
Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Event-B Decomposition for Parallel Programs

Thai Son Hoang and Jean-Raymond Abrial

Department of Computer Science
Swiss Federal Institute of Technology Zürich (ETH Zürich)

ABZ2010, 22nd-25th February, 2010
Orford, Québec, Canada

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 1 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Motivation

Parallel programs.

Event-B for discrete transition systems.

Formal reasoning about parallel programs.

Work on “interference-free” (by S. Owicki and D. Gries).

Work on Rely/Guarantee (by C. Jones)

Conjoining specifications (M. Abadi and L. Lamport)

Parallel programs with Action Systems (R-J. Back and K. Sere)

etc.

Example: the FindP program.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 2 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Outline

1 Motivation

2 Example. The “FindP” Program

3 Decomposition

4 Formal Development
Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

5 Conclusions

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 3 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

The FindP Program. Overview

ARRAY

1 2 3 . . . M

F F T . . . T

Purpose of the FindP Program

Finding the first index k of a boolean array ARRAY , if there is one, such
that ARRAY (k) = T . Otherwise, return M + 1.

The program use two parallel processes
to check two parts PART1 and PART2 of the array separately.

Each process publishes the first index that it finds.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 4 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. First Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

7

1

7

2

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 5 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. First Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

7

3

7

2

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 5 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. First Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

7

3

7

4

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 5 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. First Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

7

3

4

4

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 5 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. First Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

3

3

4

4

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 5 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. First Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

3

3

4

4

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 5 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. Second Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

7

1

7

2

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 6 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. Second Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

7

3

7

2

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 6 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. Second Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

3

3

7

2

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 6 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. Second Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

3

3

7

4

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 6 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. Second Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

3

3

7

4

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 6 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP. Second Animation

ARRAY

1 2 3 4 5 6

F F T T F T

published value

current index

final resultprocess1 process2

3

3

7

4

3min

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 6 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP with Parallel Processes

Main programs

index1, index2 := min(PART1),min(PART2);
publish1, publish2 := M + 1,M + 1;
process1 || process2;
k := min({publish1, publish2})

Process: process1

while index1 < min({publish1, publish2}) do
if ARRAY (index1) = T then
publish1 := index1

else
index1 := the-next-index-in-PART1

end
end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 7 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

FindP with Parallel Processes

Main programs

index1, index2 := min(PART1),min(PART2);
publish1, publish2 := M + 1,M + 1;
process1 || process2;
k := min({publish1, publish2})

Process: process1

while index1 < min({publish1, publish2}) do
if ARRAY (index1) = T then
publish1 := index1

else
index1 := the-next-index-in-PART1

end
end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 7 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

A Detour. Atomicity Assumptions

Shared variables: written by one process, read by the other process.

Local variables: written and read by only one process.

Statements involving only local tests and actions
can be performed concurrently.

Elementary atomic action:

local_variable := shared_variable .

Extended atomic action:

if local_tests then
local_variable := shared_variable
local_actions

end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 8 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Unfolding process1 (1/2)

Original process1

while index1 < min({publish1, publish2}) do
if ARRAY (index1) = T then
publish1 := index1

else
index1 := the-next-index-in-PART1

end
end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 9 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Unfolding process1 (2/2)
Original process1

while index1 < min({publish1, publish2}) do
if ARRAY (index1) = T then
publish1 := index1

else
index1 := the-next-index-in-PART1

end
end

Unfold process1

1 : (read) read1 := publish2;
2 : if index1 < min({publish1, read1}) then

if ARRAY (index1) = T then
(found) publish1 := index1 ; goto 3(end);

else
(inc) index1 := the-next-index-in-PART1 ; goto 1(read);

end
else

(not_found) goto 3(end)
end

3 : (end)

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 10 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Decomposition. An Overview

MM

M1 . . . Mk

decomp. decomp.

N1 . . . Nk

refined refined

N

comp. comp.

refines

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 11 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Decomposition. An Overview

MM

M1 . . . Mk

decomp. decomp.

N1 . . . Nk

refined refined

N

comp. comp.

refines

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 11 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Decomposition. An Overview

MM

M1 . . . Mk

decomp. decomp.

