ATIONA

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Development with Refinement in Probabilistic B — Foundation and Case Study

T.S. Hoang^{1,2} Z. Jin¹ K. Robinson^{1,2} C. Morgan¹ A. McIver³

¹School of Computer Science and Engineering, University of New South Wales

²Formal Methods Research Group, National ICT Australia

³Department of Computer Science, Macquarie University

4th International Conference of B and Z Users, 2005 University of Surrey, Guildford, U.K.

Outline

- Extension to Probabilistic B
- Background

Our Results/Contribution

- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

Outline

Extension to Probabilistic B

Background

Our Results/Contribution

- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

- To extend the scope of *probabilistic B* (*pB*) to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express
 - probabilistic specification substitution;
 - probabilistic invariant (expectation) for loops.

- To extend the scope of *probabilistic B* (*pB*) to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express
 - probabilistic specification substitution;
 - probabilistic invariant (expectation) for loops.

- To extend the scope of *probabilistic B* (*pB*) to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express
 - probabilistic specification substitution;
 - probabilistic invariant (expectation) for loops.

- To extend the scope of *probabilistic B* (*pB*) to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express
 - probabilistic specification substitution;
 - probabilistic invariant (expectation) for loops.

- To extend the scope of *probabilistic B* (*pB*) to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express
 - probabilistic specification substitution;
 - probabilistic invariant (expectation) for loops.

Motivation

Our Results/Contribution

Summary

Extension to Probabilistic B

Changing the B-Toolkit

We have adapted the *B*-*Toolkit* to assist the development of *pB* machines. This involves:

- new syntax;
- proof obligation generation for new constructs;
- reasoning over real as well as Boolean.

Changing the B-Toolkit

We have adapted the *B*-*Toolkit* to assist the development of *pB* machines. This involves:

- new syntax;
- proof obligation generation for new constructs;
- reasoning over *real* as well as Boolean.

Changing the B-Toolkit

We have adapted the *B*-*Toolkit* to assist the development of *pB* machines. This involves:

- new syntax;
- proof obligation generation for new constructs;
- reasoning over real as well as Boolean.

Outline

- Extension to Probabilistic B
- Background

Our Results/Contribution

- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

Background

Probabilistic Generalised Substitution Language

Summary

- [x: = E]exp
- [skip]exp $[prog_{1 p} \oplus prog_{2}]exp$
- $prog_1 \sqsubseteq prog_2$ $[prog_1 \parallel prog_2]exp$ $[@v \cdot pred \implies prog_2]ex$

- The expectation obtained after replacing all free occurrences of x in exp by E
- ехр
- $p \times [prog_1]exp$ $+ (1-p) \times [prog_2]exp$ $[prog_1]exp \Rightarrow [prog_2]exp$ $[prog_1]exp \min [prog_2]exp$ $\min (y) \cdot (pred \mid [prog]exp)$

Probabilistic Generalised Substitution Language

Summary

[x: = E]exp

[skip]exp

[prog_{1 p}⊕ prog₂]exp

prog₁ ⊑ prog₂ [prog₁ [] prog₂]exp [@v · pred ⇒ proa]ex The expectation obtained after replacing all free occurrences of x in exp by E

exp

 $p \times [prog_1]exp$ $+ (1-p) \times [prog_2]exp$ $[prog_1]exp \Rightarrow [prog_2]exp$ $[prog_1]exp \min [prog_2]exp$ $\min (v) \cdot (pred \mid [prog]exp)$

NATIONAL

Probabilistic Generalised Substitution Language

Summary

[x: = E]exp

[skip]exp $[prog_1 p \oplus prog_2]exp$

prog₁ ⊑ prog₂ [prog₁ ∥ prog₂]exp [@y · pred ⇒ prog]ex The expectation obtained after replacing all free occurrences of x in exp by E

ехр

 $p \times [prog_1]exp + (1-p) \times [prog_2]exp$ $prog_1]exp \Rightarrow [prog_2]exp$ $prog_1]exp \min [prog_2]exp$ $prog_1]exp \min [prog_2]exp$

