
Validating the Requirements and Design of a
Hemodialysis Machine Using iUML-B, BMotion

Studio, and Co-simulation

Thai Son Hoang1, Colin Snook1, Lukas Ladenberger2, and Michael Butler1

1 ECS, University of Southampton, U.K.
{t.s.hoang,cfs,mjb}@ecs.soton.ac.uk

2 University of Dusseldorf, Germany
ladenberger@cs.uni-dusseldorf.de

Abstract. We present a formal specification of a hemodialysis machine
(HD machine) using Event-B. We model the HD machine using iUML-B
state-machines and class diagrams and build a corresponding BMotion
Studio visualisation. We focus on validation using (i) diagrams to aid
the modelling of the sequential properties of the requirements, and (ii)
ProB-based animation and visualisation tools to explore the system’s be-
haviour. Some of the safety properties involve dynamic behaviour which
is di�cult to verify in Event-B. For these properties we use co-simulation
tools to validate against a continuous model of the physical behaviour.

Keywords: Hemodialysis Machine, Event-B, Validation, Visualisation,
iUML-B, BMotion Studio, Co-Simulation.

1 Introduction

This paper describes our approach to formally model the requirements and de-
sign of a hemodialysis machine (HD machine) [8]. The HD machine is used by
patients with kidney failure to remove waste products from their blood. We
identify how we deal with the safety requirements that are defined for the HD
machine [8].

We use Event-B [1], a formal method for system development, and structure
our model using refinements to deal with complexity. Since the HD machine’s re-
quirements involve extensive sequencing and user interactions as well as dynamic
interaction with the HD machine, we focus on validation using (i) diagrams to
aid the modelling of the sequential properties of the requirements, and (ii) ProB-
based animation, visualisation and simulation tools to explore the behaviour of
our models. Where appropriate we use the proof capabilities of Event-B to verify
safety constraints.

Our contribution is to demonstrate how di↵erent kinds of safety requirements
can be verified or validated using the tools available. To do this we provide (i) a
model of the HD machine using iUML-B [11, 10, 12] state-machines and class
diagrams, (ii) a BMotion Studio visualisation for the developed Event-B model,

The original publication is available at http://dx.doi.org/10.1007/978-3-319-33600-8_31
Appeared in the Proceedings of the ABZ2016 Conference © Springer-Verlag



2 T.S. Hoang, C. Snook, L. Ladenberger, M. Butler

(iii) a co-simulation of the closed-loop parts of the controller with a continuous
domain model of the environment. The graphical model and visualisation enable
us to analyse and validate the behaviour of the HD machine.

The rest of the paper is structured as follows. Section 2 gives some back-
ground on the methods and tools that we use. The main content of the paper
is in Section 3 describing the development of the HD machine and validation of
its requirements and design using iUML-B, BMotion Studio, and co-simulation.
Finally, we summarise and conclude in Section 4. For more information and re-
sources, we refer the reader to our website: http://stups.hhu.de/ProB/ABZ16.
The website contains the Event-B model and the BMotion Studio visualisation
of the HD machine.

2 Background

Event-B. Event-B [1] is a formal method for system development. Main features
of Event-B include the use of refinement to introduce system details gradually
into the formal model. An Event-B model contains two parts: contexts and ma-
chines. Contexts contain carrier sets, constants, and axioms constraining the
carrier sets and constants. Machines contain variables, invariants constraining
the variables, and events. An event comprises a guard denoting its enabled-
condition and an action describing how the variables are modified when the event
is executed. A machine in Event-B corresponds to a transition system where vari-
ables represent the states and events specify the transitions. More information
about Event-B can be found in [5]. Event-B is supported by the Rodin Platform
(Rodin) [2], an extensible toolkit which includes facilities for modelling, verify-
ing about the consistency of models using theorem proving and model checking
techniques, and validating models with simulation-based approaches.

