
Formal System Modelling
Using Abstract Data Types in Event-B

Andreas Fürst1, Thai Son Hoang1, David Basin1, Naoto Sato2, and Kunihiko
Miyazaki2

1 Institute of Information Security, ETH-Zurich, Switzerland
fuersta,htson,basin@inf.ethz.ch

2 Yokohama Research Lab, Hitachi Ltd., Japan
naoto.sato.je,kunihiko.miyazaki.zt@hitachi.com

Abstract. We present a formal modelling approach using Abstract Data Types
(ADTs) for developing large-scale systems in Event-B. The novelty of our ap-
proach is the combination of refinement and instantiation techniques to manage
the complexity of systems under development. With ADTs, we model system
components on an abstract level, specifying only the necessary properties of the
components. At the same time, we postpone the introduction of their concrete
definitions to later development steps. We evaluate our approach using a large-
scale case study in train control systems. The results show that our approach
helps reduce system details during early development stages and leads to simpler
and more automated proofs.
Keywords: Event-B, refinement, abstract data types.

1 Introduction

Event-B [3] is a formalism for developing systems whose components can be modelled
as discrete transition systems. An Event-B model contains two parts: a dynamic part
(called machines) modelled by a transition system and a static part (called contexts)
capturing the model’s parameters and assumptions about them. Event-B’s main tech-
nique to cope with system complexity is stepwise refinement, where design details are
gradually introduced into the formal models. Refinement enables abstraction of ma-
chines, and since abstract machines contain fewer details than concrete ones, they are
usually easier to verify.

However, when developing large, complex systems, refinement alone is often insuf-
ficient. Machines containing sufficient details to state and prove relevant safety proper-
ties may lead to proofs of unmanageable complexity. We observed this limitation while
developing a large-scale train control system by refinement in Event-B. To specify and
reason about collision-freeness properties, we needed to model the trains in detail, for
example formalising their layout and movement. As a consequence, we had to state
numerous complex invariants which resulted in many complicated manual proofs. This
motivated an alternative approach to abstract away additional details from the system’s
model to reduce the complexity and increase the automation of the resulting proofs.

Thái Sơn Hoàng
The original publication is available at http://dx.doi.org/10.1007/978-3-662-43652-3_20
In Proceedings of ABZ 2014 Conference © Springer

Approach. To model a system at a more abstract level, we introduce the notion of
Abstract Data Types (ADTs) [16] in Event-B. An ADT is a mathematical model of a
class of data structures. It is typically defined in terms of a set of operations that can be
performed on the ADT, along with a specification of their effect. By using Event-B con-
texts to formalise ADTs and their operations, we can subsequently utilise the ADTs to
model the system’s dynamic behaviour in the machines. We use generic instantiation [5]
as a means to further concretise and thereby implement the ADTs. As the ADTs evolve,
the machines are also refined accordingly.

We evaluate our approach by developing a substantial industrial case study in the
railway domain. Given an informal specification of a train control system, we incremen-
tally develop a formal model of the overall system. This includes modelling the trains,
the interlocking system, and the train controller. The complexity of the case study is
comparable with that of real train control systems such as CBTC [15] or ETCS Level
3 [6]. We develop the controller all the way to a concrete implementation that runs on
specialised hardware. To our knowledge, this is the first published development of a
train control system on the system level, i.e., modelling the train controller together
with its environment, that is correct-by-construction.

Contribution. Our contribution is the introduction of ADTs in Event-B. We show that
reasoning using ADTs can be done purely based on the properties of the ADTs’ opera-
tions, regardless of how the ADTs will be implemented. As a result, systems specified
with ADTs are more abstract and hence easier to verify than systems developed directly
without them. In fact, ADTs encapsulate part of the system’s dynamic behaviour in the
static context of Event-B. This is novel as traditionally Event-B contexts are only used
to specify static parameters of a system’s model and all dynamic behaviour is mod-
elled as a transition system in the Event-B machines. Furthermore, our use of generic
instantiation in Event-B is novel as this technique has until now only been applied to
reuse developments, for example in [19]. In contrast, we use generic instantiation as a
mechanism to gradually introduce details into the formal models similar to refinement.

The way we introduce ADTs in Event-B allows ADTs to be used alongside Event-B
refinement. Hence, one can combine these two different abstraction techniques during
development and apply whichever fits better at a particular development stage and re-
sults in simpler proofs. In contrast to development strategies that use refinement or
ADTs exclusively, our approach is better suited for developing large-scale industrial
systems.