N1 . . . Nk

refined refined

N

comp. comp.

refines

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 11 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Shared Variables Decomposition in Event-B

Sub-models share variables.

The set of internal events of sub-models are disjoint.

Each models having a set of external events
to model the effect of these events on shared variables.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 12 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

An Example (1/2)

Assume model M has the following events:
e1(a), e2(a, c), e3(b, c), e4(b).

Events partition (chosen by the developer):
M1: e1, e2.
M2: e3, e4.

Variables distribution (derived from events partition):
M1: Private variable a, shared variable c.
M2: Private variable b, shared variable c.

Result:
M1: Internal events e1(a), e2(a, c), external event (ext_)e3(c).
M2: Internal events e3(b, c), e4(c), external event (ext_)e2(c).

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 13 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

An Example (2/2)

M1

a, c

e1(a)

e2(a, c)

M2

b, c

e3(b, c)

e4(b)

(ext_)e3(c)

(ext_)e2(c)refines

refines

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 14 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Constructing External Events

Informally ...

(ext_)e2 is the projection of e2
on the state containing only external variables c .

More precisely ...

M1(a, c)

e2
any t where
G (t, a, c)

then
a, c :| Q(t, a, c , a′, c ′)

end

M2(b, c)

(ext_)e2
any t, a where
G (t, a, c)

then
c :| ∃a′ ·Q(t, a, c , a′, c ′)

end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 15 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Our Approach

A FORMAL approach combining refinement and decomposition
1 Specify in-one-shot to give the purpose of the program.

2 Refine the above specification by introducing the shared variables.

3 Decompose the model in the previous step according to processes.

4 Develop each sub-model from the previous step independently.

Key aspects

Step 2: Derive the specification of future processes
from the intended final result of the program.

Step 4: Develop a process with the abstraction of other processes.

Step 4: Refinement allows us to have different implementations.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 16 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Our Approach

A FORMAL approach combining refinement and decomposition
1 Specify in-one-shot to give the purpose of the program.

2 Refine the above specification by introducing the shared variables.

3 Decompose the model in the previous step according to processes.

4 Develop each sub-model from the previous step independently.

Key aspects

Step 2: Derive the specification of future processes
from the intended final result of the program.

Step 4: Develop a process with the abstraction of other processes.

Step 4: Refinement allows us to have different implementations.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 16 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Our Approach

A FORMAL approach combining refinement and decomposition
1 Specify in-one-shot to give the purpose of the program.

2 Refine the above specification by introducing the shared variables.

3 Decompose the model in the previous step according to processes.

4 Develop each sub-model from the previous step independently.

Key aspects

Step 2: Derive the specification of future processes
from the intended final result of the program.

Step 4: Develop a process with the abstraction of other processes.

Step 4: Refinement allows us to have different implementations.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 16 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Our Approach

A FORMAL approach combining refinement and decomposition
1 Specify in-one-shot to give the purpose of the program.

2 Refine the above specification by introducing the shared variables.

3 Decompose the model in the previous step according to processes.

4 Develop each sub-model from the previous step independently.

Key aspects

Step 2: Derive the specification of future processes
from the intended final result of the program.

Step 4: Develop a process with the abstraction of other processes.

Step 4: Refinement allows us to have different implementations.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 16 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Our Approach

A FORMAL approach combining refinement and decomposition
1 Specify in-one-shot to give the purpose of the program.

2 Refine the above specification by introducing the shared variables.

3 Decompose the model in the previous step according to processes.

4 Develop each sub-model from the previous step independently.

Key aspects

Step 2: Derive the specification of future processes
from the intended final result of the program.

Step 4: Develop a process with the abstraction of other processes.

