Reasoning about Liveness Properties in Event-B

Thai Son Hoang¹ and Jean-Raymond Abrial²

¹Institute of Information Security, Department of Computer Science Swiss Federal Institute of Technology Zürich (ETH Zürich)

and

²Marseille, France

ICFEM 2011, Durham, U.K. 26th October 2011 (part of the work is supported by the DEPLOY project)

Motivation

- Event-B Models
 - Discrete transition systems
- Safety properties
 - Something (bad) never happens.
 - e.g. invariance properties
 - part of Event-B models
- Liveness properties
 - Something (good) will happen
 - . e.g. termination, eventually, progress, persistence
 - How to reason about them practically?

Event-B Models – Discrete Transition Systems

```
machine M
variables v
invariants I(v)
initialisation K(c, v')
events
   \operatorname{evt}_i = \operatorname{any} t_i \text{ where } G_i(t_i, v) \text{ then } S(t_i, v, v') \text{ end }
```

- v denotes the vector of variables v_1, \ldots, v_n .
- K(c, v') is the initialisation.
- t_i is the parameters of event evt_i.
- G_i(t_i, v) is the guard of event evt_i.
- evt_i is said to be enabled in some state s if $\exists t_i \cdot G_i(t_i, v)$ holds in s.
- $S(t_i, v, v')$ is the action (before-after predicate) of event evt_i.

Executions and Traces (of States)

Executions
$$\alpha = s_0 \xrightarrow{e_0} s_1 \xrightarrow{e_1} s_2 \xrightarrow{e_2} s_3 \xrightarrow{e_3} \dots$$

Traces $\sigma = s_0, s_1, s_2, s_3, \dots$

- Initialisation: $s_0 = \langle v' \rangle$ (as defined by init)
- Sequencing: For all s_k , s_{k+1} , there exists evt_i s.t. $s_k \xrightarrow{evt_i} s_{k+1}$
- Maximality: The sequence is either infinite or ends in a state s_k where all events are disabled

Example

e.g. $\sigma_{Counter}$: $\langle 0 \rangle$, $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 4 \rangle$, $\langle 5 \rangle$, $\langle 4 \rangle$, $\langle 3 \rangle$, $\langle 4 \rangle$, $\langle 5 \rangle$, . . .

The Language of Temporal Logic

- A (basic) state formula P is any first-order logic formula,
- The basic formulas can be extended by combining the Boolean operators (¬, ∧, ∨, ⇒) with temporal operators:

- A machine M satisfying property ϕ if all its traces satisfy ϕ .
- $M \vdash \phi$ states that $M \models \phi$ is provable.

Contribution

Proof rules for some class of liveness properties

- Eventually: □ ♦ P
- Until: $\Box(P_1 \Rightarrow (P_1 \cup P_2))$
- Progress: $\Box(P_1 \Rightarrow \Diamond P_2)$
- Persistence: ♦ □ P

6/19

Proof Obligations (1/4)

Machine leads from P_1 to P_2

A machine M leads from P_1 to P_2 if every event evt in M leads from P_1 to P_2

When M leads from P_1 to P_2 is provable, we write

 \vdash M leads from P_1 to P_2

- Given M with evt_i $\hat{=}$ any t_i where $G_i(t_i, v)$ then $S_i(t_i, v, v')$ end
- Event evt_i leads from P₁ to P₂ if

$$P_1(v) \wedge G_i(t_i, v) \wedge S_i(t_i, v, v') \Rightarrow P_2(v')$$

Proof Obligations (2/4)

Machine is convergent in P

A macine M is said to be convergent in P if for any trace of M, it does not end with an infinite sequence of states satisfying P

⊢ M is convergent in P

- Given M with $\text{evt}_i \triangleq \text{any } t_i \text{ where } G_i(t_i, v) \text{ then } S_i(t_i, v, v') \text{ end}$
- Give a integer variant V(v)
- M converges in P if for all events evt, of M, we have

$$P(v) \wedge G_{i}(t_{i}, v) \Rightarrow V(v) \in \mathbb{N}$$

$$P(v) \wedge G_{i}(t_{i}, v) \wedge S_{i}(t_{i}, v, v') \Rightarrow V(v') < V(v)$$

$$P \qquad P \qquad P$$

$$evt_{i} \qquad evt_{j}$$

$$V_{k} > V_{k+1} > V_{k+2}$$

8 / 19

Proof Obligations (3/4)