iUML-B. iUML-B provides a diagrammatic modelling notation for Event-B in
the form of state-machines and class diagrams. The diagrammatic models are
contained within an Event-B machine and generate or contribute to parts of
it. For example a state-machine will automatically generate the Event-B data
elements (sets, constants, axioms, variables, and invariants) to implement the
states while Event-B events are expected to already exist to represent the tran-
sitions. Transitions contribute further guards and actions representing their state
change, to the events that they elaborate. A choice of two alternative transla-
tion encodings are supported by the iUML-B tools. State-machines are typically
refined by adding nested state-machines to states. Class diagrams provide a way
to visually model data relationships. For the HD machine we use state-machine
diagrams extensively to model the sequential processes and exploit both Event-
B encodings. We used class diagrams to model environmental interfaces but do
not show this here.

BMotion Studio. In this paper we have used the new version3 of BMotion Studio
[6] to create a domain specific visualisation (DSV) of our Event-B model of the

3 Originally BMotion Studio was developed as a separate plug-in for Rodin [7].



Validating the Requirements and Design of a Hemodialysis Machine 3

HD machine. BMotion Studio comes with a graphical environment including a
visual editor that provides various graphical elements to create a visualisation
of the model. A graphical element is based on Scalable Vector Graphics (SVG)
and HTML, two markup languages which support widgets like shapes, images,
labels, tables and lists. Moreover, observers are used to link the model with the
visualisation. For instance, the tool provides a formula observer that binds a
formula (e.g. an expression or a variable) to a graphical element and allows the
tool to compute a visualisation for any given state by changing the properties of
the graphical element (e.g. the colour or position) according to the evaluation of
the formula in the respective state. Finally, event handlers can be attached to
the visualisation to provide interactive functionalities, such as an execute event
handler that binds an Event-B event to a graphical element and executes the
event when the user clicks on the graphical element.

Co-Simulation. The Rodin tools and plug-ins are aimed at modelling discrete
state-changing events; they are not so good at validating continuous behaviour.
Despite this we often need to model the requirements for a system that peri-
odically controls some continuous dynamic behaviour. In order to validate such
models a MultiSim plug-in [9] was developed by Savicks et al. The plugin allows
an Event-B model and a continuous model to be simulated synchronously. Typ-
ically the Event-B part will model a cyclic control system that monitors process
variables from the continuous model and calculates a controlled output variable.
The Event-B model is simulated programmatically using ProB and the continu-
ous model is a Functional Mock-up Unit (FMU) [4] which has been exported from
a continuous domain modelling tool such as Dymola [3]. The plug-in controls the
coordination and communication between the co-operating simulations.

3 Development

In this section, we give some highlights of our formal development of the HD
machine. The requirements and design of the HD machine are given in [8] and
we will not repeat those requirements in this paper. We suggest the readers to
study this section together with the requirements document [8] and the formal
model available from the web site http://stups.hhu.de/ProB/ABZ16. We first
give an overview of the development strategy that we have applied for this formal
model in Section 3.1. Subsequently, we highlight the key important modelling
decisions using iUML-B (Section 3.2), how we use BMotion Studio to validate our
model (Section 3.3). For dynamic properties that cannot be expressed in Event-
B, we show how co-simulation helps us to validate such properties (Section 3.4).

3.1 Development Strategy

The hemodialysis process is highly sequential with several sub-processes. In the
design described in [8], the HD machine’s control system contains two parts: a
top-level and a low-level control system, working independently. The top-level



4 T.S. Hoang, C. Snook, L. Ladenberger, M. Butler

control system manages the communication with the users, and transmits data
from/to other modules. The low-level control system manages the HD machine
while interacting with the top-level control system. Our formal model reflects this
design of the control system: the top-level one manages the overall hemodialysis
process, interacting with the users, while the low-level one controls the sub-
processes by monitoring and regulating the behaviour of the HD machine.

We omitted requirements related to Ultra Filtration (UF), the Safety Air
Detector (SAD), the temperature of the HD machine, loss of main power, and
explit real-time modelling. These can easily be incorporated via refinements
using similar modelling techniques.

