The original publication is available at http://dx.doi.org/10.1007/978-3-642-30885-7_16
Appeared in Proceedings of the ABZ2012 Conference © Springer-Verlag

Refinement by Interface Instantiation*

Stefan Hallerstede! and Thai Son Hoang?

1 Aarhus University, Denmark
2 ETH Ziirich, Switzerland

Abstract. Decomposition is a technique to separate the design of a
complex system into smaller sub-models, which improves scalability and
team development. In the shared-variable decomposition approach for
Event-B sub-models share external variables and communicate through
external events which cannot be easily refined.

Our first contribution hence is a proposal for a new construct called in-
terface that encapsulates the external variables, along with a mechanism
for interface instantiation. Using the new construct and mechanism, ex-
ternal variables can be refined consistently. Our second contribution is
an approach for verifying the correctness of Event-B extensions using
the supporting Rodin tool. We illustrate our approach by proving the
correctness of interface instantiation.

Keywords: Event-B, Decomposition, Refinement, External variables.

1 Introduction

Decomposition of a model into sub-models allows one to continue refining the
sub-models independently of each other while preserving the properties of the
full model. The decomposition method for Event-B proposed by Abrial [1] splits
events between the sub-models. Variables are split correspondingly into external
variables shared by the sub-models and internal variables private to each model.
For all external variables, external events that mimic the effect of corresponding
(internal) events of other sub-models have to be added. If we want to refine
external variables, we have to provide a gluing invariant that is functional, say,
v = h(w) where v are the abstract variables and w the concrete variables. Abrial
[1] also proposes to rewrite the external events with v := h(w) so that concrete
and abstract events are equivalent. Internal variables and internal events are
refined as usual in Event-B [2].

We call a collection of external variables with the external invariant an in-
terface. Modelling interfaces by marking the corresponding variables as being
external and refining them by specifying functional invariants makes it difficult
to decompose and refine a model repeatedly. Fig.1 illustrates the problem where
a model M is decomposed three times and the resulting sub-models are refined.
We are interested in the two sub-models M7 and My at the bottom. How do we
find the shared external invariant?

* This research was carried out as part of the EU FP7-ICT research project DEPLOY
(Industrial deployment of advanced system engineering methods for high depend-
ability and productivity) http://www.deploy-project.eu.

Thai Son Hoang
The original publication is available at http://dx.doi.org/10.1007/978-3-642-30885-7_16
Appeared in Proceedings of the ABZ2012 Conference © Springer-Verlag

Thai Son Hoang

The lists of variables w1,
wg, vy and vy are not

refines / - \ necessarily disjoint. Let
/ \ w be the list of vari-
4 /) A ables occurring in w; or
| | .
I I wye and v be the list of
v = hy(wy) vy = ha(ws) . . .
variables occurring in vq

or vo. We need to find
Fig. 1. Maintaining the external invariant of several ©On€ suitable external in-
sub-models variant v = h(w) to be

used in the sub-models
M; and Ms. What is the shape of h? Furthermore, when refining M> we have
to think about the necessary changes to M;. As a consequence of the current
situation, interfaces are refined to implementation level before decomposition.
This complicates the use of decomposition on higher levels of abstraction. We
would prefer a method where the necessary reasoning can be restricted to one
place. The functional invariant h should be evident and easily maintainable also
in the face of potential changes to the sub-models and the interfaces.

Using our approach of interface instantiation this can be done. Because we are
treating instantiation like a special form of refinement, we can combine interface
instantiation steps with refinement steps. This gives us some liberty in arranging
complex refinements. We also encourage a decomposition style where a separate
theory of interface instantiation is maintained. We think, that this contributes
substantially to obtain models that are easier to understand and to modify.
Interface instantiation supports a more incremental approach to decomposition
because modifications that concern several components can be confined to only
one place: the interface.

We call the very specific form of interface refinement that we use interface
instantiation. To be useful, it should

(i) ease the proof effort compared to [1],
(ii) help to structure complex mixtures of decomposition and refinement,
(iii) work seamlessly with Event-B as it is. (It should not depend on transla-
tions.)

