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Abstract. We present here a case study developing a parallel program. The ap-
proach that we use combines refinement and decomposition techniques. This in-
volves in the first step to abstractly specify the aim of the program, then subse-
quently introduce shared information between sub-processes via refinement. Af-
terwards, decomposition is applied to split the resulting model into sub-models
for different processes. These sub-models are later independently developed us-
ing refinement. Our approach aids the understanding of parallel programs and
reduces the complexity in their proofs of correctness.
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1 Introduction

We consider here programs that use several co-operating parallel processes in order to
compute the intended final result. Proving correctness of such programs is a difficult
task because of the interleaved execution of many sub-statements from different pro-
cesses. These sub-statements may be executed in an unpredictable order. As a result,
techniques such as program testing do not give us sufficient confidence about the cor-
rectness of these programs, since no execution leading to an error might appear during
tests. To achieve correctness, it is therefore necessary to develop these programs and
prove them formally.

There are a number of methods for proving the correctness of parallel programs [11].
Our main contribution is an approach applying the technique of refinement and decom-
position in Event-B [2], which reduce the complexity of the verification process (more
information in Section 5.1). The approach contains four steps as follows.
1. Start with an abstract specification in-one-shot giving the purpose of the program.
2. Refine this abstract specification by introducing details about the shared variables.
3. Decompose the model in the previous step to split the model into several (abstract)

sub-models for processes.
4. Refine each sub-model from the previous step independently.

In the last step, each sub-model can be seen as a new abstract specification and hence
application of steps 2, 3 and 4 can be repeated again. The novelty of our approach is in
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step 2 where we specify shared information between processes. This information has
two purposes. Firstly, it contains the necessary guarantee condition from each process
to establish the final result. Secondly, it also gives the condition on which each process
can rely on in further development. This decision to have this step early in our develop-
ment takes advantage of our decomposition technique and results in simpler models and
reduces the complexity of proving programs. This is the main advantage of our method
over existing approaches. More information on related work is in Section 5.1.

The rest of the paper is structured as follows. Section 2 gives an overview of the
Event-B method and the concept of (shared variable) decomposition. Section 3 intro-
duces the FindP program and its formal development using our approach is presented in
Section 4. Section 5 compares our approach with some existing methods for developing
parallel programs and draws some conclusions.

2 The Event-B Modelling Method

A development in Event-B [6] is a set of formal models. The models are built from ex-
pressions in a mathematical language, which are stored in a repository. When presenting
our models, we will do so in a pretty-printed form e.g., adding keywords and following
layout conventions to aid parsing. Event-B has a semantics based on transition systems
and simulation between such systems, described in [3]. We will not describe in detail
the Event-B semantics here and instead just illustrate some of the proof obligations that
are important for our development.

Event-B models are organised in terms of the two basic constructs: contexts and
machines. Contexts specify the static part of a model whereas machines specify the dy-
namic part. Contexts may contain carrier sets, constants, axioms, and theorems. Carrier
sets are similar to types [6]. Axioms constrain carrier sets and constants, whereas the-
orems express properties derivable from axioms. In the following, we further describe
machines and machine refinement.

2.1 Machines

Machines specify behavioural properties of Event-B models. Machines may contain
variables, invariants, theorems, events, and variants. Variables v define the state of a
machine. They are constrained by invariants I(v). Possible state changes are described
by events. Each event is composed of a guard G(t, v) (the conjunction of one or more
predicates) and an action S(t, v), where t are the parameters of the event.1 The guard
states the necessary condition under which an event may occur, and the action describes
how the state variables evolve when the event occurs. An event can be represented by
the term “any t where G(t, v) then S(t, v) end”. We use the short form “when G(v)
then S(v) end” when the event does not have any parameters, and we write “begin S(v)
end” when, in addition, the event’s guard equals true. A dedicated event of the last form
is used for initialisation.