Structure. The rest of our paper is structured as follows. In Section 2, we briefly
review Event-B, including refinement and instantiation techniques. We motivate and
present our approach in Section 3. We evaluate our approach on an industrial case study
in Section 4. Finally, we discuss related work in Section 5 and conclude in Section 6.

2 The Event-B Modelling Method

Event-B [3] represents a further evolution of the classical B-method [1], which has been
simplified and focused around the general notion of events. Event-B has a semantics
based on transition systems and simulation between such systems. We will not describe
in detail Event-B’s semantics here; full details are provided in [3]. Instead, we will
describe some Event-B modelling concepts that are important for the later presentation.

Event-B models are organized in terms of the two basic constructs: contexts and
machines.

Contexts. Contexts specify the static part of a model and may contain carrier sets,
constants, axioms, and theorems. Carrier sets are similar to types. Axioms constrain
carrier sets and constants, whereas theorems express properties derivable from axioms.
The role of a context is to isolate the parameters of a formal model (carrier sets and
constants) and their properties, which are intended to hold for all instances.

Machines. Machines specify behavioral properties of Event-B models. Machines may
contain variables, invariants, theorems, and events. Variables v define the state of a
machine. They are constrained by invariants I (v). Theorems are properties derivable
from the invariants. Possible state changes are described by events. An event e can be
represented by the term

e b= any t where G(t , v) then S (t , v) end ,

where t is the event’s parameters, G(t , v) is the event’s guard (the conjunction of one
or more predicates), and S (t , v) is the event’s action. The guard states the condition
under which an event may occur, and the action describes how the state variables evolve
when the event occurs. The action of an event is composed of one or more assignments
of the form x := E (t , v), where x is a variable in v . Assignments in Event-B may also
be nondeterministic, but we omit this additional complexity here as it is not used in this
paper. All assignments of an action S (t , v) occur simultaneously. A dedicated event
without any parameters or guard is used for initialisation.

Refinement. Refinement provides a means to gradually introduce details about the
system’s dynamic behaviour into formal models [3]. A machine CM can refine another
machine AM. We call AM the abstract machine and CM the concrete machine. The
states of the abstract machine are related to the states of the concrete machine by gluing
invariants J (v ,w), where v are the variables of the abstract machine and w are the
variables of the concrete machine. A special case of refinement (called superposition
refinement) is when v is kept in the refinement, i.e. v ✓ w . Intuitively, any behaviour
of CM can be simulated by a behaviour of AM with respect to the gluing invariant
J (v ,w).

Refinement can be reasoned about on a per-event basis. Each event e of the abstract
machine is refined by one or more concrete events f. Simplifying somewhat, we can
say that f refines e if f’s guard is stronger than e’s guard (guard strengthening), and the
gluing invariants J (v ,w) establish a simulation of f by e (simulation).

Instantiation. Instantiation is a common technique for reusing models by providing
concrete values for abstract model parameters. Since an Event-B model is parameterised
by the carrier sets and constants, instantiation in Event-B [5,19] amounts to instantiating
the contexts.

Suppose we have a generic development with machines M1, . . . ,Mn building a
chain of refinements with carrier sets s and constants c, constrained by axioms A(s, c).
Suppose too that we want to reuse the development within another context, speci-
fied by (concrete) carrier sets t and constants d , constrained by axioms B(t , d). Let
T (t), which must be an Event-B type expression, and E(t , d) be the instantiated val-
ues for s and c respectively. Given that the instantiation is correct, i.e., B(t , d))
A(T (t), E(t , d)), the instantiated development where s and c are replaced by their
corresponding instantiated values is correct-by-construction.

For more details on instantiation in Event-B and its tool support see [5] and [19]. All
instantiation steps described in this paper were performed using the generic instantiation
plug-in developed by Hitachi and ETH Zurich [13].

3 Abstract Data Types in Event-B

In this section, we describe how to specify and implement ADTs in Event-B. Our ap-
proach is based on refinement and generic instantiation. An ADT is typically defined
in terms of a set of operations that can be performed on the ADT, along with a specifi-
cation of their effect. Let us start with the standard example: the stack ADT is a last in
first out (LIFO) data type that contains a collection of elements.

A stack is characterised by three operations:

– push: takes a stack S and an item e , and returns a new stack where e is added to
the top of S .

– pop: takes a (non-empty) stack S and returns a new stack where S ’s top element is
removed.

– top: takes a (non-empty) stack S and returns S ’s top element.

A special stack is the empty stack that contains no elements. Some important con-
straints for the operations of the stack ADT are as follows. Given a stack S and an
element e , push(S , e) 6= empty , pop(push(S , e)) = S , and top(push(S , e)) = e .

