Outline

Contents

1 Motivation 1
1.1 Extension to Probabilistic B 1
1.2 Background 1
2 Our Results/Contribution 2
2.1 Probabilistic specification substitution 2
2.2 Fundamental theorem 3
2.3 Proof Obligations for Loops 4
2.4 Case Study 4

1 Motivation

1.1 Extension to Probabilistic B

Extending Probabilistic B

- To extend the scope of probabilistic $B(p B)$ to layered developments;
- Need to introduce probabilistic specification substitution;
- To extend Abstract Machine Notation (AMN) to express
- probabilistic specification substitution;
- probabilistic invariant (expectation) for loops.

Changing the B-Toolkit

We have adapted the B-Toolkit to assist the development of $p B$ machines. This involves:

- new syntax;
- proof obligation generation for new constructs;
- reasoning over real as well as Boolean.

1.2 Background

Probabilistic Generalised Substitution Language
Summary

$$
\begin{aligned}
& {[x:=E] \exp \quad \text { The expectation obtained after replacing all free oc- }} \\
& \text { currences of } x \text { in exp by } E \\
& \text { [skip]exp } \\
& {\left[\operatorname{prog}_{1} \oplus \oplus \operatorname{prog}_{2}\right] \exp } \\
& \operatorname{prog}_{1} \sqsubseteq \operatorname{prog}_{2} \\
& {\left[\operatorname{prog}_{1} \| \text { prog }_{2}\right] \text { exp }} \\
& {[@ y \cdot p r e d \Longrightarrow \text { prog }] \text { exp }} \\
& \text { exp } \\
& +(1-p) \times\left[\operatorname{prog}_{2}\right] \exp \\
& {\left[\operatorname{prog}_{1}\right] \exp \Rightarrow\left[\text { prog }_{2}\right] \exp } \\
& {\left[\text { prog }_{1}\right] \text { exp min }\left[\text { prog }_{2}\right] \text { exp }} \\
& \min (y) \cdot(\text { pred } \mid[p r o g] \exp)
\end{aligned}
$$

How pGSL extends GSL

Expectations replace predicates

Predicates (functions from state to Boolean) are widened to Expectations (functions from state to real).

- For consistency with Boolean logic, we use embedded predicates, \langle false $\rangle=0$, and \langle true $\rangle=1$.
- Notationally, we have kept predicates as much as possible.

2 Our Results/Contribution

2.1 Probabilistic specification substitution

Syntax

We want to have a definition in the probabilistic world which is similar to the precondition, postcondition pair.

Standard substitution

$v:\{P, Q\}$, where P and Q are predicates over the state, x.

- $v \subseteq x$
- Q can refer to the original state by using subscripted variables x_{0}.

Probabilistic substitution

$v:\{A, B\}$, where A and B are expectations over state.
The expected value of B over the set of final distributions is at least the expected value of A over the initial distribution.

Semantics

Program

$$
\text { Specification } v:\{A, B\} \text {. }
$$

Post-expectation

Arbitrary expectation C.

Questions?
What is $[v:\{A, B\}] C$?

Semantics of probabilistic substitution

$$
[v:\{A, B\}] C \widehat{=} A \times\left[x_{0}:=x\right]\left(\Pi x \cdot\left(\frac{C}{B \times\left\langle w=w_{0}\right\rangle}\right)\right)
$$

(with w is the set of unchanged variables, i.e. $x-v$).
(Similar work can be seen in White[1996] and Ying[2003])

Example

Program prog $_{1}$

$$
\operatorname{prog}_{1} \widehat{=} c:\left\{\frac{1}{2},\langle c=H\rangle\right\} .
$$

Post-expectation $\langle\boldsymbol{c}=\boldsymbol{H}\rangle$
$\left[c:\left\{\frac{1}{2},\langle c=H\rangle\right\}\right]\langle c=H\rangle$
$\equiv \frac{1}{2} *\left[c_{0}:=c\right]\left(\sqcap c \cdot\left(\frac{\langle c=H\rangle}{\langle c=H\rangle}\right)\right)$
$\equiv \frac{1}{2} *\left[c_{0}:=c\right] 1$
$\equiv \frac{1}{2}$