We argue by means of a case study that we have achieved this. The case study
addresses a difficulty of relating Event-B refinement to Problem Frames elab-
oration [9] discussed in [5]. It has been composed from [11] and [5]. We have
down-sized it in order to focus on the problem of the refinement of external vari-
ables, that is, the interfaces. We have a tool for decomposition [14] but we do
not have implemented a software tool for interface instantiation. Instantiation of
carrier sets has been implemented similarly internally in the ProB tool, in order
to achieve better performance when model checking and constraint checking [5].
The case study as presented in [11] uses Problem Frames to achieve traceability
of requirements. We have not used Problem Frames in this article because they
are not required to explain interface instantiation. This also permits us to cast

the problem entirely in Event-B terminology. However, the proposed method of
instantiation could be used with Problem Frames as employed in [5,11].

In the modularisation approach for Event-B presented in [8], the notion of
interface has been used to capture software specifications using some interface
variables and operations acting on these variables. The intention behind the use
of interfaces is to separate specifications from their implementations. Our notion
of interface is intended to provide efficient support for refining external variables
following Abrial’s decomposition method for system models. There was an ear-
lier attempt at external variable refinement that is hinted at in the specification
of the proof obligation generator for the Rodin tool [6]. This was considered
too complicated and not feasible for large systems that are decomposed and
refined repeatedly. We think, that our approach solves the problem. Poppleton
[12] discusses external refinement based on Abrial’s approach but also does not
provide a practicable technique for doing so. The approach of modelling extensi-
ble records [4] also permits a form interface instantiation. A difficulty with using
this approach is caused by the explicit mathematical model used for record rep-
resentations and the need to specify always successor values for all fields of a
record. However, extensible records could be used with our approach where it
would appear useful. Behavioural interface refinement such as discussed in [13]
addresses changing traces sub-models can exhibit, usually adding new events. It
does not consider refinement of shared variables.

2 Event-B

Event-B models are described in terms of the two basic constructs: contexrts and
machines. Contexts contain the static part of a model whereas machines con-
tain the dynamic part. Contexts may contain carrier sets, constants, axioms,
and theorems, where carrier sets are similar to types [2]. Machines provide be-
havioural properties of Event-B models. Machines may contain variables, invari-
ants, theorems, and events. Variables v describe the state of a machine. They
are constrained by invariants I(v). Theorems L(v) describe consequences of the
invariants, i.e., we have to prove I(v) = L(v).

FEvents. Possible state changes are described by means of events. Each event
is composed of a guard G(t,v) and an action A(t,v), where t are parameters the
event may contain. We denote an event e by any ¢t when G(¢,v) then A(t,v) end
in its most general form, or when G(v) then A(v) end if event e does not have
parameters, or begin A(v) end if in addition the guard equals true. A dedicated
event of the third form is used for initialisation.

Assignments. The action of an event is composed of several assignments:
x:| Q(t,v, "), where x are some variables and Q(t,v,z’) a predicate. Variable x
is assigned a value satisfying a predicate. Two variants of assignments are defined
as follows: z := B(t,v) = z:| 2’ = B(t,v) and z :€ B(t,v) = z :| 2’ € B(t,v),
where B(t,v) are expressions.

Refinement. A machine N can refine another machine M. We call M the
abstract machine and N a concrete machine. The state of the abstract machine

is related to the state of the concrete machine by a gluing invariant J(v,w)
associated with the concrete machine IV, where v are the variables of the abstract
machine and w the variables of the concrete machine. Each event e of the abstract
machine is refined by one or more concrete events f.

