Development with Refinement in Probabilistic B - Foundation and Case Study

$\begin{array}{llll}\text { T.S. Hoang }{ }^{1,2} & \text { Z. Jin } & \text { K. Robinson }\end{array}{ }^{1,2} \quad$ C. Morgan ${ }^{1}$

A. Mclver ${ }^{3}$
${ }^{1}$ School of Computer Science and Engineering, University of New South Wales
${ }^{2}$ Formal Methods Research Group, National ICT Australia
${ }^{3}$ Department of Computer Science, Macquarie University

4th International Conference of B and Z Users, 2005 University of Surrey, Guildford, U.K.

Outline

(1) Motivation

- Extension to Probabilistic B
- Background
(2) Our Results/Contribution
- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

Outline

(9) Motivation

- Extension to Probabilistic B
- Background
(2) Our Results/Contribution
- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study
national
ict austratua

Extending Probabilistic B

- To extend the scope of probabilistic $B(p B)$ to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express
national
national

Extending Probabilistic B

- To extend the scope of probabilistic $B(p B)$ to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express

NATIONAL

Extending Probabilistic B

- To extend the scope of probabilistic $B(p B)$ to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express
- probabilistic specification substitution;
- probabilistic invariant (expectation) for loops.
national
ict australa

Extending Probabilistic B

- To extend the scope of probabilistic $B(p B)$ to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express
- probabilistic specification substitution;
- probabilistic invariant (expectation) for loops.

NATIONAL
ICT AUSTRALIA

Extending Probabilistic B

- To extend the scope of probabilistic $B(p B)$ to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express
- probabilistic specification substitution;
- probabilistic invariant (expectation) for loops.
national
ict Australia

Changing the B -Toolkit

We have adapted the B-Toolkit to assist the development of $p B$ machines. This involves:

- new syntax;
- proof obligation generation for new constructs;
- reasoning over real as well as Boolean.
national
ict australial

Extension to Probabilistic B

Changing the B-Toolkit

We have adapted the B-Toolkit to assist the development of $p B$ machines. This involves:

- new syntax;
- proof obligation generation for new constructs;
- reasoning over real as well as Boolean.
national
ict australia

Extension to Probabilistic B

Changing the B-Toolkit

We have adapted the B-Toolkit to assist the development of $p B$ machines. This involves:

- new syntax;
- proof obligation generation for new constructs;
- reasoning over real as well as Boolean.

Outline

(1) Motivation

- Extension to Probabilistic B
- Background
(2) Our Results/Contribution
- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study
national
ict austratua

Probabilistic Generalised Substitution Language

Summary

$$
[x:=E] \exp
$$

The expectation obtained after replacing all free occurrences of x in exp by E
[skip]exp
$\left[\right.$ prog $_{1} n \oplus$ prog $_{2}$]exp
$\operatorname{prog}_{1} \sqsubseteq \operatorname{prog}_{2}$
[prog \| prog ${ }_{2}$]exp
[@y. pred \Longrightarrow prog]exp
exp
$\begin{array}{ccc}p & \times\left[\text { prog }_{1}\right] \exp \\ +\quad(1-p) & \times\left[\text { prog }_{2}\right] \exp \end{array}$
$\left[\right.$ prog $\left._{1}\right] \exp \Rightarrow\left[\right.$ prog $\left._{2}\right] \exp$
[prog ${ }_{1}$]exp min [prog ${ }_{2}$]exp
min (y) • (pred | [prog]exp)
national

Probabilistic Generalised Substitution Language

Summary

$$
\begin{aligned}
& {[x:=E] \exp \quad \text { The expectation obtained after re- }} \\
& \begin{array}{l}
\text { The expectation obtained after re- } \\
\text { placing all free occurrences of } x \text { in }
\end{array} \\
& \text { exp by } E \\
& \text { [skip]exp exp } \\
& {\left[\operatorname{prog}_{1} p \oplus \text { prog }_{2}\right] \text { exp }} \\
& \operatorname{prog}_{1} \sqsubseteq \operatorname{prog}_{2} \\
& \text { [prog \| prog }{ }_{2} \text {]exp } \\
& \text { [@y. pred } \Longrightarrow \text { prog]exp } \\
& \begin{array}{ccc}
p & \times\left[\text { prog }_{1}\right] \exp \\
+\quad(1-p) & \times\left[\text { prog }_{2}\right] \exp
\end{array} \\
& {\left[\text { prog }_{1}\right] \exp \Rightarrow\left[\text { prog }_{2}\right] \exp } \\
& \text { [prog }{ }_{1} \text {]exp min }\left[\text { prog }_{2}\right] \text { exp } \\
& \text { min (y) • (pred | [prog]exp) }
\end{aligned}
$$

