
Motivation Our Results/Contribution Summary

Development with Refinement in Probabilistic
B — Foundation and Case Study

T.S. Hoang1,2 Z. Jin1 K. Robinson1,2 C. Morgan1

A. McIver3

1School of Computer Science and Engineering, University of New South Wales

2Formal Methods Research Group, National ICT Australia

3Department of Computer Science, Macquarie University

4th International Conference of B and Z Users, 2005
University of Surrey, Guildford, U.K.

Motivation Our Results/Contribution Summary

Outline

1 Motivation
Extension to Probabilistic B
Background

2 Our Results/Contribution
Probabilistic specification substitution
Fundamental theorem
Proof Obligations for Loops
Case Study

Motivation Our Results/Contribution Summary

Extension to Probabilistic B

Outline

1 Motivation
Extension to Probabilistic B
Background

2 Our Results/Contribution
Probabilistic specification substitution
Fundamental theorem
Proof Obligations for Loops
Case Study

Motivation Our Results/Contribution Summary

Extension to Probabilistic B

Extending Probabilistic B

To extend the scope of probabilistic B (pB) to layered
developments;

Need to introduce probabilistic specification substitution;
To extend Abstract Machine Notation (AMN) to express

probabilistic specification substitution;
probabilistic invariant (expectation) for loops.

Motivation Our Results/Contribution Summary

Extension to Probabilistic B

Extending Probabilistic B

To extend the scope of probabilistic B (pB) to layered
developments;

Need to introduce probabilistic specification substitution;
To extend Abstract Machine Notation (AMN) to express

probabilistic specification substitution;
probabilistic invariant (expectation) for loops.

Motivation Our Results/Contribution Summary

Extension to Probabilistic B

Extending Probabilistic B

To extend the scope of probabilistic B (pB) to layered
developments;

Need to introduce probabilistic specification substitution;
To extend Abstract Machine Notation (AMN) to express

probabilistic specification substitution;
probabilistic invariant (expectation) for loops.

Motivation Our Results/Contribution Summary

Extension to Probabilistic B

Extending Probabilistic B

To extend the scope of probabilistic B (pB) to layered
developments;

Need to introduce probabilistic specification substitution;
To extend Abstract Machine Notation (AMN) to express

probabilistic specification substitution;
probabilistic invariant (expectation) for loops.

Motivation Our Results/Contribution Summary

Extension to Probabilistic B

Extending Probabilistic B

To extend the scope of probabilistic B (pB) to layered
developments;

Need to introduce probabilistic specification substitution;
To extend Abstract Machine Notation (AMN) to express

probabilistic specification substitution;
probabilistic invariant (expectation) for loops.

Motivation Our Results/Contribution Summary

Extension to Probabilistic B

Changing the B-Toolkit

We have adapted the B-Toolkit to assist the development of pB
machines. This involves:

new syntax;

proof obligation generation for new constructs;

reasoning over real as well as Boolean.

Motivation Our Results/Contribution Summary

Extension to Probabilistic B

Changing the B-Toolkit

We have adapted the B-Toolkit to assist the development of pB
machines. This involves:

new syntax;

proof obligation generation for new constructs;

reasoning over real as well as Boolean.

Motivation Our Results/Contribution Summary

Extension to Probabilistic B

Changing the B-Toolkit

We have adapted the B-Toolkit to assist the development of pB
machines. This involves:

new syntax;

proof obligation generation for new constructs;

reasoning over real as well as Boolean.