Machine is deadlock-free in P

- Machine M is deadlock-free in P if there exists an enabled event of M when P holds.
- When the above fact is provable, we denote it as

 \vdash M is deadlock-free in P

Deadlock-freeness in P is guaranteed by proving the following

$$P(v) \Rightarrow (\exists t_1 \cdot G_1(t_1, v)) \vee \ldots \vee (\exists t_n \cdot G_n(t_n, v))$$

Proof Obligations (4/4)

Machine is divergent in P

- M is said to be divergent in P if for every infinite trace of M it ends with an infinite sequences of states satisfying P.
- When the above fact is provable, we denote it as

⊢ M is divergent in P

- Given M with $evt_i = any t_i$ where $G_i(t_i, v)$ then $S_i(t_i, v, v')$ end
- Give a integer variant V(v)
- M diverges when P holds if for all events evt_i of M

$$\neg P(v) \land G_i(t_i, v) \Rightarrow V(v) \in \mathbb{N}$$

$$\neg P(v) \land G_i(t_i, v) \land S_i(t_i, v, v') \Rightarrow V(v') < V(v)$$

$$V) \land G_i(t_i, v) \land S_i(t_i, v, v') \land V(v') \in \mathbb{N} \Rightarrow V(v') \leq V(v')$$

Proof Obligations (4/4)

Machine is divergent in P

- M is said to be divergent in P if for every infinite trace of M it ends with an infinite sequences of states satisfying P.
- When the above fact is provable, we denote it as

⊢ M is divergent in P

- Given M with $evt_i = any t_i$ where $G_i(t_i, v)$ then $S_i(t_i, v, v')$ end
- Give a integer variant V(v)
- M diverges when P holds if for all events evt_i of M

Always Eventually

 \vdash M is convergent in $\neg P$ \vdash M is deadlock-free in $\neg P$ $M \vdash \Box \diamondsuit P$ LIVE $_{\Box} \diamondsuit$

Counter $\vdash \Box \diamondsuit c > 2$

inc $\stackrel{\frown}{=}$ when $c \neq 5$ then c := c + 1 end dec $\stackrel{\frown}{=}$ when c > 3 then c := c - 1 end

- Convergence: Using variant V = 5 c.
 - 5 $c \in \mathbb{N}$ (using invariant $c \in 0...5$)
 - inc: $\neg c \ge 2 \land c \ne 5 \implies 5 (c+1) < 5 c$
 - dec: $\neg c > 2 \land c > 3 \Rightarrow 5 (c 1) < 5 c$
- Deadlock-free: $\neg c \ge 2 \Rightarrow c \ne 5 \lor c > 3$

Always Eventually

Counter $\vdash \Box \Diamond c \geq 2$

inc
$$\stackrel{\frown}{=}$$
 when $c \neq 5$ then $c := c + 1$ end dec $\stackrel{\frown}{=}$ when $c > 3$ then $c := c - 1$ end

- Convergence: Using variant V = 5 c.
 - $5 c \in \mathbb{N}$ (using invariant $c \in 0...5$)
 - inc: $\neg c \ge 2 \land c \ne 5 \implies 5 (c+1) < 5 c$
 - dec: $\neg c \ge 2 \land c > 3 \implies 5 (c 1) < 5 c$
- Deadlock-free: $\neg c > 2 \Rightarrow c \neq 5 \lor c > 3$

Always Eventually

$$\vdash \mathsf{M} \text{ is convergent in } \neg P$$

$$\vdash \mathsf{M} \text{ is deadlock-free in } \neg P$$

$$\mathsf{M} \vdash \Box \diamondsuit P$$

$$\mathsf{LIVE}_{\Box \diamondsuit}$$

Counter $\vdash \Box \diamondsuit c \ge 2$

inc
$$\stackrel{\frown}{=}$$
 when $c \neq 5$ then $c := c + 1$ end dec $\stackrel{\frown}{=}$ when $c > 3$ then $c := c - 1$ end

- Convergence: Using variant V = 5 c.
 - 5 $-c \in \mathbb{N}$ (using invariant $c \in 0...5$)
 - inc: $\neg c \ge 2 \land c \ne 5 \implies 5 (c+1) < 5 c$
 - dec: $\neg c \ge 2 \land \frac{c}{> 3} \Rightarrow 5 (c 1) < 5 c$
- Deadlock-free: $\neg c > 2 \Rightarrow c \neq 5 \lor c > 3$