Specifying ADTs in Event-B. ADTs and their operations can be modelled using car-
rier sets, constants and axioms in Event-B. Instantiation can then be used to “imple-
ment” the ADTs. The instantiation proofs ensure that the ADTs’ implementations sat-
isfy their specifications.

Each ADT A is modelled as follows:

– A carrier set A TYPE defining the type of the A objects along with an associated
– set constant A ✓ A TYPE representing all valid A objects. 3

3 Note that we do not currently support the definition of parameterised ADTs, which would
allow one to specify a generic stack ADT independent of its elements’ type.

– Each operation is modelled using a constant.
– The constraints on the operations are specified using axioms.

Consider the stack ADT for elements of type ELEM . It can be modelled in Event-B
as follows.

sets : STACK TYPE constants : STACK , empty , push, pop, top
axioms :

axm0 1 : STACK ✓ STACK TYPE
axm0 2 : empty 2 STACK
axm0 3 : push 2 STACK ⇥ ELEM ! STACK
axm0 4 : pop 2 STACK \ {empty}! STACK
axm0 5 : top 2 STACK \ {empty}! ELEM
axm0 6 : 8S , e ·S 2 STACK) push(S 7! e) 6= empty
axm0 7 : 8S , e ·S 2 STACK) pop(push(S 7! e)) = S
axm0 8 : 8S , e ·S 2 STACK) top(push(S 7! e)) = e

Axioms axm0 7 and axm0 8 specify the relationship between the pop, top, and push
operations. Notice that there is no need to fully specify an ADT. In subsequent exam-
ples, we will only define as many axioms as needed to prove the stated properties.

Instantiating ADTs. A possible implementation of the stack ADT is one where a stack
is represented as an array. More formally, a stack is represented by a pair (f, n), where
n is the stack’s size and f is an array of size n representing its content. In other words,
we intend to implement the stack ADT by the array datatype. Operations of the array
datatype are as follows:

– append : takes an array and an element, and returns a new array where the element
is appended to the end of the input array.

– front : takes an array and returns a new array where the last element of the input
array is removed.

– last : takes an array and returns the last element of the input array.

The array datatype is specified in Event-B as follows.

constants : ARRAY , append , front , last
axioms :

axm1 1 : ARRAY = {f 7! n | n 2 N ^ f 2 0 .. n� 1! ELEM }
axm1 2 : append = (� (f 7! n) 7! e·f 7! n 2 ARRAY ^ e 2 ELEM

| (f C� {n 7! e}) 7! n+ 1)

axm1 3 : front = (� f 7! n·f 7! n 2 ARRAY ^ n 6= 0

| (({n� 1}C� f) 7! n� 1))

axm1 4 : last = (� f 7! n·f 7! n 2 ARRAY ^ n 6= 0 | f(n� 1))

Notice that at this point all the constants are concretely defined by lambda expressions.
To prove that the array datatype implements the stack ADT, we instantiate STACK TYPE

with P(Z⇥ELEM)⇥Z, STACK with ARRAY , and the operations push , pop, and top

with append , front , and last , respectively. Constant empty is instantiated with ? 7! 0.
We must prove that the instantiated abstract axioms, i.e., axm0 1–axm0 8, are deriv-
able from the concrete axioms, i.e., axm1 1–axm1 4. The proofs can be constructed by
expanding the definitions of the concrete constants accordingly.

For more information on how to implement ADTs in Event-B using generic instan-
tiation, we refer the reader to [7].

4 Developing a Train Control System Using ADTs

In this section, we illustrate our approach on an industrial case study. We first briefly
describe the system and explain the difficulties when developing such a complex system
without ADTs. We then present part of the development where we applied our approach
using ADTs. Finally, we evaluate our approach by giving an overview of the entire
development of this case study together with some statistics to justify our approach’s
effectiveness.

4.1 System Description

The scope of our case study is the development of a modern train control system. The
main goal of the system is to keep all trains in the railway network a safe distance apart
to prevent collisions. The network consists of tracks (divided into sections) and points
connecting these tracks. An interlocking system switches the points to connect different
tracks with each other, and results in a track layout that dynamically changes. Instead
of light signals, the train control system uses radio communication to send the trains the
permission to move or stop.