Motivation Our Results/Contribution Summary

Background

Outline

1 Motivation
Extension to Probabilistic B
Background

2 Our Results/Contribution
Probabilistic specification substitution
Fundamental theorem
Proof Obligations for Loops
Case Study

Motivation Our Results/Contribution Summary

Background

Probabilistic Generalised Substitution Language

Summary

[x : = E]exp The expectation obtained after re-
placing all free occurrences of x in
exp by E

[skip]exp exp

[prog1 p⊕ prog2]exp p × [prog1]exp
+ (1−p) × [prog2]exp

prog1 v prog2 [prog1]exp V [prog2]exp

[prog1 [] prog2]exp [prog1]exp min [prog2]exp

[@y · pred =⇒ prog]exp min (y) · (pred | [prog]exp)

Motivation Our Results/Contribution Summary

Background

Probabilistic Generalised Substitution Language

Summary

[x : = E]exp The expectation obtained after re-
placing all free occurrences of x in
exp by E

[skip]exp exp

[prog1 p⊕ prog2]exp p × [prog1]exp
+ (1−p) × [prog2]exp

prog1 v prog2 [prog1]exp V [prog2]exp

[prog1 [] prog2]exp [prog1]exp min [prog2]exp

[@y · pred =⇒ prog]exp min (y) · (pred | [prog]exp)

Motivation Our Results/Contribution Summary

Background

Probabilistic Generalised Substitution Language

Summary

[x : = E]exp The expectation obtained after re-
placing all free occurrences of x in
exp by E

[skip]exp exp

[prog1 p⊕ prog2]exp p × [prog1]exp
+ (1−p) × [prog2]exp

prog1 v prog2 [prog1]exp V [prog2]exp

[prog1 [] prog2]exp [prog1]exp min [prog2]exp

[@y · pred =⇒ prog]exp min (y) · (pred | [prog]exp)

Motivation Our Results/Contribution Summary

Background

Probabilistic Generalised Substitution Language

Summary

[x : = E]exp The expectation obtained after re-
placing all free occurrences of x in
exp by E

[skip]exp exp

[prog1 p⊕ prog2]exp p × [prog1]exp
+ (1−p) × [prog2]exp

prog1 v prog2 [prog1]exp V [prog2]exp

[prog1 [] prog2]exp [prog1]exp min [prog2]exp

[@y · pred =⇒ prog]exp min (y) · (pred | [prog]exp)

Motivation Our Results/Contribution Summary

Background

How pGSL extends GSL

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to
Expectations (functions from state to real).

For consistency with Boolean logic, we use embedded
predicates, 〈false〉 = 0, and 〈true〉 = 1.

Notationally, we have kept predicates as much as possible.

Motivation Our Results/Contribution Summary

Background

How pGSL extends GSL

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to
Expectations (functions from state to real).

For consistency with Boolean logic, we use embedded
predicates, 〈false〉 = 0, and 〈true〉 = 1.

Notationally, we have kept predicates as much as possible.

Motivation Our Results/Contribution Summary

Background

How pGSL extends GSL

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to
Expectations (functions from state to real).

For consistency with Boolean logic, we use embedded
predicates, 〈false〉 = 0, and 〈true〉 = 1.

Notationally, we have kept predicates as much as possible.

Motivation Our Results/Contribution Summary

Probabilistic specification substitution

Outline

1 Motivation
Extension to Probabilistic B
Background

2 Our Results/Contribution
Probabilistic specification substitution
Fundamental theorem
Proof Obligations for Loops
Case Study

Motivation Our Results/Contribution Summary

Probabilistic specification substitution

Syntax

We want to have a definition in the probabilistic world which is similar
to the precondition, postcondition pair.

Standard substitution

v : {P , Q} , where P and Q are predicates over the state, x.

v ⊆ x

Q can refer to the original state by using subscripted variables x0.

Probabilistic substitution

v : {A , B} , where A and B are expectations over state.
The expected value of B over the set of final distributions is at least
the expected value of A over the initial distribution.

Motivation Our Results/Contribution Summary

Probabilistic specification substitution

Syntax

We want to have a definition in the probabilistic world which is similar
to the precondition, postcondition pair.

Standard substitution

v : {P , Q} , where P and Q are predicates over the state, x.

v ⊆ x

Q can refer to the original state by using subscripted variables x0.

Probabilistic substitution

v : {A , B} , where A and B are expectations over state.
The expected value of B over the set of final distributions is at least
the expected value of A over the initial distribution.