national

Probabilistic Generalised Substitution Language

Summary

$$
\begin{aligned}
& {[x:=E] \exp \quad \text { The expectation obtained after re- }} \\
& \text { placing all free occurrences of } x \text { in } \\
& \text { exp by } E \\
& {\left[\operatorname{prog}_{1} p \oplus \text { prog }_{2}\right] \exp } \\
& p \times\left[\operatorname{prog}_{1}\right] \exp \\
& +(1-p) \times\left[\operatorname{prog}_{2}\right] \exp \\
& \text { prog }_{1} \sqsubseteq \text { prog }_{2} \\
& \text { [prog \| prog }{ }_{2} \text {]exp } \\
& \text { [@y. pred } \Longrightarrow \text { prog]exp } \\
& {\left[\text { prog }_{1}\right] \exp \Rightarrow\left[\text { prog }_{2}\right] \exp } \\
& \text { [prog } \left.{ }_{1}\right] \text { exp min }\left[\text { prog }_{2}\right] \exp \\
& \min (y) \cdot(\text { pred } \mid \text { [prog]exp })
\end{aligned}
$$

Background

Probabilistic Generalised Substitution Language

Summary

$$
\begin{aligned}
& {[x:=E] \exp \quad \text { The expectation obtained after re- }} \\
& \text { placing all free occurrences of } x \text { in } \\
& \text { exp by } E \\
& {\left[\operatorname{prog}_{1} p \oplus \operatorname{prog}_{2}\right] \exp } \\
& p \times\left[\text { prog }_{1}\right] \text { exp } \\
& +(1-p) \times\left[\operatorname{prog}_{2}\right] \exp \\
& \operatorname{prog}_{1} \sqsubseteq \operatorname{prog}_{2} \\
& {\left[\text { prog }_{1}\right] \text { exp } \Rightarrow\left[\text { prog }_{2}\right] \exp } \\
& \text { [prog \| prog }{ }_{2} \text {]exp } \\
& \text { [@y. pred } \Longrightarrow \text { prog]exp }
\end{aligned}
$$

How pGSL extends GSL

Expectations replace predicates
Predicates (functions from state to Boolean) are widened to Expectations (functions from state to real).

- For consistency with Boolean logic, we use embedded predicates, \langle false $\rangle=0$, and \langle true $\rangle=1$.
- Notationally, we have kent predicates as much as possible.

How pGSL extends GSL

Expectations replace predicates
Predicates (functions from state to Boolean) are widened to Expectations (functions from state to real).

- For consistency with Boolean logic, we use embedded predicates, \langle false $\rangle=0$, and \langle true $\rangle=1$.
- Notationally, we have kept predicates as much as possible.

How pGSL extends GSL

Expectations replace predicates
Predicates (functions from state to Boolean) are widened to Expectations (functions from state to real).

- For consistency with Boolean logic, we use embedded predicates, \langle false $\rangle=0$, and \langle true $\rangle=1$.
- Notationally, we have kept predicates as much as possible.

Outline

(1) Motivation

- Extension to Probabilistic B
- Background
(2) Our Results/Contribution
- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

Syntax

We want to have a definition in the probabilistic world which is similar to the precondition, postcondition pair.

Standard substitution

$\begin{aligned} v & :\{P, Q\} \text {, where } P \text { and } Q \text { are predicates over the state, } x . \\ & v \subseteq x \\ & \text { o } Q \text { can refer to the original state by using subscripted variables }\end{aligned}$

Probabilistic substitution

$v:\{\Delta, B\}$, where A and B are expectations over state.
The expected value of B over the set of final distributions is at least the expected value of A over the initial distribution.

Syntax

We want to have a definition in the probabilistic world which is similar to the precondition, postcondition pair.

Standard substitution

$v:\{P, Q\}$, where P and Q are predicates over the state, x.

- $v \subseteq x$
- Q can refer to the original state by using subscripted variables x_{0}.

Probabilistic substitution
$v:\{A, B\}$, where A and B are expectations over state.
The expected value of B over the set of final distributions is at least the expected value of A over the initial distribution.

Syntax

We want to have a definition in the probabilistic world which is similar to the precondition, postcondition pair.

Standard substitution

$v:\{P, Q\}$, where P and Q are predicates over the state, x.

- $v \subseteq x$
- Q can refer to the original state by using subscripted variables x_{0}.

Probabilistic substitution

$v:\{A, B\}$, where A and B are expectations over state.
The expected value of B over the set of final distributions is at least the expected value of A over the initial distribution.