1 When referring to variables v and parameters t, we usually allow for multiple variables and
parameters, i.e., they may be “vectors”.
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The action of an event is composed of one or more assignments of the form

x := E(t, v) (1)
x :2 E(t, v) (2)
x :| Q(t, v, x0) , (3)

where x is a variable contained in v, E(t, v) is an expression, and Q(t, v, x0) is a pred-
icate. Assignments of the form (1) are deterministic, whereas the other two forms are
nondeterministic. In (2), x (which must be a single variable) is assigned an element of a
set. In (3), Q is a “before-after predicate”, which relates the values x (before the action)
and x0 (afterwards). (3) is the most general form of assignment and nondeterministi-
cally selects an after-state x0 satisfying Q and assigns it to x. Variables other than x are
unchanged by the above assignments. There is also a side condition on the action of
an event: the variables on the left-hand side of the assignments contained in the action
must be disjoint.

Proof obligations serve to verify certain properties of machines. We only describe
the proof obligation for invariant preservation. Formal definitions of all proof obliga-
tions are given in [3]. Invariant preservation states that invariants hold whenever vari-
ables change their values. Obviously, this does not hold a priori for any combination of
events and invariants and therefore must be proved. For each event and each invariant,
we must prove that the invariant is re-established after the event is carried out. More
precisely, under the assumption of the invariants and the event’s guard, we must prove
that the invariant still holds in any possible state after the event’s execution.

Similar proof obligations are associated with a machine’s initialisation event. The
only difference is that there is no assumption that the invariant holds. For brevity, we do
not treat initialisation differently from other events. The required modifications of the
associated proof obligations are straightforward.

2.2 Machine Refinement

Machine refinement provides a means to introduce details about the dynamic properties
of a model [6]. For more details on the theory of refinement, we refer to the Action
System formalism [7], which has inspired the development of Event-B. Here we sketch
some central proof obligations for machine refinement.

A machine CM can refine another machine AM . We call AM the abstract machine
and CM the concrete machine. The state of the abstract machine is related to the state
of the concrete machine by a gluing invariant J(v, w), where v are the variables of the
abstract machine and w are the variables of the concrete machine.

Each event ea of the abstract machine is refined by one or more concrete events ec.
Let the abstract event ea and concrete event ec be:

ea b= any t where G(t, v) then S(t, v) end (4)
ec b= any u where H(u,w) then T (u,w) end . (5)

Somewhat simplified, we say that ec refines ea if the guard of ec is stronger than the
guard of ea (guard strengthening), and the gluing invariant J(v, w) establishes a sim-
ulation of ec by ea (simulation). Proving guard strengthening just amounts to proving
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an implication. For simulation, we must prove that ec can be “simulated” by ea. More
precisely, under the assumption of the invariants and of the concrete guard H(u,w) we
must show that it is possible to choose a value for the abstract parameter t such that
the abstract guard holds and the gluing invariant J(v, w) is re-established. The possible
values for the abstract parameter are given as witness in ec with the keyword with.

In the course of refinement, new events are often introduced into a model. New
events must be proved to refine the implicit abstract event SKIP, which does nothing.
Moreover, it may be proved that new events do not collectively diverge. In other words,
the new events cannot take control forever and hence one of the old events eventually
occurs. We will not go into details for convergent proof obligation in this paper.

We have used the Rodin Tool [4] for our formal development. This is an industrial-
strength tool for creating and analysing Event-B models. It includes a proof-obligation
generator and support for interactive and semi-automated theorem proving.

2.3 Shared Variable Decomposition

The idea of decomposition is to split a large model into smaller sub-models which can
be handled more comfortably than the whole: one should be able to refine these sub-
models independently [2]. More precisely, if one starts from an initial (large) model,
say M, decomposition allows us to split this model into several sub-models M

1

· · ·M
i

.
These sub-models can then be refined independently yielding N

1

· · ·N
i

. The correctness
of the decomposition technique guarantees that the model N, obtained by re-composing
N

1

· · ·N
i

, is a refinement of the original model M. This process is illustrated in the
following diagram:

Decomposition Refinement Re-composition

M !