Motivation Our Results/Contribution Summary

Probabilistic specification substitution

Syntax

We want to have a definition in the probabilistic world which is similar
to the precondition, postcondition pair.

Standard substitution

v : {P , Q} , where P and Q are predicates over the state, x.

v ⊆ x

Q can refer to the original state by using subscripted variables x0.

Probabilistic substitution

v : {A , B} , where A and B are expectations over state.
The expected value of B over the set of final distributions is at least
the expected value of A over the initial distribution.

Motivation Our Results/Contribution Summary

Probabilistic specification substitution

Semantics

Program

Specification v : {A , B}.
Post-expectation

Arbitrary expectation C.

Questions?

What is [v : {A , B}] C?

Semantics of probabilistic substitution

[v : {A , B}] C =̂ A × [x0 : = x]

(
ux ·

(
C

B × 〈w = w0〉

))
(with w is the set of unchanged variables, i.e. x− v).

(Similar work can be seen in White[1996] and Ying[2003])

Motivation Our Results/Contribution Summary

Probabilistic specification substitution

Semantics

Program

Specification v : {A , B}.
Post-expectation

Arbitrary expectation C.

Questions?

What is [v : {A , B}] C?

Semantics of probabilistic substitution

[v : {A , B}] C =̂ A × [x0 : = x]

(
ux ·

(
C

B × 〈w = w0〉

))
(with w is the set of unchanged variables, i.e. x− v).

(Similar work can be seen in White[1996] and Ying[2003])

Motivation Our Results/Contribution Summary

Probabilistic specification substitution

Semantics

Program

Specification v : {A , B}.
Post-expectation

Arbitrary expectation C.

Questions?

What is [v : {A , B}] C?

Semantics of probabilistic substitution

[v : {A , B}] C =̂ A × [x0 : = x]

(
ux ·

(
C

B × 〈w = w0〉

))
(with w is the set of unchanged variables, i.e. x− v).

(Similar work can be seen in White[1996] and Ying[2003])

Motivation Our Results/Contribution Summary

Probabilistic specification substitution

Semantics

Program

Specification v : {A , B}.
Post-expectation

Arbitrary expectation C.

Questions?

What is [v : {A , B}] C?

Semantics of probabilistic substitution

[v : {A , B}] C =̂ A × [x0 : = x]

(
ux ·

(
C

B × 〈w = w0〉

))
(with w is the set of unchanged variables, i.e. x− v).

(Similar work can be seen in White[1996] and Ying[2003])

Motivation Our Results/Contribution Summary

Probabilistic specification substitution

Example

Program prog1

prog1 =̂ c :

{
1
2

, 〈c = H〉
}

.

Post-expectation 〈c = H〉[
c :

{
1
2 , 〈c = H〉

}]
〈c = H〉

≡ 1
2 ∗ [c0 := c]

(
uc ·

(
〈c=H〉
〈c=H〉

))
≡ 1

2 ∗ [c0 := c] 1

≡ 1
2

Motivation Our Results/Contribution Summary

Probabilistic specification substitution

Example

Program prog1

prog1 =̂ c :

{
1
2

, 〈c = H〉
}

.

Post-expectation 〈c = H〉[
c :

{
1
2 , 〈c = H〉

}]
〈c = H〉

≡ 1
2 ∗ [c0 := c]

(
uc ·

(
〈c=H〉
〈c=H〉

))
≡ 1

2 ∗ [c0 := c] 1

≡ 1
2

Motivation Our Results/Contribution Summary

Fundamental theorem

Outline

1 Motivation
Extension to Probabilistic B
Background

2 Our Results/Contribution
Probabilistic specification substitution
Fundamental theorem
Proof Obligations for Loops
Case Study

Motivation Our Results/Contribution Summary

Fundamental theorem

Theorem

Standard Theorem

Assume that prog1 =̂ v : {P , Q} .
For any program prog2, prog1 v prog2 if and only if

P =⇒ [x0 := x] [prog2] Qw ,

where Qw =̂ Q ∧ w = w0.