Semantics

Program

Post-expectation

Specification $v:\{A, B\}$. Arbitrary expectation C.

Questions?

What is $[v:\{A, B\}] C$?

Semantics of probabilistic substitution

> (with w is the set of unchanged variables, i.e. $x-v$). (Similar work can be seen in White[1996] and Ying[2003])

Semantics

Program

Specification $v:\{A, B\}$.

Post-expectation

Arbitrary expectation C.

Questions?

What is $[v:\{A, B\}] C$?

Semantics of probabilistic substitution

> (with w is the set of unchanged variables, i.e. $x-v$). (Similar work can be seen in White[1996] and Ying[2003])

Semantics

Program

Post-expectation

Arbitrary expectation C.
Questions?
What is $[v:\{A, B\}] C$?

Semantics of probabilistic substitution

> (with w is the set of unchanged variables, i.e. $x-v$). (Similar work can be seen in White[1996] and Ying[2003])

Semantics

Program

Snecification $V:\{A, B$

Post-expectation

Arhitrary exnectation

Questions?

Semantics of probabilistic substitution

$$
[v:\{A, B\}] C \widehat{=} A \times\left[x_{0}:=x\right]\left(\Pi x \cdot\left(\frac{C}{B \times\left\langle w=w_{0}\right\rangle}\right)\right)
$$

(with w is the set of unchanged variables, i.e. $x-v$). (Similar work can be seen in White[1996] and Ying[2003])

Example

Program prog $_{1}$

$$
\operatorname{prog}_{1} \widehat{=} c:\left\{\frac{1}{2},\langle c=H\rangle\right\} .
$$

Post-expectation $(\mathbf{c}=\boldsymbol{H}$)

national ict Australia

Example

Program prog $_{1}$

$$
\operatorname{prog}_{1} \widehat{=} c:\left\{\frac{1}{2},\langle c=H\rangle\right\} .
$$

Post-expectation $\langle c=H\rangle$

$$
\begin{aligned}
& {\left[c:\left\{\frac{1}{2},\langle c=H\rangle\right\}\right]\langle c=H\rangle } \\
\equiv & \frac{1}{2} *\left[c_{0}:=c\right]\left(\sqcap c \cdot\left(\frac{\langle c=H\rangle}{\langle c=H\rangle}\right)\right) \\
\equiv & \frac{1}{2} *\left[c_{0}:=c\right] 1 \\
\equiv & \frac{1}{2}
\end{aligned}
$$

Fundamental theorem

Outline

(9) Motivation

- Extension to Probabilistic B
- Background
(2) Our Results/Contribution
- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

Theorem

Standard Theorem

Assume that $\operatorname{prog}_{1} \hat{=} v:\{P, Q\}$
For any program prog $_{2}$, prog $_{1} \sqsubseteq \operatorname{prog}_{2}$ if and only if

$$
P \Longrightarrow\left[x_{0}:=x\right]\left[\operatorname{prog}_{2}\right] Q^{w}
$$

where $Q^{w} \widehat{=} Q \wedge w=w_{0}$.

Probabilistic Theorem

Assume that prog.
For any program prog $_{2}$, prog $_{1} \sqsubseteq$ prog $_{2}$ if and only if
where $B^{w}=B \times\left(w=w_{0}\right) . \quad$

Theorem

Standard Theorem

Assume that prog $_{1} \hat{=} v:\{P, Q\}$
For any program prog $_{2}$, prog $_{1} \sqsubseteq \operatorname{prog}_{2}$ if and only if

$$
P \Longrightarrow\left[x_{0}:=x\right]\left[\operatorname{prog}_{2}\right] Q^{w},
$$

where $Q^{w} \widehat{=} Q \wedge w=w_{0}$.

Probabilistic Theorem

Assume that prog $_{1} \widehat{=} v:\{A, B\}$.
For any program prog $_{2}$, prog $_{1} \sqsubseteq \operatorname{prog}_{2}$ if and only if

$$
A \Rightarrow\left[x_{0}:=x\right]\left[p r o g_{2}\right] B^{w},
$$

where $B^{w} \widehat{=} B \times\left\langle w=w_{0}\right\rangle$.

Example

Programs prog $_{1}$ and prog $_{2}$

Consider prog $_{1}$ amd prog $_{2}$ as follows:

$$
\operatorname{prog}_{1} \widehat{=} c:\left\{\frac{1}{2},\langle c=H\rangle\right\}, \operatorname{prog}_{2} \hat{=} c:=H_{\frac{1}{2}} \oplus c:=T .
$$

prog $_{1} \sqsubseteq$ prog $_{2}$?