Probabilistic Generalised Substitution Language

Summary

[x : = E]expThe expectation obtained after replacing all free occurrences of x in
exp by E[skip]expexp $[prog_{1 p} \oplus prog_{2}]exp$ $p \times [prog_{1}]exp$
 $+ (1-p) \times [prog_{2}]exp$ $prog_{1} \sqsubseteq prog_{2}$ $[prog_{1}]exp \Rightarrow [prog_{2}]exp$ $[prog_{1} \parallel prog_{2}]exp$ $[prog_{1}]exp \Rightarrow [prog_{2}]exp$ $[prog_{1} \parallel prog_{2}]exp$ $[prog_{1}]exp = min [prog_{2}]exp$ $[@y \cdot pred \implies prog]exp$ $min (y) \cdot (pred | [prog]exp)$

Motivation

Background

How pGSL extends GSL

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to *Expectations* (functions from state to real).

- For consistency with Boolean logic, we use embedded predicates, ⟨*false*⟩ = 0, and ⟨*true*⟩ = 1.
- Notationally, we have kept predicates as much as possible.

Motivation

Background

How pGSL extends GSL

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to *Expectations* (functions from state to real).

- For consistency with Boolean logic, we use embedded predicates, ⟨*false*⟩ = 0, and ⟨*true*⟩ = 1.
- Notationally, we have kept predicates as much as possible.

How pGSL extends GSL

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to *Expectations* (functions from state to real).

- For consistency with Boolean logic, we use embedded predicates, ⟨*false*⟩ = 0, and ⟨*true*⟩ = 1.
- Notationally, we have kept predicates as much as possible.

Outline

- Extension to Probabilistic B
- Background

Our Results/Contribution

- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

We want to have a definition in the probabilistic world which is similar to the precondition, postcondition pair.

Standard substitution

 $v : \{P, Q\}$, where P and Q are predicates over the state, x.

● *v* ⊆ *x*

• Q can refer to the original state by using subscripted variables x_0 .

Probabilistic substitution

 $v : \{A, B\}$, where *A* and *B* are expectations over state. The expected value of *B* over the set of final distributions is at least the expected value of *A* over the initial distribution.

We want to have a definition in the probabilistic world which is similar to the precondition, postcondition pair.

Standard substitution

 $v : \{P, Q\}$, where P and Q are predicates over the state, x.

• *v* ⊆ *x*

• Q can refer to the original state by using subscripted variables x_0 .

Probabilistic substitution

 $v : \{A, B\}$, where *A* and *B* are expectations over state. The expected value of *B* over the set of final distributions is at least the expected value of *A* over the initial distribution.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

We want to have a definition in the probabilistic world which is similar to the precondition, postcondition pair.

Standard substitution

 $v : \{P, Q\}$, where P and Q are predicates over the state, x.

• *v* ⊆ *x*

• Q can refer to the original state by using subscripted variables x_0 .

Probabilistic substitution

 $v : \{A, B\}$, where *A* and *B* are expectations over state. The expected value of *B* over the set of final distributions is at least the expected value of *A* over the initial distribution.

Our Results/Contribution

Probabilistic specification substitution

Semantics

Program

Specification $v : \{A, B\}$.

Post-expectation

Arbitrary expectation C.

Questions?

What is [*v* : {*A*, *B*}] *C*?

Semantics of probabilistic substitution

$$[v: \{A, B\}] C \quad \stackrel{\frown}{=} \quad A \times [x_0: = x] \left(\Box x \cdot \left(\frac{C}{B \times \langle w = w_0 \rangle} \right)^{\gamma} \right)$$

(with w is the set of unchanged variables, i.e. x - v). (Similar work can be seen in White[1996] and Ying[2003]

Our Results/Contribution

Probabilistic specification substitution

Semantics

Program **Program**

Specification $v : \{A, B\}$.

Post-expectation

Arbitrary expectation C.

Questions?

What is [*v* : {*A*, *B*}] *C*?