2.2 Fundamental theorem

Theorem
Standard Theorem 0.1. Assume that prog ${ }_{1} \widehat{=} v:\{P, Q\}$.
For any program prog ${ }_{2}$, prog $_{1} \sqsubseteq \operatorname{prog}_{2}$ if and only if

$$
P \Longrightarrow\left[x_{0}:=x\right]\left[\operatorname{prog}_{2}\right] Q^{w},
$$

where $Q^{w} \widehat{=} Q \wedge w=w_{0}$.
Probabilistic Theorem 0.1. Assume that $\operatorname{prog}_{1} \widehat{=} v:\{A, B\}$.
For any program prog ${ }_{2}$, prog $_{1} \sqsubseteq \operatorname{prog}_{2}$ if and only if

$$
A \Rightarrow\left[x_{0}:=x\right]\left[\operatorname{prog}_{2}\right] B^{w},
$$

where $B^{w} \widehat{=} B \times\left\langle w=w_{0}\right\rangle$.

Example

Programs prog ${ }_{1}$ and prog ${ }_{2}$

Consider prog_{1} amd prog $_{2}$ as follows:

$$
\operatorname{prog}_{1} \hat{=} c:\left\{\frac{1}{2},\langle c=H\rangle\right\}, \operatorname{prog}_{2} \widehat{=} c:=H_{\frac{1}{2}} \oplus c:=T .
$$

```
\(\boldsymbol{p r o g}_{1} \sqsubseteq \boldsymbol{p r o g}_{2}{ }_{2}\)
    \(\left[c_{0}:=c\right]\left[c:=H_{\left.\frac{1}{2} \oplus c:=T\right]\langle c=H\rangle}\right.\)
    \(\equiv \quad \frac{1}{2} \quad \times[c:=H]\langle c=H\rangle\)
    \(+\left(1-\frac{1}{2}\right) \times[c:=T]\langle c=H\rangle\)
\(\equiv \frac{1}{2} \times\langle H=H\rangle+\frac{1}{2} \times\langle T=H\rangle\)
```


2.3 Proof Obligations for Loops

Standard rules

For a standard loop, such as

$$
\text { loop } \widehat{=} \text { while } G \text { do } S \text { invariant I variant } V \text { end , }
$$

then $P \Longrightarrow[$ init; loop $] Q$ holds if the following are satisfied:

S1	P	\Longrightarrow	$[$ init $] I$
$S 2$	$G \wedge I$	\Longrightarrow	$[S] I$
$S 3$	$\neg G \wedge I$	\Longrightarrow	Q
$S 4$	I	\Longrightarrow	$V \in \mathbb{N}$
$S 5$	$G \wedge I$	\Longrightarrow	$[n:=V][S](V<n)$

Probabilistic rules

For a probabilistic loop, such as

$$
\text { loop } \hat{=} \text { while } G \text { do } S \text { invariant I expectation } E \text { variant } V \text { end . }
$$

then $\langle P\rangle * A \Rightarrow[$ init; loop $](\langle Q\rangle * B)$ holds if the following satisfies:

$P 1$		$\langle P\rangle * A$	\Rightarrow	$[$ init $](\langle I\rangle * E)$
	$P 1 a$	P	\Longrightarrow	$[$ init $] I$
	$P 1 b$	$\langle P\rangle * A$	\Rightarrow	$[$ init $] E$
$P 2$		$\langle G \wedge I\rangle * E$	\Rightarrow	$[S](\langle I\rangle * E)$
	$P 2 a$	$G \wedge I$	\Longrightarrow	$\llbracket S\rfloor I$
	$P 2 b$	$\langle G \wedge I\rangle * E$	\Rightarrow	$[S] E$
$P 3$		$\langle\neg G \wedge I\rangle * E$	\Rightarrow	$\langle Q\rangle * B$
	$P 3 a$	$\neg G \wedge I$	\Longrightarrow	Q
	$P 3 b$	$\langle\neg G \wedge I\rangle * E$	\Rightarrow	B
$P 4$	I	\Longrightarrow	$V \in \mathbb{N}$	
$P 5$		$G \wedge I$	\Longrightarrow	$[n:=V] \llbracket S \rrbracket(V<n)$

The difference with the previous work is that there's a clear separation between I and E.