While classic train control systems use trackside hardware to detect whether a sec-
tion is occupied by a train, our system determines this information from the trains’
position and length. The trains themselves determine their positions and send them to
the train control system by radio. Based on information on what part of the network is
occupied, the controller calculates for every train the area in which it can safely move
without collisions. This area is called the Movement Authority (MA) and represents the
permission for a train to move as long as it does not leave this area. The calculated MAs
are then directly sent to the trains where an onboard unit interprets them to calculate the
location where the permission to drive ends (Limit of Authority, LoA). To prevent driv-
ing over the LoA, the onboard unit continuously determines a speed limit and applies
the emergency brakes if necessary. An overview of the interacting system components
is given in Figure 1.

Collision-freeness between trains is guaranteed by the overall system and relies on
two conditions: (1) The trains are always within their assigned movement authorities,
and (2) the controller ensures that the MAs issued to the trains do not overlap. In fact,
(1) is implementable only if the MAs issued by the controller are never reduced at the
front of the trains.

train&train& train&control&
system&

interlocking&
system&

train&

track&
occupa2on&

permission&by&
limit&of&authority&

train&posi2on&

route&
se6ng&

Fig. 1: Train control system with the interlocking system as its environment.

4.2 The Need for Abstraction

Our first challenge in developing the train control system is formalising the trains in the
network. Figure 2 depicts a train occupying some part of the network. It illustrates a
sequence of sections with fully occupied ones in the middle and partially occupied ones
at each end of the train.

sequence&of&sec2ons&Fig. 2: A train occupying a sequence of sections.

In our first attempt at modelling the train control system, we used different vari-
ables to denote how the trains occupy the network. Let ids be the set of active trains in
the network. We modelled the different aspects of the trains, such as their head, rear,
middle, connections, etc., by total functions as follows. For clarity, we omit from the
presentation other aspects of the trains, such as the head- and rear-position within a
section.

variables : ids , head , rear ,middle, connection, . . .
invariants :

inv0 1 : head 2 ids ! SECTION
inv0 2 : rear 2 ids ! SECTION
inv0 3 : middle 2 ids ! P(SECTION)

inv0 4 : connection 2 ids ! (SECTION 7⇢ SECTION)

inv0 5 : 8t ·t 2 ids) head(t) /2 middle(t)
inv0 6 : 8t ·t 2 ids) rear(t) /2 middle(t)
inv0 7 : 8t ·t 2 ids ^ connection(t) = ?) head(t) = rear(t)
. . .

Invariants inv0 5–inv0 7 specify several important properties of trains. For example,
inv0 7 specifies that if a train occupies only one single section, its head and rear are in
the same section. Note that due to the lack of space, we omit other invariants that ensure
that trains are connected and do not contain loops.

To motivate the need for additional abstraction in Event-B, we focus on the event
train extend. Its purpose is to extend the train, denoted by t , to a section, denoted by s .
Namely, train extend prepends s to the head of the train and s becomes the new head.
This event is used whenever the train reaches the end of the current head section and
moves to the beginning of the next section in front of it.

train extend :

any t , s where

t 2 ids
s /2 dom(connection(t))
head(t) /2 ran(connection)

then

head(t) := s
middle(t) := (middle(t) [{head(t)}) \ {rear(t)}
connection(t) := connection(t) [{s 7! head(t)}

end

The event’s guard ensures that the connection of t remains a partial injective func-
tion (inv0 4). When updating middle(t), we remove rear(t) to guarantee that in the
case where the train occupies only one section (i.e., connection(t) = ? and hence
head(t) = rear(t), according to inv0 7), the train’s middle is still empty afterwards.

Proving that train extend maintains the invariants, in particular inv0 5, requires
more invariants, which we omit for clarity. All additional invariants are universally
quantified, i.e., of the form “8t ·t 2 ids) . . .” and they express the relationship be-
tween different aspects of a train.

Encapsulation. The invariants above describe the trains’ layouts that change indepen-
dently of each other. As a result, the preservation of the invariants should be proven on
a per train basis and by hiding the rest of the model. In Event-B, however, invariants are
global and all other parts of the system are taken into account during the proof, which
increases their complexity. This indicates that some encapsulation for the models of
trains will be useful for our proofs.

High-level Properties of Low-level Details. An attempt to specify and prove prop-
erties such as collision-freeness at a concrete level like that described above leads to
complicated models and difficult proofs. In particular, expressing relationships between
sequences, such as “containment” (e.g., a train is always within its movement authority)
and “being disjoint” (e.g., the movement authorities of two different trains do not over-
lap) using information about the sequences’ head, rear, middle and connections, is far
from trivial. This indicates that we should start modelling the system at an even more
abstract level by omitting the detailed aspects of the sequences.

Reuse. In addition to the above mentioned difficulties, another motivation for using
ADTs in our development is that modelling the trains’ movement authorities is similar
to modelling the trains. In fact, both trains and their MAs should be modelled using the
same ADT.

