read-only (seen) machine to intro-
duce a REAL type. Currently this type is the set of non-negative rational
numbers, with numbers being denoted by a constructor frac(m, n).

Acceptance of pAMN: The parser had to be modified to accept the new
pAMN constructs of: EXPECTATIONS clause, probabilistic choice con-
struct (PCHOICE)

Analyser: The type and construct analysis had to be modified or extended.
The analyser produces a canonic, (abstract) syntactic parse and separate
canonic type information for each machine. Every process after analysis will
use the canonic information rather than using the raw AMN.

Proof obligation generator: The B-Toolkit needed to generate proof obli-
gations for the new PCHOICE clause and for the probabilistic invariant.
For the normal invariant, the PCHOICE substitution is treated as a non-
deterministic CHOICE substitution; for the new expectation invariant, the
proof obligations must follow the pGSL as stated in figure Fig. 1. Notice that
while normal Boolean expressions could be converted to numeric expressions,
we leave Boolean expressions unchanged. This has the effect of ensuring that
the proof of all Boolean goals or sub-goals will proceed using the standard
proof rules.

Provers: No change was required for the provers, but we needed to add new
rules to support real number evaluations that arise as a consequence of ex-
pectations.

Mark-up: Small changes were required to mark-up the new EXPECTATIONS
and PCHOICE constructions and the = expectation order.

The B-Toolkit is implemented on top of a theorem prover (the B-Tool prover),
so every toolkit process is driven by a set of proof rules. A consequence of the
separation of canonic (abstract) parse and type information by the analyser for
each machine is that, after the analysis phase all other phases can be based purely
on syntax. This considerably simplified the conversion of the B-Toolkit to handle
numeric, rather than Boolean, logic, since proof obligations and proof rules are
typeless. Some existing proof rules had to be modified and new rules added to
support the the new syntax and proof theory of pAMN and pGSL. Currently,
the probabilistic analysis (of expectations) of a machine is stored separately from
the unaltered standard (non-probabilistic) analysis, but they could be merged.

It should be noted that the ProbabilisticLibrary machine has been: analysed;
proof obligations have been generated; proof obligations have been discharged;
and the machine marked up using the modified B-Toolkit. The marked-up text of
machines appearing in this paper have been included directly from the B-Toolkit.

19

6 Further Work

The loss of conjunctivity—to be replaced by sublinearity—brings some compli-
cated problem when it comes to refinement under pGSL. In general, refinement
is a second-order property, but with the interpretation from Gries [7], we get an
equivalent first-order refinement rule for the standard case of B (using GSL).
Unfortunately, the introduction of probabilistic choice substitution does not pre-
serve the necessary condition for the maintenance of the first-order equivalence.
A current challenge is the development of a suitable strategy for refinement under
pGSL. A possible solution might be the use of auxiliary variables and additional
special rules for maintaining the meaning of refinement using first-order logic.
It should be noted that first-order rules offer considerable advantages for the
implementation of tools.

7 Conclusions

In this paper, we have presented a practical approach to extending the B to
include probabilistic choice. We have extended pB machines to include a proba-
bilistic choice construct and a probabilistic state invariant. New proof obligations
for the establishment and maintenance of the probabilistic invariant have been
described. A simple case study of a library, in which books may be lost, has
been used to illustrate how we can use pB and how we can reason formally
about expected outcomes of the system. We have shown that there are signifi-
cant differences between standard B operations and pB operations.

The B-Toolkit has been modified to incorporate the new pAMN constructs
and also to provide the generation and proof of proof obligations. In some cases,
we have had to strike a balance between the theoretical and practical ideas to
accommodate probability successfully into the B-Toolkit. Further investigation
is required on refinement and machine composition using the pB.

Beyond a guarantee of “absolute” correctness, other major aspects of sys-
tem/software design are essentially quantitative. Often the operating conditions
provide an environment whose behaviour can only be estimated to within a
“probabilistic margin of error”. But even in these situations useful information
about the operating “performance” of the implemented system can still be guar-
anteed. Other situations call for probability to be deliberately “programmed into
the system” when standard methods fail to produce a guarantee of termination.

The main case study of this paper provides an example of the former sit-
uation, whilst there are many instances of the latter situation in distributed
computing, with the FireWire protocol [14] and Rabin’s distributed consensus
[2] providing typical examples. In both situations the quantitative specification
can be expressed as a numeric constraint and validated by the techniques set
out in this paper. We have a complete development—through to implementation
using probabilistic termination [11]—of Rabin’s distributed consensus algorithm
in pB.

Indeed many more performance-style specifications lend themselves to an
approach based on invariants including “the expected time to achieve a stated

20

goal” [8] or the “probability that a goal will be achieved within a specific time”.
Expected times to achieve “stability” for instance are of particular importance
when systems use probability as an “in-built” facility.

Other tools such as the model checker PRISM [1] can also deal with these
problems, however the model-checking approach contrasts fundamentally with
the B in that model checkers are analysis- rather than design tools.

8 Acknowledgements

We wish to acknowledge the assistance of B-Core[5] for the modification of the
B-Toolkit. We thank the anonymous reviewers for comments that we have used
to improve the paper.

The authors at University of New South Wales gratefully acknowledge the
support of the Australian Research Council under the large grant A00103115.

References

1. Probabilistic symbolic model checker.

http://www.cs.bham.ac.uk/~dxp/prism/publications.html.

2. Specification and development of probabilistic systems.

http://web.comlab.ox.ac.uk/oucl/research/areas/probs/.

Proceeding of the 3rd International Conference of B and Z Users. Springer, 2003.

J-R. Abrial. The B-Book. Cambridge University Press, 1996.

B-Core(UK) Ltd. B Toolkit. http://www.b-core.com.

John E. Freund. John E. Freund’s Mathematical Statistics. Prentice Hall Interna-

tional, Inc., 6 edition, 1999.

7. D. Gries and J. Prins. A new notion of encapsulation. In Symposium on Language
Issues in Programming Environments. SIGPLAN, June 1985.

8. A. K. Mclver. Quantitative program logic and counting rounds in probabilistic
distributed algorithms. In Proc. 5th Intl. Workshop ARTS ’99, volume 1601, 1999.

9. A. K. Mclver and C. C. Morgan. Demonic, angelic and unbounded probabilistic
choices in sequential programs. Acta Informatica, 37:329-354, 2001.

10. C. C. Morgan, A. K. Mclver, and K. Seidel. Probabilistic predicate transformers.
ACM Transactions on Programming Languages and Systems, 18(3):325-353, May
1996.

11. A. K. Mclver, C. C. Morgan, and Thai Son Hoang. Probabilistic termination in
B. In Proceeding of the 3rd International Conference of B and Z Users [3].

12. C. C. Morgan. Programming from Specifications. Prentice-Hall, second edition,
1994. At web.comlab.ox.ac.uk/oucl/publications/books/P£S.

13. C. C. Morgan. The generalised substitution language extended to probabilistic
programs. In Proceedings B’98: the 2nd International B Conference, volume 1393
of LNCS, Montpelier, April 1998. Also available at [2, B9S].

14. Stoelinga and Vaandrager. Root contention in IEEE 1394. In Proceedings of the
5th AMAST workshop on real time and probabilistic systems Bamberg, Germany,
ARTS’ 1999, volume 1061 of LNCS.

o Tk