Probabilistic Theorem

Assume that prog1 =̂ v : {A , B} .
For any program prog2, prog1 v prog2 if and only if

A V [x0 := x] [prog2] Bw ,

where Bw =̂ B × 〈w = w0〉.

Motivation Our Results/Contribution Summary

Fundamental theorem

Theorem

Standard Theorem

Assume that prog1 =̂ v : {P , Q} .
For any program prog2, prog1 v prog2 if and only if

P =⇒ [x0 := x] [prog2] Qw ,

where Qw =̂ Q ∧ w = w0.

Probabilistic Theorem

Assume that prog1 =̂ v : {A , B} .
For any program prog2, prog1 v prog2 if and only if

A V [x0 := x] [prog2] Bw ,

where Bw =̂ B × 〈w = w0〉.

Motivation Our Results/Contribution Summary

Fundamental theorem

Example

Programs prog1 and prog2

Consider prog1 amd prog2 as follows:

prog1 =̂ c :

{
1
2

, 〈c = H〉
}

, prog2 =̂ c : = H 1
2
⊕ c : = T .

prog1 v prog2?

[c0 := c]
[
c : = H 1

2
⊕ c : = T

]
〈c = H〉

≡ 1
2 × [c : = H] 〈c = H〉

+
(
1− 1

2

)
× [c : = T] 〈c = H〉

≡ 1
2 × 〈H = H〉 + 1

2 × 〈T = H〉
≡ 1

2 .

Motivation Our Results/Contribution Summary

Fundamental theorem

Example

Programs prog1 and prog2

Consider prog1 amd prog2 as follows:

prog1 =̂ c :

{
1
2

, 〈c = H〉
}

, prog2 =̂ c : = H 1
2
⊕ c : = T .

prog1 v prog2?

[c0 := c]
[
c : = H 1

2
⊕ c : = T

]
〈c = H〉

≡ 1
2 × [c : = H] 〈c = H〉

+
(
1− 1

2

)
× [c : = T] 〈c = H〉

≡ 1
2 × 〈H = H〉 + 1

2 × 〈T = H〉
≡ 1

2 .

Motivation Our Results/Contribution Summary

Proof Obligations for Loops

Outline

1 Motivation
Extension to Probabilistic B
Background

2 Our Results/Contribution
Probabilistic specification substitution
Fundamental theorem
Proof Obligations for Loops
Case Study

Motivation Our Results/Contribution Summary

Proof Obligations for Loops

Standard rules

For a standard loop, such as

loop =̂ WHILE G DO S INVARIANT I VARIANT V END ,

then P =⇒ [init ; loop]Q holds if the following are satisfied:

S1 P =⇒ [init]I

S2 G ∧ I =⇒ [S]I

S3 ¬G ∧ I =⇒ Q

S4 I =⇒ V ∈ N

S5 G ∧ I =⇒ [n := V][S](V < n)

Motivation Our Results/Contribution Summary

Proof Obligations for Loops

Probabilistic rules

For a probabilistic loop, such as

loop =̂ WHILE G DO S INVARIANT I EXPECTATION E VARIANT V END .

then 〈P〉 ∗ A V [init ; loop](〈Q〉 ∗ B) holds if the following satisfies:

P1 〈P〉 ∗ A V [init] (〈I〉 ∗ E)
P1a P =⇒ [init] I
P1b 〈P〉 ∗ A V [init]E

P2 〈G ∧ I〉 ∗ E V [S] (〈I〉 ∗ E)
P2a G ∧ I =⇒ bbSccI
P2b 〈G ∧ I〉 ∗ E V [S] E

P3 〈¬G ∧ I〉 ∗ E V 〈Q〉 ∗ B
P3a ¬G ∧ I =⇒ Q
P3b 〈¬G ∧ I〉 ∗ E V B

P4 I =⇒ V ∈ N
P5 G ∧ I =⇒ [n := V]bbScc(V < n)

The difference with the previous work is that there’s a clear
separation between I and E .