Refinement strategy in Event-B is often influenced by the correctness proofs.
In this case, we do not find any verification di�culty, hence our refinement
strategy follows the abstraction levels of the sequential steps of the system. This
strategy also fits the nested state-machine architecture in iUML-B.

m0: Models the main phases of the hemodialysis process for the top-level control
system, i.e., PREPARATION , INITIATION , and ENDING

m1: Models the sub-processes within each main phases for the top-level control
system.

m2: Models the low-level control’s automatic testing of control functions.
m3: Models the actual (physical) result of testing the HD machine’s control

functions.
m4: Model the message passing communication between the low-level control

system and the HD machine for testing control functions.
m5: Models the set of signals.
m6: Models the signal for indication of control function testing result.
m7: Models the connection of concentrate to the HD machine.
m8: Models the setting of rinsing parameters.
m9: Models the sequence of connecting patient
m10: Models the physical connection of the patient (arterially and venously).
m11: Models the three pressure monitors and the system normal/abnormal

states.
m12: Models various abnormal blood-side pressures.
m13: Models the blood pump, actual blood flow and abnormal situations when

monitoring the blood flow.
m14: Models arterial bolus.
m15: Models heparin bolus.

3.2 Modelling using iUML-B

Modelling Sequential Processes The hemodialysis process contains three
main phases: preparation, initiation, ending. Each main phase is composed of
several sequential steps. Using iUML-B state-machines, it is straight-forward
to model such sequential processes/sub-processes. Furthermore, the notion of
nested state-machines (which can be naturally introduced via refinement) fits
perfectly for refining the processes further into smaller sequential steps. Fig-
ures 1 and 2 illustrate how we model the sequential processes in m0 and m1.



Validating the Requirements and Design of a Hemodialysis Machine 5

Fig. 1: State-machine CS TopLevel in m0

Figure 1 shows the main phases of the hemodialysis process (with the addi-
tional STANDBY state). In m1, we introduce nested state-machines for states
PREPARATION , INITIATION , ENDING to model the sequential sub-steps of
each main phase. Figure 2 gives an example of the nested state-machine for the
PREPARATION state.

The incoming/outgoing transitions of the super-state PREPARATION in
m0, i.e., HDSystem Prepares and HDSystem Initiates, are respectively refined to
HDSystem StartsTestingCF and HDSystem StartsConnectingPatient in m1. Using
the encoding where each iUML-B state is represented by a constant from an
enumerated carrier set, HDSystem Prepares and HDSystem StartsTestingCF are
straightforwardly translated into Event-B as follows. Here, variable CS TopLevel
indicates the current state of the top-level state-machine, and the current state
of the nested state-machine in state PREPARATION is represented by variable
Preparation sm.

Fig. 2: Nested state-machine for state PREPARATION in m1



6 T.S. Hoang, C. Snook, L. Ladenberger, M. Butler

HDSystem Prepares :
when

CS TopLevel = STANDBY
then

CS TopLevel := PREPARATION
end

HDSystem StartsTestingCF :
when

CS TopLevel = STANDBY
then

CS TopLevel := PREPARATION
Preparation sm := CF TESTING
end

Top-level vs. Low-level Control Systems The top-level control system,
which maintains the sequential hemodialysis process and its sub-steps, is mod-
elled in a single state-machine. The low-level, responsible for direct control of the
HD machine to perform certain tasks, is modelled using several state-machines
each corresponding to a particular task. Figure 3 illustrates the state-machine
for the low-level control system performing testing of Control Functions (CF).

The CS LowLevel StartsTestingCF and CS LowLevel StandsBy transitions are
guarded by Preparation sm = CF TESTING and CS TopLevel = STANDBY ,
respectively, to ensure that they can only be carried out in the correct phases as
specified in the top-level control state-machine CS TopLevel .