Semantics of probabilistic substitution

$$[v: \{A, B\}] C \quad \stackrel{\frown}{=} \quad A \times [x_0: = x] \left(\Box x \cdot \left(\frac{C}{B \times \langle w = w_0 \rangle} \right)^{\gamma} \right)$$

(with w is the set of unchanged variables, i.e. x - v). (Similar work can be seen in White[1996] and Ying[2003]

Semantics

Program

Specification $v : \{A, B\}$.

Post-expectation

Arbitrary expectation C.

Questions?

What is $[v: \{A, B\}] C$?

Semantics of probabilistic substitution

$$[v: \{A, B\}] C \quad \stackrel{\frown}{=} \quad A \times [x_0: = x] \left(\Box x \cdot \left(\frac{C}{B \times \langle w = w_0 \rangle} \right) \right)$$

(with *w* is the set of unchanged variables, i.e. x - v). (Similar work can be seen in White[1996] and Ying[2003]

Probabilistic specification substitution

Semantics

ATIONAL

Program

Specification $v : \{A, B\}$.

Post-expectation

Arbitrary expectation C.

Questions?

What is [*v* : {*A* , *B*}] *C*?

Semantics of probabilistic substitution

$$[\mathbf{v}: \{\mathbf{A}, \mathbf{B}\}] \mathbf{C} \quad \stackrel{\frown}{=} \quad \mathbf{A} \times [\mathbf{x}_0: = \mathbf{x}] \left(\Box \mathbf{x} \cdot \left(\frac{\mathbf{C}}{\mathbf{B} \times \langle \mathbf{w} = \mathbf{w}_0 \rangle} \right)^T \right)$$

(with w is the set of unchanged variables, i.e. x - v). (Similar work can be seen in White[1996] and Ying[2003])

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Probabilistic specification substitution

Example

Program prog₁

$$prog_1 \stackrel{_\sim}{=} c : \left\{ rac{1}{2} \ , \ \langle c = H
angle
ight\} \ .$$

Post-expectation $\langle c = H \rangle$

$$\begin{bmatrix} c : \left\{ \frac{1}{2} , \left\langle c = H \right\rangle \right\} \right] \left\langle c = H \right\rangle$$
$$\equiv \frac{1}{2} * \left[c_0 := c \right] \left(\Box c \cdot \left(\frac{\left\langle c = H \right\rangle}{\left\langle c = H \right\rangle} \right) \right)$$
$$\equiv \frac{1}{2} * \left[c_0 := c \right] \mathbf{1}$$
$$\equiv \frac{1}{2}$$

Probabilistic specification substitution

Example

Program prog₁

$$prog_1 \stackrel{_\sim}{=} c : \left\{ rac{1}{2} \; , \; \langle c = H
angle
ight\} \; .$$

Post-expectation $\langle \overline{c = H} \rangle$

$$\begin{bmatrix} c : \left\{ \frac{1}{2} , \left\langle c = H \right\rangle \right\} \right] \left\langle c = H \right\rangle \\ \equiv \quad \frac{1}{2} \quad * \quad \left[c_0 := c \right] \left(\Box c \cdot \left(\frac{\left\langle c = H \right\rangle}{\left\langle c = H \right\rangle} \right) \right) \\ \equiv \quad \frac{1}{2} \quad * \quad \left[c_0 := c \right] \ 1 \\ \equiv \quad \frac{1}{2} \end{bmatrix}$$

Outline

Motivation

- Extension to Probabilistic B
- Background

Our Results/Contribution

- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

Fundamental theorem

Theorem

Standard Theorem

Assume that $prog_1 \cong v : \{P, Q\}$. For any program $prog_2$, $prog_1 \sqsubseteq prog_2$ if and only if

 $P \implies [x_0 := x] [prog_2] Q^w$,

where $\mathbf{Q}^{w} \cong \mathbf{Q} \wedge w = w_{0}$.

Probabilistic Theorem

Assume that $prog_1 \cong v : \{A, B\}$. For any program $prog_2$, $prog_1 \sqsubseteq prog_2$ if and only if

 $A \implies [x_0 := x] [prog_2] B^w,$

where $B^w \cong B \times \langle w = w_0 \rangle$.