Example

Programs prog $_{1}$ and prog $_{2}$

Consider prog $_{1}$ amd prog $_{2}$ as follows:

$$
\operatorname{prog}_{1} \widehat{=} c:\left\{\frac{1}{2},\langle c=H\rangle\right\}, \operatorname{prog}_{2} \hat{=} c:=H_{\frac{1}{2}} \oplus c:=T .
$$

$\operatorname{prog}_{1} \sqsubseteq \operatorname{prog}_{2}$?

$$
\begin{aligned}
& {\left[c_{0}:=c\right]\left[c:=H_{\frac{1}{2}} \oplus c:=T\right]\langle c=H\rangle } \\
\equiv & \quad \frac{1}{2} \times[c:=H]\langle c=H\rangle \\
& \quad+\left(1-\frac{1}{2}\right) \times[c:=T]\langle c=H\rangle \\
\equiv & \frac{1}{2} \times\langle H=H\rangle+\frac{1}{2} \times\langle T=H\rangle \\
\equiv & \frac{1}{2} .
\end{aligned}
$$

Outline

(1) Motivation

- Extension to Probabilistic B
- Background
(2) Our Results/Contribution
- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

Standard rules

For a standard loop, such as

$$
\text { loop } \hat{=} \text { while } G \text { do } S_{\text {invariant }} / \text { variant } V \text { end },
$$

then $P \Longrightarrow$ [init; loop Q holds if the following are satisfied:

S1	P	\Longrightarrow	$[$ init $] I$
S2	$G \wedge I$	\Longrightarrow	$[S] I$
S3	$\neg G \wedge I$	\Longrightarrow	Q
S4	I	\Longrightarrow	$V \in \mathbb{N}$
S5	$G \wedge I$	\Longrightarrow	$[n:=V][S](V<n)$

Probabilistic rules

For a probabilistic loop, such as

$$
\text { loop } \hat{=} \text { while } G \text { do } S_{\text {invariant } / \text { expectation } E \text { variant } V \text { end } . ~}^{\text {. }}
$$

then $\langle P\rangle * A \Rightarrow[$ init; loop] $(\langle Q\rangle * B)$ holds if the following satisfies:

The difference with the previous work is that there's a clear separation between I and E.

Outline

(1) Motivation

- Extension to Probabilistic B
- Background
(2) Our Results/Contribution
- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

Description of Min-Cut algorithm

Aims

- Probabilistic fundamental theorem in practice.
- Developing probabilistic system in layers.
- Analysing some of the unexpected and subtle issues.
Two phasesThe algorithm is used to find the minimum cut for a connected indirectgraph
- A cut is a set of edges such that if we remove just those edges,the graph will become disconnected;
- A minimum cut is a cut with the least number of edges.
The algorithm contains two phases: Contraction sequences andprobabilistic amplification.

Description of Min-Cut algorithm

Aims

- Probabilistic fundamental theorem in practice.
- Developing probabilistic system in layers.
- Analysing some of the unexpected and subtle issues.

Two phases

The algorithm is used to find the minimum cut for a connected indirect graph:

- A cut is a set of edges such that if we remove just those edges, the graph will become disconnected;
- A minimum cut is a cut with the least number of edges.

The algorithm contains two phases: Contraction sequences and probabilistic amplification.

Contraction sequences

Description

- In a contraction step, two connected nodes are chosen randomly and merge together.
- The probability that any specific minimum cut is kept is at least

$$
\frac{N-2}{N}
$$

where N is the number of nodes in the current graph.

- This step is repeated until there are two nodes left, the edges connecting the last two nodes will be the cut chosen.
- Overall, the probability that the last cut is minimum cut is at least

$$
p(N)=\frac{N-2}{N} \times \frac{N-3}{N-1} x \times \cdots \times \frac{2}{4} \times \frac{1}{2}=\frac{2}{N \times(N-1)} .
$$

Formal development of contraction

Specification

Implementation

```
ans < contraction(N )
```

VAR n IN
$n:=N ;$ ans $:=$ TRUE;
WHILE $2<n \mathbf{D O}$ ans $\leftarrow \operatorname{merge}(n$, ans $) ; n:=n-1$ END
END

operation

ans. merge $(n, a)=$

$$
n \in \mathbb{N} \wedge a \in B O O L \quad \mid \quad \text { ans }:=F A L S E_{<\frac{2}{0}} \oplus a
$$

Formal development of contraction

Specification

Implementation
ans $\longleftarrow \operatorname{contraction(N)} \widehat{=}$
VAR n IN
$n:=N$; ans := TRUE;
WHILE $2<n$ DO ans $\longleftarrow \operatorname{merge}(n$, ans $) ; n:=n-1$ END END