The top-level control system can only move from state CF TESTING to the
next when the CF testing is successful. Using the alternative Event-B encod-
ing for state-machine CS LowLevel CFTesting , where each state is represented
by a Boolean variable, this is modelled by a guard on the transition elaborat-
ing HDSystem StartsConnectingConcentrate in state-machine CS TopLevel (Fig-
ure 2) stating that CS LL CF TESTED OK = TRUE.

A Pattern for Controlling Physical Equipments A common pattern that
we used in modelling the HD machine is to formalise how the controller inter-
acts with the physical equipment in the environment. The pattern involves two
refinement levels. At the abstract level, the controller and the physical equip-
ments can have access to the states of the other components. In the refine-
ment, this direct access is refined by message passing communication. This pat-
tern is similar to those in [1] and we applied them to iUML-B state-machines.
We show below how we incorporate the physical testing of CF into the formal
model. The low-level control system for CF testing is illustrated in Figure 3. In
m3, a variable HDMachine CFTestedOK is introduced to denote the result of
the HD machine’s CF test and a new event HDMachine CFTests is allowed to

Fig. 3: Low-level control system for CF testing



Validating the Requirements and Design of a Hemodialysis Machine 7

set this variable non-deterministically representing the result of the test. The
guard of the event ensures that the physical tests are carried out only when the
low-level controller is in the testing state, i.e. CS LowLevel CFTesting . Tran-
sitions CS LowLevel CFTestsOK and CS LowLevel CFTestsKO of state-machine
CS LowLevel CFTesting are directed by the actual result of the test: they are
guarded to select a pass/fail response according to HDMachine CFTestedOK ,
i.e.,HDMachine CFTestedOK = TRUE or HDMachine CFTestedOK = FALSE.

In the refinement m4, we introduce the communication between the con-
troller and the HD machine. Two new variables CS 2 HD StartsCFTesting and
HD 2 CS CFTestingFinished are introduced to model the message exchange.
Flag CS 2 HD StartsCFTesting is set in event CS LowLevel StartsTestingCF and
unset in HDMachine CFTests. Invariant

CS 2 HD StartsCFTesting = TRUE) CS LowLevel StartsTestingCF = TRUE

allows us to refine HDMachine CFTests’s guard to CS 2 HD StartsCFTesting =
TRUE. Similarly, HD 2 CS CFTestingFinished is set in HDMachine CFTests
and unset in CS LowLevel CFTestsOK and CS LowLevel CFTestsKO, while the
guards of CS LowLevel CFTestsOK and CS LowLevel CFTestsKO are strengthened
by adding the condition HD 2 CS CFTestingFinished = TRUE.

Safety Properties as State-machine Invariants An important feature of
iUML-B is state invariants. They can be used to express safety properties that
must hold in a certain state. Consider the state-machine CS TopLevel inm2. We
wish to ensure that when the system is in the INITIATION phase, the CF should
have been successfully tested. We add an invariant CS LowLevel CFTestsOK =
TRUE to state INITIATION . The translation of the state-invariant in Event-B
is, as expected, i.e.,

CS TopLevel = INITIATION ) CS LowLevel CFTestsOK = TRUE .

To prove the above invariant, an invariant is added to the PREPARATION state
stating that Preparation sm 6= CF TESTING ) CS LowLevel CFTestsOK =
TRUE.

Animation/Model Checking to Validate Requirements Consider m10,
we introduce a state-machine to model the physical connections/disconnections
of the patient to the HD machine arterially and venously. The patient is con-
nected to the machine in the first step of the INITIATION phase and discon-
nected from the machine in the first step of the ENDING phase. Requirements
S-1 and S-5 from [8] are directly related to the connections status of the patient
and are as follows.

S-1 Arterial and venous connectors of the EBC are connected to the patient
simultaneously.

S-5 The patient cannot be connected to the machine outside the initiation
phase, e. g., during the preparation phase.