ATIONAL

Fundamental theorem

Theorem

Standard Theorem

Assume that $prog_1 \cong v : \{P, Q\}$. For any program $prog_2$, $prog_1 \sqsubseteq prog_2$ if and only if

 $P \implies [x_0 := x] [prog_2] Q^w ,$

where $Q^w \cong Q \land w = w_0$.

Probabilistic Theorem

Assume that $prog_1 \cong v : \{A, B\}$. For any program $prog_2$, $prog_1 \sqsubseteq prog_2$ if and only if

 $A \implies [x_0 := x] [prog_2] B^w,$

where $B^{w} \cong B \times \langle w = w_0 \rangle$.

ATIONAL

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fundamental theorem

Example

Programs $prog_1$ and $prog_2$

Consider $prog_1$ amd $prog_2$ as follows:

$$prog_1 \cong \mathbf{c} : \left\{ \frac{1}{2} , \langle \mathbf{c} = \mathbf{H} \rangle \right\} , prog_2 \cong \mathbf{c} := \mathbf{H}_{\frac{1}{2}} \oplus \mathbf{c} := \mathbf{T}.$$

$prog_1 \sqsubseteq prog_2?$

$$\begin{bmatrix} c_0 := c \end{bmatrix} \begin{bmatrix} c : = H_{\frac{1}{2}} \oplus c : = T \end{bmatrix} \langle c = H \rangle$$

$$\equiv \frac{1}{2} \times [c : = H] \langle c = H \rangle$$

$$+ (1 - \frac{1}{2}) \times [c : = T] \langle c = H \rangle$$

$$\equiv \frac{1}{2} \times \langle H = H \rangle + \frac{1}{2} \times \langle T = H \rangle$$

$$\equiv \frac{1}{2} .$$

Fundamental theorem

Example

Programs prog₁ and prog₂

Consider $prog_1$ amd $prog_2$ as follows:

$$prog_1 \cong c: \left\{ \frac{1}{2}, \langle c = H \rangle \right\}, prog_2 \cong c: = H_{\frac{1}{2}} \oplus c: = T.$$

$prog_1 \sqsubseteq prog_2$?

$$\begin{bmatrix} c_0 := c \end{bmatrix} \begin{bmatrix} c : = H_{\frac{1}{2}} \oplus c : = T \end{bmatrix} \langle c = H \rangle$$

$$\equiv \frac{1}{2} \times [c := H] \langle c = H \rangle$$

$$+ (1 - \frac{1}{2}) \times [c := T] \langle c = H \rangle$$

$$\equiv \frac{1}{2} \times \langle H = H \rangle + \frac{1}{2} \times \langle T = H \rangle$$

$$\equiv \frac{1}{2} .$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Motivation

- Extension to Probabilistic B
- Background

Our Results/Contribution

- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

Proof Obligations for Loops

Standard rules

For a standard loop, such as

loop $\hat{=}$ while **G** do **S** invariant **I** variant **V** end ,

then $P \implies [init; loop]Q$ holds if the following are satisfied:

S1	Р	\implies	[init]I

- S2 $G \land I \implies [S]I$
- S3 $\neg G \land I \implies Q$
- $S4 \qquad I \implies V \in \mathbb{N}$
- S5 $G \wedge I \implies [n := V][S](V < n)$