Until (2/2)

$$\begin{array}{c|c} \vdash \mathsf{M} \text{ leads from } (P_1 \land \neg P_2) \text{ to } (P_1 \lor P_2) \\ \mathsf{M} \vdash \Box \diamondsuit (\neg P_1 \lor P_2) \\ \hline \mathsf{M} \vdash \Box (P_1 \Rightarrow (P_1 \, \mathcal{U} \, P_2)) \end{array} \quad \textbf{Until}$$

Counter $\vdash \Box (c < 2 \Rightarrow (c < 2 \ \mathcal{U} \ c = 2))$

inc
$$\stackrel{\frown}{=}$$
 when $c \neq 5$ then $c := c + 1$ end dec $\stackrel{\frown}{=}$ when $c > 3$ then $c := c - 1$ end

- Counter leads from $c < 2 \land \neg c = 2$ to $c < 2 \lor c = 2$, equivalently Counter leads from c < 2 to $c \le 2$
 - inc: $c < 2 \land c \neq 5 \implies c + 1 < 2$
 - dec: $c < 2 \land c > 3 \implies c 1 < 2$
- Eventually: $\Box \Diamond (\neg c < 2 \lor c = 2)$, equivalent to $\Box \Diamond c \ge 2$

Until (2/2)

$$\vdash \mathsf{M} \text{ leads from } (P_1 \land \neg P_2) \text{ to } (P_1 \lor P_2)$$

$$\stackrel{\mathsf{M}}{\vdash} \Box \diamondsuit (\neg P_1 \lor P_2)$$

$$\mathsf{M} \vdash \Box (P_1 \Rightarrow (P_1 \lor P_2))$$

$$\mathsf{Until}$$

Counter $\vdash \Box (c < 2 \Rightarrow (c < 2 \ \mathcal{U} \ c = 2))$

inc
$$\stackrel{\frown}{=}$$
 when $c \neq 5$ then $c := c + 1$ end dec $\stackrel{\frown}{=}$ when $c > 3$ then $c := c - 1$ end

- Counter leads from $c < 2 \land \neg c = 2$ to $c < 2 \lor c = 2$, equivalently Counter leads from c < 2 to $c \le 2$
 - inc: $c < 2 \land c \neq 5 \Rightarrow c + 1 \leq 2$
 - dec: $c < 2 \land c > 3 \implies c 1 < 2$
- Eventually: $\Box \lozenge (\neg c < 2 \lor c = 2)$, equivalent to $\Box \lozenge c \ge 2$

$$\begin{array}{c} M \vdash \Box (P_1 \land \neg P_2 \Rightarrow P_3) \\ \hline M \vdash \Box (P_3 \Rightarrow (P_3 \ \mathcal{U} \ P_2)) \\ \hline M \vdash \Box (P_1 \Rightarrow \diamondsuit \ P_2) \end{array} \quad \textbf{LIVE}_{\textbf{progress}}$$

$$\begin{array}{c} M \vdash \Box (P_1 \land \neg P_2 \Rightarrow P_3) \\ \hline M \vdash \Box (P_3 \Rightarrow (P_3 \, \mathcal{U} \, P_2)) \\ \hline M \vdash \Box (P_1 \Rightarrow \diamondsuit \, P_2) \end{array} \quad \text{LIVE}_{progress}$$

$$\begin{array}{c} M \vdash \Box (P_1 \land \neg P_2 \Rightarrow P_3) \\ \hline M \vdash \Box (P_3 \Rightarrow (P_3 \, \mathcal{U} \, P_2)) \\ \hline M \vdash \Box (P_1 \Rightarrow \diamondsuit \, P_2) \end{array} \quad \text{LIVE}_{progress}$$

$$\begin{array}{c} M \vdash \Box(P_1 \land \neg P_2 \Rightarrow P_3) \\ \hline M \vdash \Box(P_3 \Rightarrow (P_3 \ \mathcal{U} \ P_2)) \\ \hline M \vdash \Box(P_1 \Rightarrow \diamondsuit \ P_2) \end{array} \quad \text{LIVE}_{progress}$$

Progress (2/2)

$$\frac{ \begin{array}{c} \mathsf{M} \vdash \Box(P_1 \land \neg P_2 \Rightarrow P_3) \\ \mathsf{M} \vdash \Box(P_3 \Rightarrow (P_3 \cup P_2)) \\ \hline \\ \mathsf{M} \vdash \Box(P_1 \Rightarrow \Diamond P_2) \end{array} \quad \mathsf{LIVE}_{\mathsf{progress}}$$