8
>>><

>>>:

M

1

! N

1

· · ·

M

i

! N

i

9
>>>=

>>>;
! N

Generation of sub-models using shared variable decomposition Given a model M

with events e

1

(a), e

2

(a, c), e

3

(b, c), e

4

(b),2 we would like to decompose M into two
separate models: M

1

dealing with events e

1

and e

2

; and M

2

dealing with events e

3

and
e

4

.
By giving the above event partition, we must also perform a variable distribution.

This distribution can be derived directly from the information about the partitioning of
events and the set of variables that they access. In our example, M

1

must have variables
a and c, while M

2

must have variables b and c. As a result, c becomes a shared variable
between the two models which cannot be data-refined. In contrast, the variables a and
b are private variables of M

1

and M

2

and can be data-refined by their corresponding
sub-refinements.

Moreover, in each sub-model, we need to have a number of external events to sim-
ulate how shared variables are handled in the non-decomposed model. These events are

2 Note that the variables appeared in brackets denote those that are accessed by these events,
e.g. appearing in guard or action of the corresponding event.
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abstract versions of the corresponding internal events and use only the shared variables.
In our example, M

1

will have an external event corresponding to e

3

(beside the internal
events e

1

and e

2

). Symmetrically, M

2

will have an external event corresponding to e

2

.
Similar to shared variables, external events cannot be further refined.

We also present a practical construction of the external event given its original event.
This is illustrated below for an external event (ext )e

2

in sub-model M

2

. Intuitively, this
event is the projection of the original event, i.e. e

2

, on the state of the sub-model M

2

.

e

2

any t where

G(t, a, c)
then

a, c :| Q(t, a, c, a0, c0)
end

(ext )e
2

any t, a where

G(t, a, c)
then

c :| 9a0 ·Q(t, a, c, a0, c0)
end

3 Example: FindP Program

Our running example is a standard problem in the literature for parallel programs. The
purpose of the FindP program is to find the first index k of an array ARRAY that
satisfies some property P , if there is one. If this index does not exist, i.e. none of the
array elements satisfy P , the program returns M + 1, where M is the size of the array.

We are interested in the solution using two parallel processes to independently in-
vestigate the array that was given by Rosen [20]. The processes in the original program
works on the sets of even and odd indices separately. We present here a slightly gener-
alised version of it where the two processes work on any two different parts of the array,
denoted as PART1 and PART2, which cover the entire domain of the array, and are
not necessarily disjoint.

The main idea of each process is to independently evaluate the value of the array in
ascending order and to publish the first value that it finds. Moreover, from time to time,
a process looks at the value that is published by the other process in order to know if it
needs to continue the search or if it can terminate early.

The pseudo-code for the main program is given below. Here index1, index2 are the
two local indices, and publish1, publish2 are the published results of the processes. In
the end, when both processes terminate, the result taken is the minimum of the two
published results.

index1, index2 := min(PART1), min(PART2);
publish1, publish2 := M + 1, M + 1;
process1 || process2;
result := min({publish1, publish2})

The pseudo-code for each process (presented here process1) is as follows. Each
process needs to continue only if its local index is smaller than both published results
(as indicated by the guard of the loop). If this is the case, the process evaluates the
value of the array at the current index and performs appropriate actions: publishing the
current index or moving to the next index, if possible.

while index1 < min({publish1, publish2}) do

if ARRAY (index1) = TRUE then publish1 := index1
else index1 := the-next-index-in-PART1-or-M+1 end

end
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The key interaction between the two processes appears in the guard of the loop. Here
the guard of process1 refers to the published result of process2, which in the mean-
time could be modified. In other words, process1 needs to read the published value of
process2 into some local variable before making the comparison using this local vari-
able. The unfolded version of the process1 is as follows. Our formal development in
later sections is guided towards this version of the processes.

1 : (read) read1 := publish2;
2 : if index1 < min({publish1, read1}) then

if ARRAY (index1) = TRUE then

(found) publish1 := index1; goto 3;
else

(inc) index1 := the-next-index-in-PART1-or-M+1; goto 1;
end

else

(not found) goto 3
end

3 : (end)

Here we make some assumptions on the atomicity. They are similar to the atomicity
assumptions made by Abrial/Cansell [5].