Decomposition. A machine M can be decomposed into several machines
[1,7]. We limit the discussion here to the decomposition into two machines for
the purpose of this article. Let M be a machine with variables z;, z3, x5 and
invariants I(xy, z3, z5), 1 (21, 23), I3(23) and I5(zs, 25). Furthermore, let e;, e,
e4 and e; be events of M, accessing different sets of variables as follows.

er = any t; where Gy(t1,21) then 2 :| Si(t1, 21, 2{) end
€o = any ty where Gg(tg,ﬂl‘l,xg) then z, 23 Z| Sg(tg,ﬂ?l, Zg,iﬂ{,xé) end
e4s = any ty where G4(t4,1?3,.735) then 3, 75 Z| S4(t4,l’3, .735,5!33/),1%) end
es = any f5 where Gs(t5, z5) then x5 :| S(t5, 25, 27) end

Machine M can be decomposed into two separate machines: M; with events
e and eg; and My with events e and e5. This is illustrated in Fig.2. As a result
M, Ms of the decomposition, M; has private vari-
o1, 73 o, T ables x; and shared variables 3. Invari-
ants Iy (z1,23) and I5(z3) can be distributed
to M;j. The resulting sub-machine M; has

_._r_ef‘ilei__, two internal events e; and ey and one ex-
refines ternal event a; which abstracts’ e; pro-

- —— = — -

e

jected on the state containing only zj3:
as = any ly, x5 where Gy(ty, 25, 25) then a3 :|
3t - Sa(ta, x5, 25, 24, 2) end . Machine Mj is
similar to My, with two internal events e4 and
es; and an external event as that abstracts es.
It has the private variables z5 and the shared
variables x3. Machines M; and My can be developed independently with the
constraints that the shared variables cannot be removed and the external events
cannot be made more non-deterministic or less non-deterministic.

Fig. 2. Maintaining the external
invariant of several sub-models

Note that invariant I(z, z3, 25) are not copied to either M; or M;. A possi-
bility is to project also this invariant onto the corresponding state using existen-
tial quantifier. For example, the following can be added to M; as an invariant
3%5'](.1’1, €3, LE5).

3 Instantiation

Carrier set and constant instantiation. Contexts can be extended as usual
in Event-B but we allow additionally to specify expressions to instantiate con-
stants and carriers sets. Carriers sets must be instantiated by type expressions

1 «3 abstracts €” is the same as “e refines a”.

e(t) and constants can be instantiated by any expression f(d).

context C' context D
sets s extends C with s = e(t), ¢ = f(d)
constants ¢ sets ¢
axioms A(s, ¢) constants d

axioms B(t, d)

The equalities specifying the instantiation are treated similarly to axioms. The
abstract constants and carriers sets that are instantiated remain visible. By con-
trast, the instantiation proposed in [2] replaces constants and carrier sets in the
instantiating context. Still, they are similar to [2]: The equations of the extends-
clause are used to rewrite the abstract axioms. If this changes an axiom, that
axiom must be proved to hold in the instantiating context. Otherwise, nothing
needs to be proved. This ensures that instantiation itself does not introduce new
facts. The instantiation proof obligation is B(t,d) = A(e(t), f(d)). In summary,
conventional Event-B context extension is instantiation with identity. Only ab-
stract axioms of C' with instantiated constants need to be proved as theorems
in D. The other axioms are preserved by extension.

Connecting machines to interfaces. Interfaces are declared in contexts
and used in machines by connecting a machine to the interface. The machines
must see the corresponding context:

context C machine M
interface i1 sees C
fields m connects 7

constraints P(m)

The constraints of an interface can refer to all constants and carrier sets of the
surrounding context. In machine M the fields m are treated like variables and
the constraints P(m) like external invariants.

Interface instantiation. Interfaces can be instantiated by specifying equal-
ities m = h(n) for replacing fields of an abstract interface m by fields of a concrete
interface n. The names on the right-hand side of the equation must not occur in
the abstract interface.

context C' context D
interface 4 extends C
fields m interface jj instantiates 4 with m = h(n)
constraints P(m) fields n

constraints Q(n)

The expression h is often composed of pair-expressions “- +— -”. Interfaces are

not associated with proof obligations. The constraints P(m) of ii are contained
in interface jj as specified by the instantiation m = h(n), that is, they become
P(h(n)). Similarly to machine variables, field names of interfaces cannot be
reintroduced. Similarly to machine invariants, constraints are accumulated in by
instantiation: the constraints of interface jj are Q(n) A P(h(n)).