Step 4: Refinement allows us to have different implementations.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 16 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

The Context

The Context

ARRAY

1 2 3 . . . M

F F T . . . T

constants: M,ARRAY

axioms:
axm0_1 : M ∈ N1
axm0_2 : ARRAY ∈ 1 .. M → BOOL

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 17 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

Step 1. The One-shot Specification

The state and events

ARRAY

1 2 3 . . . M

F F T . . . T

variables: result
invariants:

inv0_1 : result ∈ Z

init
begin

result :∈ Z
end

final
any k where

k ∈ 1 .. M + 1
∀j ·j ∈ 1 .. k − 1⇒ ARRAY (j) = F
k 6= M + 1⇒ ARRAY (k) = T

then
result := k

end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 18 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

Step 2. Introducing the Shared Variables (1/5)

The published values of two processes

variables: . . . , finish1, finish2, publish1, publish2

init
begin

. . .
finish1 := F
finish2 := F
publish1 := M + 1
publish2 := M + 1

end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 19 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

Step 2. Introducing the Shared Variables (2/5)
Refinement of the final event

(abs_)final
any k where

k ∈ 1 .. M + 1
∀j ·j ∈ 1 .. k − 1⇒ ARRAY (j) = F
k 6= M + 1⇒ ARRAY (k) = T

then
result := k

end

(conc_)final
when
finish1 = T
finish2 = T

with
k = min({publish1, publish2}

then
result := min({publish1, publish2})

end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 20 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

Step 2. Introducing the Shared Variables (3/5)

The invariants

invariants:
publish1 6= M + 1⇒ finish1 = T
publish1 6= M + 1⇒ publish1 ∈ PART1
publish1 6= M + 1⇒ ARRAY (publish1) = T
publish1 6= M + 1⇒

(∀i ·i ∈ PART1 ∧ i < publish1⇒ ARRAY (i) = F)

finish1 = T ∧ publish1 = M + 1⇒
(∀i ·i ∈ PART1 ∧ i < publish2⇒ ARRAY (i) = F)

. . .

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 21 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

Step 2. Introducing the Shared Variables (4/5)

found_1 event

invariants:
publish1 6= M + 1⇒ publish1 ∈ PART1
publish1 6= M + 1⇒ ARRAY (publish1) = T
publish1 6= M + 1⇒

(∀i ·i ∈ PART1 ∧ i < publish1⇒ ARRAY (i) = F)

found_1
any k where

finish1 = F
k ∈ PART1
ARRAY (k) = T
∀i ·i ∈ PART1 ∧ i < k⇒ ARRAY (i) = F
publish1 = M + 1

then
finish1, publish1 := T , k

end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 22 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

Step 2. Introducing the Shared Variables (5/5)

not_found_1 event

invariants:
finish1 = T ∧ publish1 = M + 1⇒

(∀i ·i ∈ PART1 ∧ i < publish2⇒ ARRAY (i) = F)

not_found_1
when
finish1 = F
∀i ·i ∈ PART1 ∧ i < publish2⇒ ARRAY (i) = F

then
finish1 := T

end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 23 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

Step 3. Decomposition

Event partition

main: final

process1: not_found_1 and found_1.

process2: not_found_2 and found_2.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 24 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

Step 4. Further Refinements (1/2)

Constraints during refinement

Shared variables cannot be removed.

External events cannot be changed.

External events must preserve the newly introduced invariants.

Superposition refinements strategy
1 1st Ref.: Introducing the local index of the array.

2 2nd Ref.: Introducing the read value.

3 3rd Ref.: Introducing the address counter for sequencing the events.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 25 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

Step 4. Further Refinements (2/2)

Final events of process1

read1
when
address1 = 1

then
address1, read1 := 2, publish2

end

not_found_1
when
address1 = 2
¬(index1 < min({publish1, read1}))

then
address1, finish1 := 3,T

end

found_1
when
address1 = 2
index1 < min({publish1, read1})
ARRAY (index1) = T

then
address1 := 3
finish1 := T
publish1 := index1

end

inc_1
any i where
address1 = 2
index1 < min({publish1, read1})
ARRAY (index1) = F
i 6= M + 1⇒ i ∈ PART1
index1 < i
∀j ·j ∈ PART1 ∧ index1 < j ⇒ i ≤ j

then
address1, index1 := 1, i

end

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 26 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Step 1. The Specification
Step 2. Introducing the Shared Variables
Step 3. Decomposition
Step 4. Further Refinements
Proof Statistics

Proof Statistics

Proof Statistics
Developing using the RODIN Platform with decomposition plug-in.