8 T.S. Hoang, C. Snook, L. Ladenberger, M. Butler

Fig. 4: Patient connections to the HD machine

Initially, we model S-1 as an invariant

PATIENT CONNECTIONS 6= PATIENT DISCONNECTED )
PATIENT CONNECTIONS = PATIENT BOTH CONNECTED .

and S-5 as state-invariants for states PREPARATION and ENDING specifying
that PATIENT CONNECTIONS = PATIENT DISCONNECTED . Attempts
to prove these invariants lead to failure. We use the ProB model checker to find
counter-example traces and iUML-B state-machine animation to visualise the
obtained traces. The visualisation helps us to identify the cause of the problems
and how to fix them. In this case, the requirements are clearly too strong and con-
tradict other requirements. During PREPARATION , the patient is connected
first arterially and then venously contradicting S-1. The patient is still con-
nected both arterially and venously when the reinfusion step starts, i.e., outside
the initiation phase contradicting S-2. We therefore weaken the requirements
S-1 and S-5 as follows.

S-1’ Arterial and venous connectors of the EBC are both connected to the pa-
tient during therapy.

S-5’ The patient cannot be connected to the machine outside the initiation and
reinfusion phases.

Modelling Abnormal Behaviours During hemodialysis treatment, an impor-
tant part of the HD machine is to monitor the various aspects of the patient and
the machine, and raise the alarm when abnormal behaviours are detected. This
includes low/high blood pressures, incorrect blood flow directions, etc. We have
developed a pattern for modelling such behaviour. An abstract state-machine
for the low-level control system is added in m11 (Figure 5a). When we intro-
duced the pressure monitor in m12, various abnormal conditions can be de-
tected. The events modelling such detection are a refinement of the abstract
event CS LowLevel Abnormal (Figure 5b). Note that we still keep the abstract
event CS LowLevel Abnormal to be able to detect more abnormal behaviours in
future refinements.



Validating the Requirements and Design of a Hemodialysis Machine 9

(a) State-machine CS LowlLevel Overall in m11

(b) Nested state-machine CS LowlLevel Overall in m12

Fig. 5: Modelling Abnormal Behaviours

3.3 Validating using BMotion Studio

We use BMotion Studio to create a DSV of our iUML-B/Event-B model of the
HD machine. The DSV consists of two views: a view of the user interface (UI)
and a view of the environment of the HD machine. The description of the DSV
is supported by listings in which observers and event handlers are described
using JavaScript. However, the visual editor of BMotion Studio also provides a
graphical user interface for creating observers and event handlers.

Visualising the UI display panel Figure 6a demonstrates the DSV of the
UI display panel. Each dialysis parameter is represented using simple graphical
elements to display its description, unity and current value. In addition, for
pressure parameters, the width and thresholds of the limits window are shown
with the current value being represented by a horizontal dashed line.

Each dialysis parameter binds a formula observer that observes the respec-
tive state variable of the parameter. For instance, Listing 6b shows the formula
observer for the blood flow parameter. Line 1 and 2 state that we register a new
formula observer on the graphical element that matches the selector “#blood-
Flow” (The prefix “#” is used to match a graphical element by its ID.4) Line
3 states that the observer should observe the variable bloodFlow during the an-
imation. In lines 4 to 6 we define a trigger function that is called whenever a
state change occurs. The reference to the matched graphical element (e) and the
state values of the observed formulas (v) are passed as arguments to the trigger
function. In line 5 we define the action which is made on the label whenever a
state change occurs: the observer sets the text content of the label to the current
value of the state variable bloodFlow (val[0]). We have defined the observers
for the other dialysis parameters in a similar fashion.