2.4 Case Study

Description of Min-Cut algorithm

Aims

- Probabilistic fundamental theorem in practice.
- Developing probabilistic system in layers.
- Analysing some of the unexpected and subtle issues.

Two phases

The algorithm is used to find the minimum cut for a connected indirect graph:

- A cut is a set of edges such that if we remove just those edges, the graph will become disconnected;
- A minimum cut is a cut with the least number of edges.

The algorithm contains two phases: Contraction sequences and probabilistic amplification.

Contraction sequences

Description

- In a contraction step, two connected nodes are chosen randomly and merge together.
- The probability that any specific minimum cut is kept is at least

$$
\frac{N-2}{N},
$$

where N is the number of nodes in the current graph.

- This step is repeated until there are two nodes left, the edges connecting the last two nodes will be the cut chosen.
- Overall, the probability that the last cut is minimum cut is at least

$$
p(N)=\frac{N-2}{N} \times \frac{N-3}{N-1} x \times \cdots \times \frac{2}{4} \times \frac{1}{2}=\frac{2}{N \times(N-1)}
$$

Formal development of contraction

Specification

```
ans \(\longleftarrow \operatorname{contraction}(N) \widehat{=}\) ans \(:\{\langle p r e 1\rangle * p(N),\langle a n s\rangle\}\)
```


Implementation

```
ans \(\longleftarrow \operatorname{contraction}(N) \widehat{=}\)
VAR \(n\) IN
    \(n:=N ;\) ans \(:=\) TRUE;
    WHILE \(2<n \mathbf{D O}\) ans \(\longleftarrow \operatorname{merge}(n\), ans \() ; n:=n-1\) END
END
```

merge operation

```
ans «merge ( }n,a)\widehat{=
    n\in\mathbb{N}\wedgea\inBOOL | ans := FALSE 
```


Proof obligations of contraction

Here is the summary of proof obligations for the implementation generated by the modified B-Toolkit:

Summary

Total	Auto Prove	BTool Prove
14	11	3

Probabilistic amplification

Description

- We repeat the contraction sequences to increase the chance of finding the right minimum cut.
- Assume that we do that M times, the probability of finding the right minimum cut is at least:

$$
P(N, M)=1-(1-p(N))^{M}
$$

Formal development of probabilistic amplification

Specification

ans $\longleftarrow \operatorname{minCut}(N, M) \widehat{=}$ ans $:\{\langle p r e 2\rangle * P(N, M),\langle a n s\rangle\}$

Implementation

```
ans \(\longleftarrow \operatorname{minCut}(N, M) \hat{=}\)
VAR \(m, a\) IN
    \(m:=M\); ans \(:=\) FALSE;
    WHILE \(m \neq 0\) DO
        \(a \longleftarrow \operatorname{contraction(N);~}\)
        ans := ans \(\vee a\);
        \(m:=m-1\)
    END
END
```


Proof obligations of probabilistic amplification

Here is the summary of proof obligations for probabilistic amplification produced by the modified B Toolkit:

Summary

Total	Auto Prove	BTool Prove
14	13	0

Problem?

There is one proof obligation that cannot be proved.

Solution

The problem observed is due to the fact that in the definition for probabilistic specification substitution, we did not specify termination.

In B, termination of all programs must be proved, so we should introduce terminating probabilistic specification substitution and its fundamental theorem.

Summary

- Abstractly specify and refine probabilistic system.
- Development can be separated into layers.
- Termination condition is checked when developing systems using the B-Toolkit.
- Future work
- Multiple expectations.
- Fundamental theorem for refining system with multiple expectations.

References

[1] C. Morgan and A. McIver. Abstraction, Refinement and Proof for Probabilistic Systems. SpringerVerlag, 2004.
[2] T.S. Hoang, Z. Jin, K. Robinson, C. Morgan and A. McIver. Probabilistic Invariant for Probabilistic Machines. Proceedings of the 3rd International Conference of B and Z Users, volume 2651 of LNCS, 2003.
[3] N. White. Probabilistic Specification and Refinement Master Thesis, Keble College, 1996.
[4] M.S. Ying. Reasoning about probabilistic sequential programs in a probabilistic logic. Acta Informatica, volume 39, 2003.