External event refinement. Using interface instantiation we permit re-
finement of external events. Consider the following external event e operating on
the external variables z and its refinement f operating on the external variables
y. The refinement of external variables is captured by the following relationship
z = h(y). Note that external events does not refer to any internal variables: it
can only refer to external variables of the corresponding model.

e = any t when G(t,z) then z :| S(¢,z,z’) end
f = any u when H (u,y) with W (¢, u,z,y,y") Az’ = h(y’) then y :| R(u,y,y’) end

where W(t, u,z,y,y") ANz’ = h(y’) is the witness for the refinement of e by f. It
incorporates the refinement of external variables with function h.

Beside the proof obligations to prove that f is a refinement of e, we also
need to prove that f is refined by e. The idea here is to prove the latter using
the same given witnesses. The proof obligations are as follows (for clarity, we
omit reference to possible abstract invariant I(x) and other concrete invariant
J(z,y), which should be in the assumption of the proof obligations).

Witness feasibility:

z=nh(y)AG(t,z) AS(t,z,2") = Bu,y - W(t,u,z,y,y) ANz’ = h(y'))

In the case that h is a bijective function, the existence of y’ is hence trivial, and
the proof obligation can be rewritten as follows.

z=nh(y) A G(t,z) ANS(t,z, 2’)Nz’ =h(y') = Fu-W(t,u,z,y,y"))
Guard weakening:

z="h(y)AG(t,z) ANS(t,z, 2") A\W(t,u,z,y,y') ANz’ = h(y') = H(u,y)
(Co-)Simulation:

z=nh(y) A G(t,x) ANS(t,z, ") A\W(t,u,z,y,y') ANz’ = h(y') = R(u,y,y")

Note that invariant preservation for the refinement of f by e can be derived
from the invariant preservation for the refinement of e by f and the fact that we
use the same witnesses.

4 Case study: modelling of a cruise control system

We present interface instantiation by means of a model of a cruise control system.
A cruise control systems permits the driver of a car to select a target speed that
the vehicle should attain. The system will try to maintain a vehicle speed as
close as possible to the target speed. Note, that our main interest is to discuss
interface instantiation. So we will only discuss the function of the cruise control
system as far as necessary for that discussion. We have modeled the system
using the Rodin tool [3], emulating instantiation similarly to the approach of [5]:

interfaces are represented syntactically by a lexical convention and carrier set
instantiation is modelled by suitable bijections.

We want to implement a cruise control system sy0 by the three components:
the controller sy4cr, the engine sy4even and the exterior sylevsi. Fig. 3 shows the
components and their interfaces.

Fig. 3. Architecture of the system in terms of components and interfaces

N N The symbols used in

i : extends : sees I : refines this figure and later

! . instantiates T : decomposes — :connects figures are listed in

Fig. 4. The implemen-

tations of the con-

Fig. 4. Legend of used symbols troller and the en-

gine are connected by

means of two interfaces: concrete speed and acceleration, csa, and internal pedal

signals passed on from the exterior, psi. The interface to the exterior, aes, is
kept abstract in the implementation.

() : context [: machine : interface

. . More abstract system models should
[syoev | aseasi ——] sy0cr | not be forced t}; use the interfaces

csa and psi but permit abstractions
Fig. 5. Abstract components and their thereof (Fig. 5). The details of the in-
abstract interfaces terfaces should be introduced step by
step, introducing the abstract interfaces asa and asi first. We prefer to refine the
controller and the engine but keep the exterior abstract at first. We do not want
to decide on all interfaces before decomposing system sy0: we have not decided
yet on the shape of the implementation of component sylevsi and of interface aes.
Interface aes could be used to implement an interface to the exterior or it could
be used for animation and visualisation [10], for instance. The problem we face
is to fit the abstract components of Fig. 5 between sy0 and the implementation
in Fig. 3.