Counter
$$\vdash \Box (c = 0 \Rightarrow \Diamond c = 2)$$

inc $\stackrel{\frown}{=}$ when $c \neq 5$ then c := c + 1 end dec $\stackrel{\frown}{=}$ when c > 3 then c := c - 1 end

Choose $P_3 = c < 2$

Progress (2/2)

Counter
$$\vdash \Box (c = 0 \Rightarrow \Diamond c = 2)$$

inc $\stackrel{\frown}{=}$ when $c \neq 5$ then c := c + 1 end dec $\stackrel{\frown}{=}$ when c > 3 then c := c - 1 end

Choose $P_3 = c < 2$

- $\bullet \ \square \ (c < 2 \ \Rightarrow \ (c < 2 \ \mathcal{U} \ c = 2))$

Persistence

 \vdash M is divergent in P \vdash M is deadlock-free in $\neg P$

 $\mathsf{M} \vdash \Diamond \Box P$

 $LIVE_{\diamondsuit\,\square}$

Counter $\vdash \Diamond \sqcap c > 3$

- Divergence: Using variant V = 2 c
 - $\bullet \neg c \ge 3 \Rightarrow 2 c \in \mathbb{N}$
 - inc: $\neg c \ge 3 \land c \ne 5 \Rightarrow 2 (c + 1) < 2 c$
 - dec: $\neg c \ge 3 \land c > 3 \Rightarrow 2 (c 1) < 2 c$
 - inc: $c \ge 3 \land c \ne 5 \land 2 (c+1) \in \mathbb{N} \Rightarrow 2 (c+1) \le 2 c$
 - dec: $c \ge 3 \land c > 3 \land 2 (c 1) \in \mathbb{N} \Rightarrow 2 (c 1) \le 2 c$
- Deadlock-free: $\neg c \ge 3 \Rightarrow c \ne 5 \lor c > 3$

Persistence

$$\vdash$$
 M is divergent in P \vdash M is deadlock-free in $\neg P$

LIVE⇔□

$$\mathsf{M} \vdash \Diamond \Box P$$

Counter $\vdash \Diamond \Box c \geq 3$

- Divergence: Using variant V = 2 c
 - $\neg c \geq 3 \Rightarrow 2 c \in \mathbb{N}$
 - inc: $\neg c \ge 3 \land \frac{c \ne 5}{} \Rightarrow 2 (c+1) < 2 c$
 - dec: $\neg c \ge 3 \land c > 3 \Rightarrow 2 (c 1) < 2 c$
 - inc: $c \ge 3 \land c \ne 5 \land 2 (c+1) \in \mathbb{N} \Rightarrow 2 (c+1) \le 2 c$
 - dec: $c \ge 3 \land c > 3 \land 2 (c 1) \in \mathbb{N} \Rightarrow 2 (c 1) \le 2 c$
- Deadlock-free: $\neg c \ge 3 \Rightarrow c \ne 5 \lor c > 3$

Persistence

$$\vdash$$
 M is divergent in P \vdash M is deadlock-free in $\neg P$

LIVE⋄□

$$\mathsf{M} \vdash \Diamond \Box P$$

Counter $\vdash \Diamond \Box c \geq 3$

- Divergence: Using variant V = 2 c
 - $\neg c \geq 3 \Rightarrow 2 c \in \mathbb{N}$
 - inc: $\neg c \ge 3 \land \frac{c \ne 5}{} \Rightarrow 2 (c+1) < 2 c$
 - dec: $\neg c \ge 3 \land c > 3 \Rightarrow 2 (c 1) < 2 c$
 - inc: $c \ge 3 \land c \ne 5 \land 2 (c+1) \in \mathbb{N} \Rightarrow 2 (c+1) \le 2 c$
 - dec: $c \ge 3 \land c > 3 \land 2 (c 1) \in \mathbb{N} \Rightarrow 2 (c 1) \le 2 c$
- Deadlock-free: $\neg c \ge 3 \Rightarrow c \ne 5 \lor c > 3$

Summary

- Proof rules for certain classes of liveness properties.
 - eventually
 - until
 - progress
 - persistence
- The proof rules based on the reasoning about:
 - the machine leads from P₁ to P₂
 - the machine is convergent when P holds
 - the machine is deadlock-free when P holds.
 - the machine is divergent when P holds

Further Directions

- Proofs become tedious when the system becomes large.
- Refinement helps to reduce the complexity.
- Concurrent systems: fairness assumptions.

For Further Reading I