– We have a number of shared variables (e.g. the published values). They are the
variables that are written by one process and read by the other process. They are
the shared variable with respect to the read process.

– We have a number of local variables (e.g. the local indices).
– The events involving only local tests and actions can be performed concurrently.
– There is an elementary atomic action for reading the value of a shared variable into

a local variables, e.g. local variable := shared variable.
– We extend the above atomic action to contain possible local test and local action.

when local test then

local variable := shared variable

local action

end

Different atomicity assumptions will lead to different unfolded versions of our program
here. But this will not effect the applicability of our approach.

4 Formal Development

The machine-checked version of the development can be found on the web3. We first
present our strategy for developing this program as follows.

Initial model specifies the result of the algorithm directly.
First refinement introduces the local indices of processes.
Decomposition step splits the model into sub-models corresponding to different pro-

cesses: main, process1, process2.

We continue with further refinement steps for process1 (process2 should be devel-
oped in symmetrical fashion). Futher development of the main process is straightfor-
ward and is not of our interest here.
First sub-refinement introduces the local index of the process.
Second sub-refinement introduces the read value of the process.
Third sub-refinement introduces the address counter for scheduling of events.

3 URL: http://deploy-eprints.ecs.soton.ac.uk/154/

http://deploy-eprints.ecs.soton.ac.uk/154/
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4.1 Initial Context and Model

The context defines an array of Booleans representing our abstract view.

constants: ARRAY, M
axioms:

axm0 1 : M 2 N1
axm0 2 : ARRAY 2 1 .. M ! BOOL

The initial model contains only one integer variable called result . There is only one
event final (beside the initialisation) to specify the result of the program in-one-shot.
The aim of the program is encoded in the guard as constraints for parameter k .

final

any k where

k 2 1 .. M + 1
8j ·j 2 1 .. k � 1) ARRAY (j) = FALSE
k 6= M + 1) ARRAY (k) = TRUE

then

result := k
end

4.2 First Refinement

The first refinement introduces the idea of using two processes. Here the context needs
to be extended to include the notion of two different non-empty parts of the array.

constants: PART1, PART2
axioms:

axm1 1 : PART1 [ PART2 = 1 .. M
axm1 2 : PART1 6= ? ^ PART2 6= ?

At this point, the necessary information about the two sub-processes in order to ob-
tain the final result of the program is whether or not they already terminate and the pub-
lished results of the two processes. They are represented by a pair of variables, namely
finish1 and publish1 (respectively finish2 and publish2 ) for process1 (respectively
process2). Initially finish1 (respectively finish2 ) is given the value FALSE, i.e. the
process has not yet terminated; and publish1 (respectively publish2 ) is assigned the
value M + 1, i.e. the process has not yet found a result.

We first look at the refinement of the final event with the new set of variables. This
event is carried out when the two processes have finished and the result taken is just the
minimum of the two published values.

final

refines final
when

finish1 = TRUE ^ finish2 = TRUE
with

k = min({publish1, publish2}
then

result := min({publish1, publish2})
end

In order to prove the refinement of the final event with respect to its abstract version,
we need to give a witness for the disappearing parameter k of the abstraction. Here the
parameter k is exactly the minimum of the two published values. Given the witness, the
simulation proof obligation becomes trivial since both the abstract and concrete events
assign equivalent expressions to the variable result .

We still need to prove guard strengthening. This requires us to give some invari-
ants for the newly introduced variables. The invariants are symmetric for process1 and
process2, hence we only give the five invariants associated with process1 here.
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invariants:

inv1 1 publish1 6= M + 1) finish1 = TRUE
inv1 2 publish1 6= M + 1) publish1 2 PART1
inv1 3 publish1 6= M + 1) ARRAY (publish1) = TRUE
inv1 4 publish1 6= M + 1) (8i·i 2 PART1 ^ i < publish1) ARRAY (i) = FALSE)
inv1 5 finish1 = TRUE ^ publish1 = M + 1)

(8i·i 2 PART1 ^ i < publish2) ARRAY (i) = FALSE)

inv1 1 states that if process1 has published some result then it must have terminated.
This also means the process can publish at most once.

inv1 2–inv1 4 states that process1 cannot lie: if it publishes some result then this must
be the smallest index that it can find within PART1.

inv1 5 states that in the case where process1 terminates without publishing any val-
ues, it has given up because it cannot find any better result than the other process
process2. The two possibilities for process1 to terminate are:

– it has searched all the indices in PART1 and did not find any result, or
– it looks at the published value of the process2 and knows that it cannot find a

better (smaller) result.
In both situations, the invariant holds trivially.