The visualisation of the UI display panel also contains graphical elements and
observers for the automated self test signal lamp (see lower left side of Fig. 6a),

4 See jQuery selector API : http://api.jquery.com/category/selectors/.



10 T.S. Hoang, C. Snook, L. Ladenberger, M. Butler

(a) UI display panel visualisation

1 bms.observe("formula", {
2 selector: "#bloodFlow",
3 formulas: ["bloodFlow"],
4 trigger: function(e, v) {
5 e.text(v[0]);
6 }});
7

8 bms.executeEvent({
9 selector: "#bt_power",

10 events: [
11 {name: "User_PressesOn"},
12 {name: "User_PressesOff"}
13 ]});

(b) Blood flow observer and on/o↵
button execute event handler

Fig. 6: Domain specific visualisation of UI display panel

which is represented by a circle. The corresponding observer is responsible for in-
dicating whether the automated self test has been successfully completed (change
the signal lamp to green) or not (change the signal lamp to red) based on the
observed formula signal status(CF TESTING SIGNAL).

We have used the execute event handler feature of BMotion Studio to add
interactive components to our visualisation. As an example, Listing 6b (lines
8 to 13) shows the execute event handler for the HD machine on/o↵ button
(#bt power) that wires the events User PressesOn and User PressesO↵. In case
of hovering the graphical element with the mouse a tooltip with the available
events will be shown as demonstrated in Fig. 6a.

Visualising the environment of the HD machine The DSV of the HD
machine provides a second view that visualises the HD machine’s environment
as shown in Fig. 7. The objective of this view is to show how the di↵erent parts of
the system are connected together. For instance, it contains graphical elements
and observers that represent the dialysis pressure parameters (arterial-, venous-,
and blood entry pressure) and their connection to the environment.

The visualisation is subdivided into SVG groups, where each group represents
a di↵erent refinement level. Furthermore, each group binds a refinement observer
that is responsible for showing or hiding the group depending on whether the
observed refinement is part of the running animation or not. For instance, the
group for refinementm11 that contains the dialysis pressure parameter graphical
elements, binds a refinement observer that observes refinement m11. Whenever
m11 is part of the running animation the observer sets the visibility attribute
of the group to the value “visible” otherwise to “hidden”. We have also created



Validating the Requirements and Design of a Hemodialysis Machine 11

Patient

BICARBONATE

Blood entry pressure
monitor
1 mmHg

Fresh dialysate

Fresh dialysate

Venous pressure
monitor
0 mmHg

Aterial pressure
monitor
2 mmHg

Blood pump
Not running

Dialyzer

Saline solution

Heparin pump

Figure CC BY 3.0 YassineMrabet (https://commons.wikimedia.org/wiki/File:Hemodialysis-en.svg)

Fig. 7: Domain specific visualisation of the environment of the HD machine

similar refinement observers for the UI display panel view. This helped us to
focus on relevant parts of the system while validating a specific refinement level.

Application of the DSV The benefits of more e↵ective validation of the HD
machine’s Event-B model justify the extra e↵ort required to develop a DSV.
The visualisation helped us reach a common understanding about the model
and to identify faulty behaviour and errors during development. This is par-
ticularly valuable when the formal model becomes complex in later refinement
levels. Animation tools with only textual representation of the state are insu�-
cient for validation purposes. In the case of the HD machine, requirements such
as S-2–S-4, R-5–R-13 are modelled by the enabled-ness of iUML-B transitions
(ultimately events). Such properties are cumbersome to formulate as a proof obli-
gation in Event-B but can be readily demonstrated via BMotion Studio. Hence
in many cases we use BMotion Studio to validate whether the requirements have
been adequately taken into account. BMotion Studio also helped us to discover
problems with our model during its development, especially mistakes leading to
liveness problems, where the HD machine cannot make any progress.

The DSV also enables domain experts to validate our formal model in terms
of user interactions. This can be compared with prototyping techniques. Indeed,
we plan to show our formal model and DSV to medical scientists and physicians
at the university medical centre of Duesseldorf.



12 T.S. Hoang, C. Snook, L. Ladenberger, M. Butler

BMotion Studio provides a feature for sharing a DSV online. This is useful
for demonstration purposes as well as for sharing the visualisation between the
persons involved in developing the model. We refer the reader to the website
stated in Section 1 which contains an online live visualisation of the HD machine.