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

Proof Obligations for Loops

Probabilistic rules

For a probabilistic loop, such as

lo	oop	≘ w	THILE G DO S INVA	RIANT / EX	EXPECTATION E VARIANT V END .
ther	ו ⟨ ₽ ⟩	* A	\Rightarrow [init; loop]($\langle Q \rangle * B$	holds if the following satisfies:
	P1		$\langle \boldsymbol{P} angle * \boldsymbol{A}$	\Rightarrow	$[init](\langle I \rangle * E)$
		P1a	Р	\implies	[init] I
		P1b	$\langle P angle * A$	\Rightarrow	[init]E
-	P2		$\langle \boldsymbol{G} \wedge \boldsymbol{I} \rangle * \boldsymbol{E}$	\Rightarrow	$[S](\langle I \rangle * E)$
		P2a	$m{G}\wedgem{I}$	\implies	[S] <i>I</i>
		P2b	$\langle {m G} \wedge {m I} angle * {m E}$	\Rightarrow	[S] E
-	P3		$\langle \neg G \land I \rangle * E$	\Rightarrow	$\langle Q \rangle * B$
		РЗа	$ eg G \wedge I$	\implies	Q
		P3b	$\langle \neg G \land I \rangle * E$	\Rightarrow	В
-	P4		1	\implies	$V \in \mathbb{N}$
-	P5		G \wedge I	\implies	$[n := V] \llbracket S \rrbracket (V < n)$

The difference with the previous work is that there's a clear separation between I and E. ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Outline

Motivation

- Extension to Probabilistic B
- Background

Our Results/Contribution

- Probabilistic specification substitution
- Fundamental theorem
- Proof Obligations for Loops
- Case Study

Description of Min-Cut algorithm

Aims

- Probabilistic fundamental theorem in practice.
- Developing probabilistic system in layers.
- Analysing some of the unexpected and subtle issues.

Two phases

The algorithm is used to find the minimum cut for a connected indirect graph:

- A cut is a set of edges such that if we remove just those edges, the graph will become disconnected;
- A minimum cut is a cut with the least number of edges.

The algorithm contains two phases: Contraction sequences and probabilistic amplification.

Description of Min-Cut algorithm

Aims

- Probabilistic fundamental theorem in practice.
- Developing probabilistic system in layers.
- Analysing some of the unexpected and subtle issues.

Two phases

The algorithm is used to find the minimum cut for a connected indirect graph:

- A cut is a set of edges such that if we remove just those edges, the graph will become disconnected;
- A minimum cut is a cut with the least number of edges.

The algorithm contains two phases: Contraction sequences and probabilistic amplification.

Contraction sequences

Description

- In a contraction step, two connected nodes are chosen randomly and merge together.
- The probability that any specific minimum cut is kept is at least

$$\frac{N-2}{N},$$

where *N* is the number of nodes in the current graph.

- This step is repeated until there are two nodes left, the edges connecting the last two nodes will be the cut chosen.
- Overall, the probability that the last cut is minimum cut is at least

$$p(N) = \frac{N-2}{N} \times \frac{N-3}{N-1} x \times \cdots \times \frac{2}{4} \times \frac{1}{2} = \frac{2}{N \times (N-1)}$$

Formal development of contraction

Specification

ans \leftarrow contraction(N) $\hat{=}$ ans : { $\langle pre1 \rangle * p(N), \langle ans \rangle$ }

Implementation

```
ans \leftarrow contraction( N ) \cong
VAR n IN
n := N; ans := TRUE;
WHILE 2 < n DO ans \leftarrow merge(n, ans); n := n - 1 END
END
```

e operation

ans ← merge (n , a)
$$\widehat{=}$$

n ∈ N ∧ a ∈ BOOL | ans := FALSE _{< 2}⊕ a

Formal development of contraction

Specification

ans \leftarrow contraction(N) $\hat{=}$ ans : { $\langle pre1 \rangle * p(N), \langle ans \rangle$ }

Implementation

```
ans ← contraction(N) \stackrel{\frown}{=}
VAR n IN
n := N; ans := TRUE;
WHILE 2 < n DO ans ← merge(n, ans); n := n - 1 END
END
```

operation

ans
$$\leftarrow$$
 merge $(n, a) \cong$
 $n \in \mathbb{N} \land a \in BOOL \mid ans := FALSE_{\leq \frac{2}{3}} \oplus a$

Case Study

Formal development of contraction

Specification

ans \leftarrow contraction(N) $\hat{=}$ ans : { $\langle pre1 \rangle * p(N), \langle ans \rangle$ }