We now abstractly construct the events to model the effect of the two processes on
the new variables. These events correspond to the two cases in which a process can
terminate. Here, we consider the events corresponding to process1 only.

The first case is when process1 finds a result within PART1 and terminates. Here
publish1 = M + 1 is a theorem, which is the consequence of the first guard finish1 =
FALSE and invariant inv1 1. The other case is when process1 terminates without
publishing any value.

found 1

any k where

finish1 = FALSE
k 2 PART1
ARRAY (k) = TRUE
8i·i 2 PART1 ^ i < k ) ARRAY (i) = FALSE
publish1 = M + 1

then

finish1, publish1 := TRUE, k
end

not found 1

when

finish1 = FALSE
8i·i 2 PART1 ^ i < publish2)

ARRAY (i) = FALSE
then

finish1 := TRUE
end

4.3 Decomposition

In the previous refinement step, we introduced the interface of the processes, i.e. the
shared variables and events describing how these variables can be changed, which guar-
antees the correctness of the program. At this point, we want to develop in details each
process independently. We apply the technique of decomposition (shared variable) as
described earlier in Section 2.3. There will be three different processes: main (final),
process1 (found1, not found1) and process2 (found2, not found2).

As a result, we have three different sub-models, one for each process. Amongst
these sub-models, the development main is straightforward and is not of our interest
here. We concentrate on the sub-model for process1 (process2 is symmetric).

The sub-model for process1 contains three shared variables: finish1 , publish1 and
publish2 and no private variables. This process does not refer to either result (the global
result) or finish2 (if the other process has finish or not). According to the event distribu-
tion, this model of process1 has two internal events, namely found 1 and not found 1,
which are the exact copy of the original events. The other events become external which
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need to be generated as follows. We present the original events on the left and the cor-
responding external events for process1 on the right.

final

when

finish1 = TRUE
finish2 = TRUE

then

result := min({publish1, publish2})
end

(ext )final

any finish2 where

finish1 = TRUE
finish2 = TRUE

then

SKIP
end

found 2

any k where

finish2 = FALSE
k 2 PART2
ARRAY (k) = TRUE
8i·i 2 PART2 ^ i < k)

ARRAY (i) = FALSE
publish2 = M + 1

then

finish2, publish2 := TRUE, k
end

(ext )found 2

any k, finish2 where

finish2 = FALSE
k 2 PART2
ARRAY (k) = TRUE
8i·i 2 PART2 ^ i < k)

ARRAY (i) = FALSE
publish2 = M + 1

then

publish2 := k
end

not found 2

when

finish2 = FALSE
8i·i 2 PART1 ^ i < publish2)

ARRAY (i) = FALSE
then

finish2 = TRUE
end

(ext )not found 2

any finish2 where

finish2 = FALSE
8i·i 2 PART1 ^ i < publish2)

ARRAY (i) = FALSE
then

SKIP
end

4.4 Further (sub-)refinements

In this section, we present the sketch of the further development of process1. The re-
finement steps are all typical super-position refinement where more details about the
actual process are introduce at each step as mention early in the start of Section 4. We
do not present in detail the proofs of the correctness of the refinement steps here.

Introducing the local index In the first sub-refinement for process1, we introduce the
index that the process is currently checking. This is represented by the new variable
index1 . The following invariants state that this process investigates only the part of the
array belongs to PART1 in ascending order and it cannot skip any index.

invariants:

inv2 1 index1 6= M + 1) index1 2 PART1
inv2 2 8k·k 2 PART1 ^ k < index1) ARRAY (k) = FALSE

The internal event not found 1 is unchanged. It trivially maintains the new invari-
ants since it only modifies variable finish1 . The same applies to external events, i.e.
(ext )final, (ext )found 2, (ext )not found 2 (which are always unchanged during re-
finement), since they do not refer to variable index1.