3.4 Validating using Co-simulation

Safety requirements S-8, S-9 and S-10 concern adjustments to the Blood Flow
Rate (BF). S-8 requires the demanded BF to be lowered if Arterial Pressure
(AP) is low. We conclude that there is an inverse relationship between BF and
AP. S-8 also states that the AP to BF relationship is a↵ected by the fistula
needle type. S-9 indicates that low AP can result in reduced BF. Hence the
achieved BF should be monitored and treatment time adjusted accordingly. S-
10 requires that BF should be optimal (presumably after consideration of S-8
and S-9). We assume that this means as close to the user selected BF as possible
and that a stable closed loop control of the blood pump is needed. In order to
validate the specification of a suitable control system we use the continuous
domain modelling tool Dymola to create a model of the environment which we
co-simulate with the Event-B model of the control system, which is extracted
from the formal model developed in Section 3.2.

Figure 8 shows the continuous domain Dymola model of the physical inter-
action between BF and AP. This detail of the environment being controlled was
not given in the specification. We have invented an example behaviour, based
on typical pump suction properties, for the purposes of illustration. In order to
validate this model we also developed a Dymola model of the control system.
Once the environment model behaved as desired it was exported as a FMU
which allows it to be run as a simulation outside of the Dymola tool. We then
imported the FMU into the Rodin co-simulation tool, linked its I/O with our
Event-B model of the control system and co-simulated the combined models.

The transition cnt readinputs obtains new values provided by the Environ-
ment FMU simulation. The transition cnt updateProgress subtracts the achieved
BF for the cycle period from the total blood volume required to be processed. If
the total has been processed, cnt therapyFinished sets the demanded BF to 0.
Otherwise, cnt bfap calculates the demanded BF which is the user configured BF
adjusted for AP (i.e. in accordance with S8). This adjustment is implemented
as a simple linear interpolation function from (0,0) to (70,initial BF) which is
limited outside this domain. Transition cnt bf adjusts the output commanded
BF to adjust for the achieved BF using a proportional error control. This final
adjustment corresponds to control of the Blood Pump (BP) speed to achieve the
desired BF except that we abstracted from BP units for simplicity. We chose to
model AP in % of some nominal initial AP and BF in ml/min with a control
cycle period of 100ms. The initial BF is set 30ml/min in the following analysis.

Our initial co-simulation results (Figure 10) showed that the AP was correctly
controlled to a steady value of 72% by lowering BF to below 20ml/min. However,
the initial response is very unstable. It is interesting to note that we did not see
this instability when we first tested the environment model in Dymola only (i.e.



Validating the Requirements and Design of a Hemodialysis Machine 13

Fig. 8: Dymola model of interaction between BF and AP

Fig. 9: iUML-B model of BF and AP control cycle



14 T.S. Hoang, C. Snook, L. Ladenberger, M. Butler

(a) Unstable control of BF (b) Unstable control of AP

(c) Stable control of BF (d) Stable control of AP

Fig. 10: Co-simulation plots showing unstable and stable control of BF and AP



Validating the Requirements and Design of a Hemodialysis Machine 15

using a Dymola model of the control in place of the Event-B model). We believe
this is because we did not accurately model the discrete periodic cycle and
therefore the response rate of the Dymola version of the control was fast enough
to mask the problem. This demonstrates the advantage of testing the actual
Event-B model which is inherently discrete. To improve stability we decreased
the gain of the proportional control. This improved stability but resulted in a
degraded AP of approx. 55%. This is due to a larger residual o↵set error which
is an inherent problem of proportional controllers. A possible solution would be
to introduce an integral term to the controller which would remove the residual
o↵set.