Implementation

```
ans ← contraction(N) \stackrel{\frown}{=}
VAR n IN
n := N; ans := TRUE;
WHILE 2 < n DO ans ← merge(n, ans); n := n - 1 END
END
```

merge operation

ans
$$\leftarrow$$
 merge $(n, a) \stackrel{\frown}{=}$
 $n \in \mathbb{N} \land a \in BOOL \mid ans := FALSE_{\leq \frac{2}{n}} \oplus a$

Proof obligations of contraction

Here is the summary of proof obligations for the implementation generated by the modified *B-Toolkit*:

Total	Auto Prove	BTool Prove	
14	11	3	

Probabilistic amplification

Description

- We repeat the contraction sequences to increase the chance of finding the right minimum cut.
- Assume that we do that *M* times, the probability of finding the right minimum cut is at least:

$$P(N, M) = 1 - (1 - p(N))^{M}$$

Formal development of probabilistic amplification

Specification

ans \leftarrow minCut(N, M) $\hat{=}$ ans : { $\langle pre2 \rangle * P(N, M), \langle ans \rangle$ }

Implementation

```
ans \leftarrow minCut( N, M ) \cong
VAR m, a IN
m := M; ans := FALSE;
WHILE m \neq 0 DO
a \leftarrow contraction(N);
ans := ans \lor a;
m := m - 1
END
END
```


ATIONAL

Case Study

Formal development of probabilistic amplification

Specification

ans \leftarrow minCut(N, M) $\hat{=}$ ans : { $\langle pre2 \rangle * P(N, M), \langle ans \rangle$ }

Implementation

```
ans \leftarrow minCut( N, M ) \triangleq
VAR m, a IN
m := M; ans := FALSE;
WHILE m \neq 0 DO
a \leftarrow contraction(N);
ans := ans \lor a;
m := m - 1
END
END
```

Proof obligations of probabilistic amplification

Here is the summary of proof obligations for probabilistic amplification produced by the modified *B-Toolkit*:

(Summa	ry	
	Total	Auto Prove	BTool Prove
ĺ	14	13	0

Problem?

There is one proof obligation that cannot be proved.

Solution

The problem observed is due to the fact that in the definition for probabilistic specification substitution, we did not specify termination.

In *B*, termination of all programs must be proved, so we should introduce terminating probabilistic specification substitution and its fundamental theorem.

Proof obligations of probabilistic amplification

Here is the summary of proof obligations for probabilistic amplification produced by the modified *B-Toolkit*.

	Summa	ry	
	Total	Auto Prove	BTool Prove
ĺ	14	13	0

Problem?

There is one proof obligation that cannot be proved.

Solution

The problem observed is due to the fact that in the definition for probabilistic specification substitution, we did not specify termination.

In *B*, termination of all programs must be proved, so we should introduce terminating probabilistic specification substitution and its fundamental theorem.

Proof obligations of probabilistic amplification

Here is the summary of proof obligations for probabilistic amplification produced by the modified *B-Toolkit*:

3	Summa	ry	
ſ	Total	Auto Prove	BTool Prove
ĺ	14	13	0

Problem?

There is one proof obligation that cannot be proved.

Solution

The problem observed is due to the fact that in the definition for probabilistic specification substitution, we did not specify termination.

In *B*, termination of all programs must be proved, so we should introduce terminating probabilistic specification substitution and its fundamental theorem.

Summary

- Abstractly specify and refine probabilistic system.
- Development can be separated into layers.
- Termination condition is checked when developing systems using the *B-Toolkit*.
- Future work
 - Multiple expectations.
 - Fundamental theorem for refining system with multiple expectations.

For Further Reading I

C. Morgan and A. McIver.

Abstraction, Refinement and Proof for Probabilistic Systems. Springer-Verlag, 2004.

T.S. Hoang, Z. Jin, K. Robinson, C. Morgan and A. McIver. Probabilistic Invariant for Probabilistic Machines. Proceedings of the 3rd International Conference of B and Z Users, volume 2651 of LNCS, 2003.

N. White.

Probabilistic Specification and Refinement *Master Thesis*, Keble College, 1996.

M.S. Ying.

Reasoning about probabilistic sequential programs in a probabilistic logic.

Acta Informatica, volume 39, 2003.