4.1 The full model: refinement, decomposition and instantiation

We present an overview of the full model and discuss specific issues in subsequent
sections. Fig. 6 shows the details of the development outlined in Fig. 3. We do
not discuss all aspects of the development but focus on the following three:

Section 4.2: Decomposition: introducing interfaces

Section 4.3: Mixing instantiation and refinement
Section 4.4: Repeated instantiation

contexts engine interfaces controller

: A
i (SQ 1= CSA tevvmmnnnannmeeennnaaaas,
1
1 . .
H ’ . — :
1 | syleven aes sylevsi |] asa := csa
1 : :

| sylev |i csa, ast
A ——ry i
1 asi = csi i |

1
[ctxl23] | sy2even I csa, csi
A A A

| L ast = csi

1

1

H ;

| |j —

) sy3even csa, csi % m
i —

| A

1

1

csi = psi i C81 1= psi
L ;i

[ctx4] | y4 wl csa, psi

Fig. 6. Overview of system model

The separate contexts ctx0, ctx12, ctx23 and ctx4 correspond to the accompany-
ing instantiations of carrier sets and constants.

4.2 Decomposition: introducing interfaces

Abstract model. The model sy0 from which we start the development declares
variables sig, cs, vs, md, ts, acc modelling external signals, internal control
signals, vehicle speed, control mode, target speed and acceleration. It does not
contain any interfaces. This means we can refine this model in the usual way.
Context ctx0 declares constants ES, CS, VS, VA, VRA, etc, modelling exter-
nal signals, control signals, vehicle speed, vehicle acceleration, restricted vehicle
acceleration. It postulates the axiom

VRA C VA (1)

We have invented constant VRA to make the invariant more interesting. The
constants determine the possible values of the variables by means of the invariant
of sy0:

sig€ ESNese CSA...Amd e {C,AC,NC} A (md = C = acc € VRA)

The constant C' models “cruise control active”; AC models “change of target
speed”; NC models “cruise control not active”. The carrier sets, e.g., K of CS
or S of VS, are not used in the machine. The reason for this is that they can

only be instantiated by type expressions. However, the more common case is
that we need to instantiate by some more constrained set. See, for example, the
instantiations of C, AC and NC in Section 4.3.

FEvents of the abstract model. We discuss three of the events of sy0: event
chm (“change mode”) models an internal state change of the controller,

event chm =
begin md :| md’ € {C,AC,NC} A (md' = C = acc € VRA) end;

event chaac (“change acceleration in mode AC”) models output to the engine,
event chaac = when md = AC then acc:€ VA end;

event ches (“change control signals”) models input from the engine,
event chcs = begin cs := fes(sig) end.

It would be tempting to specify in the abstract event chcs the assignment
cs := sig. However, this asserts that cs and sig have the same type. Once
the system is decomposed, we would have to refine them in the same way. To
avoid this, we have introduced function fcs mapping from the type of sig to the
type of cs. Models always need to be prepared for decomposition. Our method
of instantiation does not change this.

Decomposition of the abstract model. Decomposing sy0 into syQev and
syOcr we have to introduce interfaces asa and asi:

interface asa interface asi
fields cs fields vs, va
constraints c¢s € CS constraints vs € VS Awva € VA

Machine syOev has one internal variable sig and connects to the two interfaces
asa and asi. Machine syOcr connects to the same interfaces and has two internal
variables ts and md. We split the events in the usual way depending on which
variables and fields the events refer to. Except for the use of interfaces the
decomposition method of [1] works as before.

4.3 Mixing instantiation and refinement

Instantiation. We refine syOcr by sylcr by instantiating interface asa by csa
while refining variable md by variable nd. The constraints and instantiation
equalities of csa become part of the gluing invariant of sylcr. The abstract con-
stants VS, VA and VRA are instantiated by integer ranges: VS = mS .. MS,
VA= mA.. MA and VRA = mRA .. MRA constrained by axioms

.. ANmA < mRAANmMRA< MRAANMRA< MANA... (2)

To satisfy the instantiation proof obligation we have to verify that (2) implies (1).
For clarity we introduce a new name for the interface containing the instantiated
constants:

interface csa instantiates asa

Machine sylcr and sylev now both need to be connected to interface csa replacing
asa. The machine also need to see the extended context ctx12.