4 Conclusion

The HD machine is predominantly a sequential process of user interactions with
few safety properties that can be expressed as constraints on state. During the
therapy stage the machine controls the dynamic properties of AP and BF. At
first sight it appeared that this case study would not illustrate the strengths
of our modelling tools very well since Event-B verifies the preservation of in-
variant properties over discrete state-changing events. However, the case study
gave us an opportunity to focus on the validation tools that we use to develop
useful models. Proofs may result in a correct model but we need user validation
to ensure the usefulness of our models. For this case study, we therefore used
the validation tools to drive a manual assessment of the model. iUML-B state-
machine modelling tools map readily to the process steps of the requirements and
their animation enables us to ‘see’ the sequential flows of the model. BMotion
Studio visualisation tools link the process to a more realistic representation of
the HD machine which allows us to disassociate ourselves from the model giving
a stronger validation. For validation of the dynamic control of AP versus BF we
use a continuous domain model of the controlled parameters to co-simulate with
our iUML-B/Event-B models to provide a strong validation of the stability and
e↵ectiveness of the modelled control scheme.

The summary of the requirements (from [8]) that have been modelled and
verified/validated within our development is as follows.

– Invariant Proofs: S-1’, S-5’, S-6, S-11
– Simulation Validation: S-2, S-3, S-4, R-1–R-15, R-17–R-19, R-22

– Co-simulation: S-8, S-9, S-10

Many requirements are validated using simulation/animation techniques. One
exception is requirement R-16: “while connecting the patient, the software shall
use a timeout of 310 seconds after the first start of the BP. After this timeout, the
software shall change to the initiation phase ”. An attempt to model this require-
ment leads to an invalid iUML-B state-machine. We found that the requirement
is inconsistent: while connecting patient, the system is already in the initiation
phase. It is not clear to us what the intended meaning of the requirement is.



16 T.S. Hoang, C. Snook, L. Ladenberger, M. Butler

In the future, we plan to address the remaining requirements using similar
techniques. We will continue to develop the BF control using co-simulation to
improve its accuracy without degrading stability and responsiveness. We plan to
investigate ways to provide validation records that might be used as evidence in
a safety case. For example, BMotion Studio could be enhanced to provide and
replay traces of animations.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin:
An open toolset for modelling and reasoning in Event-B. Software Tools for Tech-
nology Transfer, 12(6):447–466, November 2010.

3. Dassault Systemes. Catia Systems Engineering Dymola.
http://www.3ds.com/products-services/catia/products/dymola. (accessed
Jan, 2016).

4. FMI Steering Committee. Functional Mock-up Interface. https://www.fmi-
standard.org. (accessed Jan, 2016).

5. T.S. Hoang. An introduction to the Event-B modelling method. In Industrial
Deployment of System Engineering Methods, pages 211–236. Springer-Verlag, 2013.

6. L. Ladenberger. BMotion Studio for ProB project website.
http://stups.hhu.de/ProB/w/BMotion Studio, January 2016.

7. L. Ladenberger, J. Bendisposto, and M. Leuschel. Visualising Event-B models with
B-Motion Studio. In Proceedings of FMICS 2009, volume 5825 of Lecture Notes in
Computer Science, pages 202–204. Springer, 2009.

8. A. Mashkoor. The hemodialysis machine case study. http://www.cdcc.faw.jku.
at/ABZ2016/HD-CaseStudy.pdf, 2015.

9. V. Savicks, M. Butler, and J. Colley. Co-simulating Event-B and continuous models
via FMI. In Proceedings of the 2014 Summer Simulation Multiconference, Sum-
merSim ’14, pages 37:1–37:8, San Diego, CA, USA, 2014. Society for Computer
Simulation International.

10. V. Savicks and C. Snook. A framework for diagrammatic modelling extensions in
Rodin. In Rodin Workshop 2012, Fontainbleau, 2012.

11. C. Snook. Modelling control process and control mode with synchronising orthog-
onal statemachines. In B2011, Limerick, 2011.

12. C. Snook. iUML-B statemachines. In Proceedings of the Rodin Workshop 2014,
Toulouse, France, 2014. http://eprints.soton.ac.uk/365301/.