Formal development of contraction

Specification

Implementation

```
ans «contraction(N) =
```

VAR n IN
$n:=N$; ans := TRUE;
WHILE $2<n$ DO ans $\longleftarrow \operatorname{merge}(n$, ans $) ; n:=n-1$ END END

merge operation

ans \longleftarrow merge $(n, a) \widehat{=}$

$$
n \in \mathbb{N} \wedge a \in B O O L \quad \mid \quad \text { ans }:=F A L S E_{\leq \frac{2}{n}} \oplus a
$$

Proof obligations of contraction

Here is the summary of proof obligations for the implementation generated by the modified B-Toolkit:

Summary

Total	Auto Prove	BTool Prove
14	11	3

Probabilistic amplification

Description

- We repeat the contraction sequences to increase the chance of finding the right minimum cut.
- Assume that we do that M times, the probability of finding the right minimum cut is at least:

$$
P(N, M)=1-(1-p(N))^{M}
$$

Formal development of probabilistic amplification

$$
\begin{aligned}
& \text { Specification } \\
& \text { ans } \longleftarrow \operatorname{minCut}(N, M) \widehat{=} \text { ans }:\{\langle p r e 2\rangle * P(N, M),\langle\text { ans }\rangle\}
\end{aligned}
$$

Implementation

```
ans \longleftarrowminCut( N,M ) =
VAR m, a IN
    m := M; ans := FALSE;
    WHILE m}=0\mathrm{ DO
        a\longleftarrow contraction(N);
    ans := ans \vee a;
    m := m-1
    END
```

END

Formal development of probabilistic amplification

Specification

ans $\longleftarrow \operatorname{minCut}(N, M) \hat{=}$ ans $:\{\langle p r e 2\rangle * P(N, M),\langle a n s\rangle\}$

Implementation

ans $\longleftarrow \operatorname{minCut}(N, M) \widehat{=}$
VAR m, a IN
$m:=M$; ans $:=$ FALSE;
WHILE $m \neq 0$ DO
$a \longleftarrow$ contraction (N);
ans $:=$ ans $\vee a$;
$m:=m-1$
END
END

Proof obligations of probabilistic amplification

Here is the summary of proof obligations for probabilistic amplification produced by the modified B-Toolkit:

Summary

Total	Auto Prove	BTool Prove
14	13	0

Problem?
There is one proof obligation that
cannot be proved.

Solution
The nroblem observed is
due to the fact that in the
definition for probabilistic
specification substitution,
we did not specify
termination.
In B, termination of all
programs must be proved,
so we should introduce
terminating probabilistic
specification substitution
and its fundamental
theorem.

Proof obligations of probabilistic amplification

Here is the summary of proof obligations for probabilistic amplification produced by the modified B-Toolkit:

Summary

Total	Auto Prove	BTool Prove
14	13	0

Problem?

There is one proof obligation that cannot be proved.

Solution
The nroblem observed is
due to the fact that in the definition for probabilistic specification substitution, we did not specify
termination
In B, termination of all
programs must be proved
so we should introduce
terminating probabilistic specification substitution
and its fundamental
theorem.

Proof obligations of probabilistic amplification

Here is the summary of proof obligations for probabilistic amplification produced by the modified B-Toolkit:

Summary

Total	Auto Prove	BTool Prove
14	13	0

Problem?

There is one proof obligation that cannot be proved.

Solution

The problem observed is due to the fact that in the definition for probabilistic specification substitution, we did not specify termination.
In B, termination of all programs must be proved, so we should introduce terminating probabilistic specification substitution and its fundamental theorem.

Summary

- Abstractly specify and refine probabilistic system.
- Development can be separated into layers.
- Termination condition is checked when developing systems using the B-Toolkit.
- Future work
- Multiple expectations.
- Fundamental theorem for refining system with multiple expectations.
national
ict australia

For Further Reading I

C. Morgan and A. Mclver.

Abstraction, Refinement and Proof for Probabilistic Systems. Springer-Verlag, 2004.
T.S. Hoang, Z. Jin, K. Robinson, C. Morgan and A. Mclver.

Probabilistic Invariant for Probabilistic Machines.
Proceedings of the 3rd International Conference of B and Z Users, volume 2651 of LNCS, 2003.
圊 N. White.
Probabilistic Specification and Refinement
Master Thesis, Keble College, 1996.
圊
M.S. Ying.

Reasoning about probabilistic sequential programs in a probabilistic logic.
Acta Informatica, volume 39, 2003.