Motivation Our Results/Contribution Summary

Case Study

Outline

1 Motivation
Extension to Probabilistic B
Background

2 Our Results/Contribution
Probabilistic specification substitution
Fundamental theorem
Proof Obligations for Loops
Case Study

Motivation Our Results/Contribution Summary

Case Study

Description of Min-Cut algorithm

Aims

Probabilistic fundamental theorem in practice.

Developing probabilistic system in layers.

Analysing some of the unexpected and subtle issues.

Two phases

The algorithm is used to find the minimum cut for a connected indirect
graph:

A cut is a set of edges such that if we remove just those edges,
the graph will become disconnected;

A minimum cut is a cut with the least number of edges.

The algorithm contains two phases: Contraction sequences and
probabilistic amplification.

Motivation Our Results/Contribution Summary

Case Study

Description of Min-Cut algorithm

Aims

Probabilistic fundamental theorem in practice.

Developing probabilistic system in layers.

Analysing some of the unexpected and subtle issues.

Two phases

The algorithm is used to find the minimum cut for a connected indirect
graph:

A cut is a set of edges such that if we remove just those edges,
the graph will become disconnected;

A minimum cut is a cut with the least number of edges.

The algorithm contains two phases: Contraction sequences and
probabilistic amplification.

Motivation Our Results/Contribution Summary

Case Study

Contraction sequences

Description

In a contraction step, two connected nodes are chosen randomly
and merge together.

The probability that any specific minimum cut is kept is at least

N− 2
N

,

where N is the number of nodes in the current graph.

This step is repeated until there are two nodes left, the edges
connecting the last two nodes will be the cut chosen.

Overall, the probability that the last cut is minimum cut is at least

p(N) =
N− 2

N
× N− 3

N− 1
x × · · · × 2

4
× 1

2
=

2
N× (N− 1)

.

Motivation Our Results/Contribution Summary

Case Study

Formal development of contraction

Specification

ans ←− contraction (N) =̂ ans : {〈pre1〉 ∗ p(N) , 〈ans〉}

Implementation

ans ←− contraction (N) =̂
VAR n IN

n := N; ans := TRUE ;
WHILE 2 < n DO ans ←− merge(n, ans); n := n - 1 END

END

merge operation

ans ←− merge (n , a) =̂
n ∈ N ∧ a ∈ BOOL | ans := FALSE ≤ 2

n
⊕ a

Motivation Our Results/Contribution Summary

Case Study

Formal development of contraction

Specification

ans ←− contraction (N) =̂ ans : {〈pre1〉 ∗ p(N) , 〈ans〉}

Implementation

ans ←− contraction (N) =̂
VAR n IN

n := N; ans := TRUE ;
WHILE 2 < n DO ans ←− merge(n, ans); n := n - 1 END

END

merge operation

ans ←− merge (n , a) =̂
n ∈ N ∧ a ∈ BOOL | ans := FALSE ≤ 2

n
⊕ a

Motivation Our Results/Contribution Summary

Case Study

Formal development of contraction

Specification

ans ←− contraction (N) =̂ ans : {〈pre1〉 ∗ p(N) , 〈ans〉}

Implementation

ans ←− contraction (N) =̂
VAR n IN

n := N; ans := TRUE ;
WHILE 2 < n DO ans ←− merge(n, ans); n := n - 1 END

END

merge operation

ans ←− merge (n , a) =̂
n ∈ N ∧ a ∈ BOOL | ans := FALSE ≤ 2

n
⊕ a

Motivation Our Results/Contribution Summary

Case Study

Proof obligations of contraction

Here is the summary of proof obligations for the implementation
generated by the modified B-Toolkit:

Summary

Total Auto Prove BTool Prove
14 11 3

Motivation Our Results/Contribution Summary

Case Study

Probabilistic amplification

Description

We repeat the contraction sequences to increase the chance of
finding the right minimum cut.