We now refine the internal event found 1 to use index1: We also introduce a new
event inc 1 to model the case where the value at the current index is FALSE and hence
process1 moves to the next index.
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found 1

refines found 1
when

finish1 = FALSE
index1 6= M + 1
ARRAY (index1) = TRUE

with

k = index1
then

finish1, publish1 := TRUE, index1
end

inc 1

any i where

ARRAY (index1) = FALSE
i 6= M + 1) i 2 PART1
index1 < i
8j ·j 2 PART1 ^ index1 < j ) i  j

then

index1 := i
end

For event found 1, the information from the witness k = index1 and the two invari-
ants declared above guarantees that this is a correct refinement of the abstract event.
For event inc 1, the parameter i is the smallest index in PART1 that is greater than
index1, or M + 1 if such an index does not exist. The proof that this event maintains
the invariants is intuitive and can be found in our technical report [12].

Introduce the read value In this refinement, we introduce the read value of process
represented by variable read1 . The constraint for this variable is expressed by invari-
ant inv3 1: its value is either M + 1 or the published value of the other process, i.e.
publish2. A new event read 1 is introduced to model the situation when process1

reads the published value of process2. This event sets the value of read1 to publish2

and hence clearly maintains the invariant inv3 1.

invariants:

inv3 1 read1 6= M + 1) read1 = publish2

read1

begin

read1 := publish2
end

The only change to event inc1 is two extra guards: index1 < read1 and index1 <
publish1. Since this event does not change variables read1 and publish2 , it preserves
the invariant inv3 1 trivially.

The event found 1 is refined by replacing the guard index1 6= M + 1 with the
following two guards: index1 < read1 and index1 < publish1. Since both publish1
is either M + 1 or belongs to PART1, publish1 is no greater than M + 1. Together
with the guard index1 < publish1, index1 is strictly smaller than M + 1. Hence the
proof obligation for guard strengthening holds trivially.

We refine the remaining internal event not found 1 by replacing the guard 8i·i 2
PART1^i < publish2)ARRAY (i) = FALSE with index1 < read1)publish1 6=
M + 1. We do not go into detail of the proof why this is a correct guard strengthening,
but refer the readers to our technical report [12]

For the external events, even though they are not refined, we must prove that they
maintain the invariant inv3 1. In this case, we must consider those events that modify
variable publish2 . In our development, this is event (ext )found 2. The important part
for our proof in this event is the theorem in the guard, i.e. publish2 = M + 1, and the
action publish2 := k. According to the action, we have to prove that read1 6= M +1)
read1 = k, under the assumption of the invariants and the guards. From the theorem in
guard publish2 = M + 1 and invariant inv3 1, we have read1 = M + 1 (since if it is
not, then we have publish2 = read1 6= M + 1). Hence read1 6= M + 1) read1 = k
holds trivially.
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Introduce the address counter In this last sub-refinement of process1 we introduce
the address counter in order to obtain the unfolded program as described in Section 3.
The resulting internal events (with some refinement for guards) are as follows. These
events conform with the notion of atomicity mentioned earlier.

read1

when

address1 = 1
then

address1, read1 := 2, publish2
end

not found 1

when

address1 = 2
¬(index1 < min({publish1, read1}))

then

address1, finish1 := 3, TRUE
end

found 1

when

address1 = 2
index1 < min({publish1, read1})
ARRAY (index1) = TRUE

then

address1 := 3
finish1 := TRUE
publish1 := index1

end

inc 1

any i where

address1 = 2
index1 < min({publish1, read1})
ARRAY (index1) = FALSE
i 6= M + 1) i 2 PART1
index1 < i
8j ·j 2 PART1 ^ index1 < j ) i  j

then

address1, index1 := 1, i
end

4.5 Proof Statistics

The proof statistics for the development is in the table below. We only take into account
the number of obligations for sub-refinement models once, since the refinements for
both process process1 and process2 are symmetric. We can use techniques such as
pattern or generic instantiation in order to reuse the sub-development without reproving
again. In the table, 50% of the proof obligations are in the model before decompos-
ing. This indicates that this refinement is the most important and difficult step in our
approach.