Refinement. Variable md is itself refined by instantiating the constants C,
AC and NC, using the gluing invariant nd € md, and constant instantiations
C ={CRS,RES}, AC ={ACC,DEC}, NC = {OFF, ERR, REC}. Note, how
closely constant instantiation and refinement are linked in the refinement of md.
The type of the abstract variable md has been instantiated such that the gluing
invariant becomes simply nd € md.

4.4 Repeated instantiation

First instantiation. Continuing the development from sylcr and sylev, we
first instantiate interface asi by csi

interface csi instantiates asi with c¢s = (ps — cis — is)
fields ps, cis, is
constraints ps € PS A cis € CIS Nis € IS

where PS is a constant of context ctx32. The context also declares two constants
PSE and PSS such that PSE C PSA PSS C PSAPSENPSS = @. This is used
for a first refinement of event chm into two events chme and chmn:

event chme refines chm =

when ps € PSS U PSE then nd :€ {ERR, REC} end
event chmn refines chm =

when ps & PSS U PSE

then nd :| nd’ € {CRS, RES} = acc € mRA .. MRA end

Second instantiation. Subsequently we instantiate csi by psi

interface psi instantiates csi with ps = (pbp — pbe — pep — pce — pae)
fields pbp, pbe, pcp, pce, pae, cis, is
constraints pbp € B A pbe € BA pep € B A pce € B A pae € B

We instantiate the constants PSE and PSS

PSE = {bp — be — cp — ce — ae|T € {be, ce, ae}}
PSS = {bp > be — cp — ce — ae|T & {be, ce,ae} N'T € {bp, cp}}

and prove PSE N PSS = @ as postulated above.

event chmrb refines chme =

when T & {pbe, pce, pae} A'T = pbp then nd := REC end
event chmrc refines chme =

when T ¢ pbe, pce, pae A'T = pep then nd := REC end
event chmbe refines chme = when T = pbe then nd := ERR end
event chmce refines chme = when T = pce then nd := ERR end
event chmae refines chme = when T = pae then nd := ERR end

10

This last instantiation is much more concise than the refinement suggested
in [5]. We can avoid a lot of the overhead that is usually incurred by using
refinement emulating instantiation. Not having dedicated tool support yet, the
most elaborate proof of this development occurred when instantiating VA and
VRA by integer intervals. With instantiation support in place this would have
been trivial using the fact that VRA = mRA .. MRA. The difficulty in the proof
of refinement emulating instantiation is caused by the need to use a bijection
t € mRA .. MRA — VRA so that the equation for the instantiation becomes
VRA = (mRA .. MRA].

5 Correctness

We have used the Rodin tool for verifying the correctness of interface refinement.
First we present a technique for verifying extensions of Event-B. We believe that
it is useful beyond the use in this article for verifying the correctness of interface
instantiation.

A technique for proving Event-B extensions correct. The general idea
is to encode a generic model using the Rodin tool, and illustrating the extended
method using the generic model. Typically, the correctness of an extension can
be stated as follows: assume the consistency of some input model, then prove
the consistency of some resulting model. Using the models generated by the
tool, consistency of the input model are represented by the proof obligations
associated with the model. To turn them into assumptions for our reasoning,
we add these proof obligations as axioms to the context. Using the axioms, we
prove the consistency of the resulting model.

An example of our approach is as follows. Let M be a machine with variables
z, invariant I(z), and an event e as follows.

e = any t where G(t,z) then z :| S(¢,z,2") end .