Assume that we do that M times, the probability of finding the
right minimum cut is at least:

P(N, M) = 1− (1− p(N))M
.

Motivation Our Results/Contribution Summary

Case Study

Formal development of probabilistic amplification

Specification

ans ←− minCut (N, M) =̂ ans : {〈pre2〉 ∗ P(N, M) , 〈ans〉}

Implementation

ans ←− minCut (N, M) =̂
VAR m, a IN

m := M; ans := FALSE ;
WHILE m 6= 0 DO

a←− contraction(N);
ans := ans ∨ a;
m := m − 1

END
END

Motivation Our Results/Contribution Summary

Case Study

Formal development of probabilistic amplification

Specification

ans ←− minCut (N, M) =̂ ans : {〈pre2〉 ∗ P(N, M) , 〈ans〉}

Implementation

ans ←− minCut (N, M) =̂
VAR m, a IN

m := M; ans := FALSE ;
WHILE m 6= 0 DO

a←− contraction(N);
ans := ans ∨ a;
m := m − 1

END
END

Motivation Our Results/Contribution Summary

Case Study

Proof obligations of probabilistic amplification

Here is the summary of proof
obligations for probabilistic
amplification produced by the
modified B-Toolkit:

Summary

Total Auto Prove BTool Prove
14 13 0

Problem?

There is one proof obligation that
cannot be proved.

Solution

The problem observed is
due to the fact that in the
definition for probabilistic
specification substitution,
we did not specify
termination.
In B, termination of all
programs must be proved,
so we should introduce
terminating probabilistic
specification substitution
and its fundamental
theorem.

Motivation Our Results/Contribution Summary

Case Study

Proof obligations of probabilistic amplification

Here is the summary of proof
obligations for probabilistic
amplification produced by the
modified B-Toolkit:

Summary

Total Auto Prove BTool Prove
14 13 0

Problem?

There is one proof obligation that
cannot be proved.

Solution

The problem observed is
due to the fact that in the
definition for probabilistic
specification substitution,
we did not specify
termination.
In B, termination of all
programs must be proved,
so we should introduce
terminating probabilistic
specification substitution
and its fundamental
theorem.

Motivation Our Results/Contribution Summary

Case Study

Proof obligations of probabilistic amplification

Here is the summary of proof
obligations for probabilistic
amplification produced by the
modified B-Toolkit:

Summary

Total Auto Prove BTool Prove
14 13 0

Problem?

There is one proof obligation that
cannot be proved.

Solution

The problem observed is
due to the fact that in the
definition for probabilistic
specification substitution,
we did not specify
termination.
In B, termination of all
programs must be proved,
so we should introduce
terminating probabilistic
specification substitution
and its fundamental
theorem.

Motivation Our Results/Contribution Summary

Summary

Abstractly specify and refine probabilistic system.

Development can be separated into layers.

Termination condition is checked when developing systems using
the B-Toolkit.

Future work
Multiple expectations.
Fundamental theorem for refining system with multiple
expectations.

Appendix

For Further Reading

For Further Reading I

C. Morgan and A. McIver.
Abstraction, Refinement and Proof for Probabilistic Systems.
Springer-Verlag, 2004.

T.S. Hoang, Z. Jin, K. Robinson, C. Morgan and A. McIver.
Probabilistic Invariant for Probabilistic Machines.
Proceedings of the 3rd International Conference of B and Z
Users, volume 2651 of LNCS, 2003.

N. White.
Probabilistic Specification and Refinement
Master Thesis, Keble College, 1996.

M.S. Ying.
Reasoning about probabilistic sequential programs in a
probabilistic logic.
Acta Informatica, volume 39, 2003.

	Motivation
	Extension to Probabilistic B
	Background

	Our Results/Contribution
	Probabilistic specification substitution
	Fundamental theorem
	Proof Obligations for Loops
	Case Study

	Summary
	Appendix
	For Further Reading