Model Number POs Auto.(%) Manual (%)
Initial context 0 0 (N/A) 0 (N/A)
Initial model 3 3 (100%) 0 (0%)
First extended context 0 0 (N/A) 0 (N/A)
First refinement 46 44 (96%) 2 (4%)
First sub-refinement 14 10 (71%) 4 (29%)
Second sub-refinement 6 5 (83%) 1 (17%)
Third sub-refinement 22 16 (73%) 6 (27%)
Total 91 78 (86%) 13 (14%)

5 Related Work and Conclusion

5.1 Related Work

The problem of verifying the FindP program has been tackled using different methods,
notably using Owicki/Gries’ interference-free [19] and Jones’ rely/guarantee approach
[14,15]. Moreover, the FindP program has been used as an illustrated example for the
formalisation of these two approaches in Isabelle/HOL [18].

The work of Owicki/Gries [19] extends Hoare’s deductive system for sequential
programs [13] in order to prove the correctness of parallel programs. Their proofs of
correctness for parallel statements centre around the notion of interference-free which
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is defined as follows. Given a proof of Hoare’s triple {P} S {Q} and a statement T
with precondition pre(T ), T does not interfere with {P} S {Q} if
InfFree1 {Q ^ pre(T )} T {Q}, i.e. T maintains the post-condition Q, and
InfFree2 for any sub-statement S0 of S, {pre(S0) ^ pre(T )} T {pre(S0)}.

Within our approach, the above two conditions are verified during the development
of the model at various refinement levels. At the abstract level before decomposition, S
and T are some events of the models and the post-condition Q are just some invariants.
For example, S are events belonging to process1, T are events belonging to process2,
and Q are the invariants that state the outcome of process1, e.g. inv1 1–inv1 5. We
have to prove that these invariants are maintained by any events T and this corresponds
to condition InfFree1.

Furthermore, during the sub-refinement of a process, sub-statements S0 of S are
introduced. At the same time, new invariants are added and these invariants correspond
to the preconditions pre(S0) in the proof of {P} S {Q} using Hoare’s deductive system.
Hence the condition InfFree2 is verified by proving that events T (now external events)
maintain the new invariants.

This is not too surprising, since in our approach, the role of external events is to
keep track of the information about the possible changes on shared variables by differ-
ent processes. During the refinement of a sub-process, we need to take into account the
effect of these external events so that they do not “interfere” with the development of
this sub-process. The main advantage of our approach over the work from Owicki/Gries
is that these external events are at the abstract level rather than concrete statements as
defined in the interference-free conditions. This reduces the complexity of the verifica-
tion process.

Compared to the Owicki/Gries approach, our method is closer to the rely/guarantee
approach of Jones [14]. The approach extends the notion of Hoare’s triple {P} S {Q}
to encode the rely condition R and guarantee condition G. By definition, a condition
{P,R} S {G, Q} is satisfied by S if: under the assumptions that S starts in state satisfies
the precondition P , and any external transition satisfies the rely condition R; then S
ensures that any internal transition of S satisfies the guarantee condition G, and if S
terminates then the final state satisfies postcondition Q.

We focus on an example rule for parallel composition.