First, we model the type of variables z and parameters ¢ using some carrier
sets X and T. Subsequently, I, G and S can be declared as constants with
appropriate type, i.e. I € P(X), G € P(T x X), and S € P(T x X x X). The
machine M is encoded accordingly using the above context, where predicates are
translated using membership (€) operator?. For example, the invariant (z) is
translated as € I. Event e hence becomes

e = any t where t — z € G thenz:[t—z— 1’ €S end

The proof obligation stating that e maintains invariant I(z), i.e., I(z) A G(t, z) A
S(t,z,z") = I(z') is encoded as an axiom in the context as follows V¢, z, 2"z €
INt—zeGAt—z—1' eS=1 el

Assume that N is a correct refinement of M, retaining the abstract variables
z. In N, abstract event e is refined by concrete event f where parameter ¢ is also
retained.

2 This is a well-known technique to model predicate constants or variables in Event-B
using first-order logic.

11

f = any t where H(t,7) then z :| S(¢,7,1’) end

The fact that f is a correct refinement of e is captured by the guard strengthening
and simulation proof obligations which are encoded as the following axioms:
Vi,zexr € INt—z€e€ H=r€ GandVt,z, 2’ z € INt—2x € GAL—
reER=>t—z—1 €8.

A property of refinement is the preservation of invariance properties, i.e. I
should be also an invariant of the concrete model, in particular maintain by the
concrete event f. This can be stated and proved as a theorem in the context
Vi,z, 2’ x €eINt—wzeHANt—z—2' € R=12"€l.

Correctness of interface instantiation. Using the proof method, we
prove the correctness of interface instantiation as follows. Our initial machine is
M as described at the end of Section 2. We decompose M into M; and M5, sharing
the interface U. The abstract interface U encapsulates the shared variable z3
with invariant I3(z), and subsequently instantiated by some concrete interface
V' containing concrete variable y3 as follows.

interface U interface V instantiates U with x5 = h3(ys3)
fields x3 fields y;3
constraints I5(x3) constraints J3(ys3)

At the same time, My and Ms

M; Ms are refined into N; and Ns, rely-
A ing on the interface instantiation.
T’ A— To be more precise, in N1, internal
T T v , . event e; and ey are refined by f;
and fy, respectively. Furthermore,
N, Ns external event ay is refined equiv-
alently (see Section 3) to by. Sim-
ilarly, in N5, f4 and f5 are the re-
finement of internal events e4 and
e5, respectively, and bs is the re-
finement of external event as. The refinement relationships between the events
can be depicted in Figure 7.

Fig. 7. Decomposition and events refine-
ment

The composition machine N com-

N prises of internal events f, fy from Ny,
decomposition and f; and f5 from N5. The summary
| M, lz U :| M, | o.f d.ecomposition .and inter.face-instan—
A A) ~ tiation approach is shown in Figure 8.

: : 1 Instantiation . .
: R : The correctness of our technique is
[N — v — N5 | guaranteed by proving that the com-
recomposition position N of Ny a?n'd N5 is indeed are-
finement of the original model M, using

the assumption that Ny and N5 refines
M; and M5, respectively, as described
Fig.8. Decomposition, interface in- garlier. The key important aspect for
stantiation, and refinement the correctness of our approach is that

12

external events are refined equivalently. This fact guarantees that the refine-
ment relationship between a pair of internal/external events is maintained. For
example, we have that the internal event f4 is a refinement of the corresponding
external event by.3

6 Conclusion

We propose in this paper the notion of interface and interface instantiation
for shared-variable decomposition in Event-B. An interface is a collection of
external variables and their properties which can be shared between different
sub-model after a decomposition. Interface instantiation combines instantiation
of carrier sets and constants with functional refinement of external variables.
The encapsulation of external variables using interface offers us some flexibility
in structuring the development using complex refinement and decomposition. In
particular, we provide a practical method for refining external variables which
is currently quite cumbersome [1].

The novelty of our approach is in the refinement of external events: we define
additional proof obligations to ensure that the external events are refined equiv-
alently. By contrast, in [1] equivalence is achieved by syntactical means replacing
occurrences of abstract variables v by concrete terms h(w). The proof obliga-
tions of our approach are similar to the standard proof obligations, even using
the same refinement witnesses for proving the equivalence. We have presented
a general technique for proving correctness of Event-B extensions, and showed
how this is used to demonstrate the soundness of our approach. We illustrated
the method by an industrial case study modelling a cruise control system.