Model Total Auto.(%) Manual (%)
Initial context 0 0 (N/A) 0 (N/A)
Initial model 3 3 (100%) 0 (0%)
First extended context 0 0 (N/A) 0 (N/A)
First refinement 46 44 (96%) 2 (4%)
First sub-refinement 14 10 (71%) 4 (29%)
Second sub-refinement 6 5 (83%) 1 (17%)
Third sub-refinement 22 16 (73%) 6 (27%)
Total 91 78 (86%) 13 (14%)

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 27 / 32

Motivation
Example. The “FindP” Program

Decomposition
Formal Development

Conclusions

Conclusions and Future Work

Decomposition allows us to reduce the complexity
in developing parallel programs.

The interactions between processes are introduced early
in the development.

Apply the method to other standard parallel programs.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 28 / 32

Appendix For Further Reading
Related Work

For Further Reading I

J-R. Abrial.
Event model decomposition,.
ETH Zurich Tech. Rep., 2009.

C. Jones.
Splitting atoms safely,.
Theor. Comput. Sci., 2007.

S. Owicki and D.Gries.
An Axiomatic Proof Technique for Parallel Programs I.
Acta Inf. 6, 1976.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 29 / 32

Appendix For Further Reading
Related Work

Interference-free

Notion “Interference-free” from Owicki-Gries.

Consider a proof of {P}S{Q} and a statement T with precondition
pre(T), T does not interfere with {P}S{Q} if

Inf1 {Q ∧ pre(T)}T{Q}.

Inf2 Let S ′ be any statement within S , then
{pre(S ′) ∧ pre(T)}T{pre(S ′)}

Compare to our work:
S is an internal event of process1.
T is an external event of process1.
The condition Inf1 is proved at the level before decomposing.
S ′ is introduced during the refinement of S .
pre(S ′) are the invariants introduced during refinement.
The condition Inf2 is proved during refinement:

external event preserves invariants.
Advantage of our approach: T is at the abstract level.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 30 / 32

Appendix For Further Reading
Related Work

Interference-free

Notion “Interference-free” from Owicki-Gries.

Consider a proof of {P}S{Q} and a statement T with precondition
pre(T), T does not interfere with {P}S{Q} if

Inf1 {Q ∧ pre(T)}T{Q}.

Inf2 Let S ′ be any statement within S , then
{pre(S ′) ∧ pre(T)}T{pre(S ′)}

Compare to our work:
S is an internal event of process1.
T is an external event of process1.
The condition Inf1 is proved at the level before decomposing.
S ′ is introduced during the refinement of S .
pre(S ′) are the invariants introduced during refinement.
The condition Inf2 is proved during refinement:

external event preserves invariants.
Advantage of our approach: T is at the abstract level.

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 30 / 32

Appendix For Further Reading
Related Work

Rely/Guarantee (1/2)

Rely/Guarantee method from Jones.

Extending the Hoare’s triple to include the Rely/Guarantee
conditions R and G , i.e. {P, R}S{G , Q}.

An example rule for parallel composition

PAR-I

R ∨ G1⇒ R2

R ∨ G2⇒ R1

G1 ∨ G2⇒ G
{P, R1}S1{G1, Q1}
{P, R2}S2{G2, Q2}

{P, R}S1||S2{G , Q1 ∧ Q2}

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 31 / 32

Appendix For Further Reading
Related Work

Rely/Guarantee (2/2)

The rely/guarantee condition are relations over the two states.

A pair of external/internal events
External event: Rely condition.
Internal event: Guarantee condition.

⇒ relation of rely/guarantee conditions becomes event refinement.

The generated pair of external/internal events
satisfies the rules for parallel composition.

However, this generated external events might be too “concrete”.

In the FindP example, the external events just need to guarantee
to decrease the published value monotonically.

User-defined external events?

T.S. Hoang and J-R. Abrial (ETH-Zürich) Event-B Decomp. for Parallel Prog. ABZ2010, 22-25/02/10 32 / 32

	Motivation
	Example. The ``FindP'' Program
	Decomposition
	Formal Development
	Step 1. The Specification
	Step 2. Introducing the Shared Variables
	Step 3. Decomposition
	Step 4. Further Refinements
	Proof Statistics

	Conclusions
	Appendix
	Appendix
	For Further Reading
	Related Work