PAR-I

R _G1 ) R2 (RG1)
R _G2 ) R1 (RG2)
G1 _G2 )G (RG3)
{P, R1}S1{G1, Q1} (RG4)
{P, R2}S2{G2, Q2} (RG5)

{P, R} S1 || S2 {G, Q1 ^Q2}

The rule is interpreted as follows. Statement S1 || S2 satisfies {P,R} S1 || S2 {G, Q1^
Q2} if the following conditions are met. Firstly, both “global” rely condition R and
the guarantee condition of one statement ensure the rely condition of the other (RG1

and RG2). Secondly, both guarantee conditions of the two statements ensure the global
guarantee condition G (RG3). Lastly, S1 and S2 independently satisfy their correspond-
ing rely/guarantee condition (RG4 and RG5)

Note that both rely and guarantee conditions are relations over two states. They
are indeed similar to events in Event-B which correspond to a relations over pre-/post-
states. Moreover, the implication between rely/guarantee conditions is the same as event
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refinement. Within our approach, a pair of internal/external events encodes rely/guarantee
conditions where the rely condition corresponds to the external event and the guarantee
condition corresponds to the internal event. The generation of external events guar-
antees that they are the abstractions of the corresponding internal events. In fact, our
generation of sub-models as described in Section 2.3 guarantees that the resulting sub-
models satisfy the parallel composition rule. This is the advantage of our approach over
the rely/guarantee method. In fact the external events are the strongest possible condi-
tion that the other process can rely on. In practise, the rely/guarantee conditions could
be more abstract, e.g. requires only that the value of some variables decrease mono-
tonically [16]. Moreover, rely/guarantee is usually used for composition rather than
decomposition as in [1].

The decomposition technique also appears in many other approaches, with similar
intuition: Breaking a specification into smaller pieces and reasoning about them inde-
pendently. For example, in the work of Abadi/Lamport [1], this is captured by their De-
composition Theorem and a generalised version of it. The most important idea in their
approach is to find some properties E (also called environment) of the other processes
assumed by a process. However, in another study, Lamport claimed that decomposition
might not be that useful [17]. One of the argument is the difficulty in inventing the
environment properties and checking the hypotheses of the decomposition theorem. In
our approach, we derive these properties from the overall purpose of the program using
refinement (step 2 of our approach). This is also the reason why we consider the class
of parallel programs that achieve some intended result.

Stepwise refinement has been considered for developing parallel systems in Action
System in early work of Back/Sere [8,9]. The shared variable decomposition in Event-B
corresponds to their notion of concurrent action system (in contrast to distributed action
system with shared actions). However, the approach presented in [8] based on the notion
of refining atomicity introduces the notion of parallelism quite late in the development
(almost as the last step of the refinement chain). The reason for this delay is that the
decision for implementing the system as concurrent action system or distributed action
system can be made as late as possible. In our example, we have this decision of using
shared variables in advance. Hence we can take the advantage of having the decompo-
sition early to reduce the complexity. We consider the use of shared variables as a part
of the design process of the program rather than an implementation detail.

5.2 Conclusion

We have presented a method for developing parallel programs using refinement and de-
composition techniques. Refinement gives us the possibility to abstractly define the aim
of the programs which helps us to understand the purpose of these programs. Decompo-
sition allows us to reduce the complexity of the development by separately developing
sub-processes while keeping track of minimum information on what other processes
can do. Our approach should be applicable to all programs that use several parallel
processes in order to obtain a certain goal.

Our approach introduces the possible interaction between processes early in the
development in order to take the advantage of decomposition. This is different from
the approach where one develops processes according to the implementation of the
process with possible cheating (e.g. one process directly looks into the value of the
other process), and subsequently refines the model until there is no more cheating. This



14

approach has been proposed in [3] and is used in many other examples. Applying this
approach without using decomposition, the two processes are developed together, and
hence the development also has higher complexity comparing to our approach.

The key aspect of our development using decomposition lies in the model that is
being decomposed, where we have to abstractly specify the effect of the two future
processes on shared variables. We use the overall intended result of the program to help
us to derive the requirement on the future processes. Furthermore, as a result of using
step-wise refinement, we can develop sub-processes using different implementations as
long as they satisfy the abstraction. As an example, we can also “implement” the two
processes (inefficiently) by not checking the published values of the other processes or
having more fine-grained version of atomicity.

For future work, we would like to apply our method to other standard parallel pro-
grams (not necessarily ones with intended final result) known from literature, such as
“bounded buffer”, “partition of set” or “bubble-lattice sort”, which have been studied
using other approaches [10]. Our approach should not only be used for verification a
posteriori but also for finding proofs of correctness for such systems.
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