For future work, we want to develop a theory of interface instantiation. In par-
ticular we intend to investigate the idea of having different instantiation branches
of interfaces that are joined ultimately so that all machines of a model agree
on their interfaces. The idea is illustrated in Fig. 9. In the figure, an abstract

interface U containing
two abstract fields z;

U (2. . and 1z is used by M; and
) Ms. Subsequently, U is

: = ’7'1(y})."' . T2 = ha(ys) : instantiated by V; where

: — —_— " 7 is replaced by 3; and

| N |:.V(yl’x2). .V(I“W.:| N> | 2o is retained. At the
4 ‘-.‘ ‘,'4 A same time, M; is refined

: 22 = haly) ™, L= Ry : into Ny using Vj. Simi-

—
V(y1,12) larly, M5 is refined by No

using V5. Finally, V, an
instantiation of both V3
and V5 can be use to re-
fine Ny and Ny into O; and Os, respectively. What this lattice of interfaces

Fig. 9. A lattice of interfaces

3 The development is available at http://deploy-eprints.ecs.soton.ac.uk/364/

13

http://deploy-eprints.ecs.soton.ac.uk/364/

allows us to do is to have different order of instantiating the fields of an ab-
stract interface in an individual sub-model. In particular, we actually abandon
the compositionality of the intermediate machines (here N; and Ns), only to
re-establish it later for the final machines O; and O, by connecting them to the
same interface V.

Finally, we are looking at extending the Rodin tool [3] to support the notion

of interface and interface instantiation.

References

1.
2.

3.

10.

11.

12.

13.

14.

J.-R. Abrial. Event-B: Structure and Laws. 2005.

J.-R. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010.

J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. STTT, 12(6):447—
466, 2010.

N. Evans and M. J. Butler. A Proposal for Records in Event-B. In J. Misra,
T. Nipkow, and E. Sekerinski, editors, F'M, volume 4085 of LNCS, pages 221-235.
Springer, 2006.

R. Gmehlich, K. Grau, S. Hallerstede, M. Leuschel, F. Losch, and D. Plagge. On
fitting a formal method into practice. In S. Qin and Z. Qiu, editors, ICFEM,
volume 6991 of LNCS, pages 195-210. Springer, 2011.

S. Hallerstede. The Event-B Proof Obligation Generator, 2005.

T. S. Hoang and J-R. Abrial. Event-b decomposition for parallel programs. In
M. Frappier, U. Glasser, S. Khurshid, R. Laleau, and S. Reeves, editors, ABZ2010,
volume 5977 of Lecture Notes in Computer Science, pages 319-333. Springer, 2010.
A. Tliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic,
and T. Latvala. Supporting reuse in Event B development: Modularisation ap-
proach. In ASM, volume 5977 of LNCS, pages 174-188. Springer, 2010.

M. Jackson. Problem Frames: Analyzing and structuring software development
problems. Addison-Wesley Longman Publishing Co., Inc., 2001.

L. Ladenberger, J. Bendisposto, and M. Leuschel. Visualising event-B models
with B-motion studio. In M. Alpuente, B. Cook, and C. Joubert, editors, FMICS,
volume 5825 of LNCS, pages 202—204. Springer, 2009.

F. Loesch, R. Gmehlich, K. Grau, C. B. Jones, and M. Mazzara. DEPLOY Deliv-
erable D19: Pilot Deployment in the Automotive Sector.

M. Poppleton. The composition of event-B models. In E. Borger, M. J. Butler,
J. P. Bowen, and P. Boca, editors, ABZ, volume 5238 of LNCS, pages 209-222.
Springer, 2008.

S. Schneider and H. Treharne. Changing system interfaces consistently: A new
refinement strategy for CSP||B. Sci. Comput. Program., 76(10):837-860, 2011.
R. Silva, C. Pascal, T. S. Hoang, and M. Butler. Decomposition tool for event-B.
Softw, Pract. Ezxper, 41(2):199-208, 2011.

14

	Refinement by Interface Instantiation