4.3 Development using Abstract Data Types

The Region ADT. Abstracting away the details of sequences, such as head, rear, mid-
dle, and connections, we start our modelling with an ADT corresponding to regions on a
network, focusing on relationships between regions such as “contained” and “disjoint”.
The region ADT includes the following operations:

– extend : takes a region R and a section s , and returns a new region where s is added
to R.

– contained : binary relation associating a region R1 with every region R2 that con-
tains R1.

– disjoint : binary relation associating two regions R1 and R2 with each other if they
do not overlap.

Note that there are other operations of the region ADT that we omit for clarity.
In Event-B, this ADT is modelled as follows. Constants contained , disjoint , and

extend correspond to the operations mentioned above.

sets : REGION TYPE
constants : REGION , contained , disjoint , extend
axioms :

axm0 1 : REGION ✓ REGION TYPE
axm0 2 : contained 2 REGION $ REGION
axm0 3 : disjoint 2 REGION $ REGION
axm0 4 : extend 2 REGION ⇥ SECTION 7! REGION

Constraints on the operations of the region ADT are modelled as axioms. For ex-
ample, contained is transitive, disjoint is symmetric, extend is strengthening with
respect to contained . Note that in the following, we use R1bR2 to denote R1 7! R2 2
contained , and R1 6e R2 to denote R1 7! R2 2 disjoint .

axioms :

axm0 5 : 8t1, t2, t3 ·t1 b t2 ^ t2 b t3) t1 b t3
axm0 6 : 8t1, t2 ·t1 6e t2) t2 6e t1
axm0 7 : 8t , s ·t 7! s 2 dom(extend)) t b extend(t 7! s)
axm0 8 : 8t1, t2, t3 ·t1 b t2 ^ t2 6e t3) t1 6e t3

The current states of the active trains and their associated movement authorities are
represented by a mapping from trains to the set of all possible regions (train) and a
mapping from movement authorities to the set of all possible regions (ma). Invariant
inv0 3 states that the trains always stay within their movement authorities. Invariant
inv0 4 states that the movement authorities of any two trains are disjoint.

variables : ids , train,ma
invariants :

inv0 1 : train 2 ids ! REGION
inv0 2 : ma 2 ids ! REGION
inv0 3 : 8t ·t 2 ids) train(t)bma(t)
inv0 4 : 8t1, t2 ·t1 2 ids ^ t2 2 ids ^ t1 6= t2) ma(t1) 6ema(t2)

Importantly, the collision-freeness property, i.e.,

8t1, t2 ·t1 2 ids ^ t2 2 ids ^ t1 6= t2) train(t1) 6e train(t2) ,

is derivable (as a theorem) from the invariants inv0 3, inv0 4 and the property relating
contained and disjoint , i.e., axm0 8.

The event train extend can be specified abstractly as follows. Its last guard ensures
that the extended train cannot exceed its assigned movement authority.

train extend :

any t , s where

t 2 dom(train)
train(t) 7! s 2 dom(extend)
extend(train(t) 7! s)bma(t)

then

train(t) := extend(train(t) 7! s)
end

The Sequence ADT. The model at this stage is abstract in two ways: (1) its dynamic
behaviour is not fully described by the machine and (2) it uses the region ADT which
is not fully “implemented”. For (2), we utilise generic instantiation to introduce more
details on how the region ADT and its operations are realised. Similar to refinement,
this realisation of ADTs can be split into multiple instantiation steps.

In our development, we first replace the region ADT by the sequence ADT. The
sequence ADT includes the following operations:

– prepend : takes a sequence S and a section s , and returns a new sequence where s
is added to the head of S .

– head : takes a sequence S and returns the head section of S .
– rear : takes a sequence S and returns the rear section of S .
– middle: takes a sequence S and returns the middle sections of S .
– connection: takes a sequence S and returns the connection between sections of S .

sets : SEQUENCE TYPE
constants : SEQUENCE , prepend , head , rear ,middle, connection
axioms :

axm1 1 : SEQUENCE ✓ SEQUENCE TYPE
axm1 2 : prepend 2 SEQUENCE ⇥ SECTION 7! SEQUENCE
axm1 3 : head 2 SEQUENCE ! SECTION
axm1 4 : rear 2 SEQUENCE ! SECTION
axm1 5 : middle 2 SEQUENCE ! P(SECTION)

axm1 6 : connection 2 SEQUENCE ! (SECTION 7⇢ SECTION)

axm1 7 : 8S ·S 2 SEQUENCE) head(S) /2 middle(S)
axm1 8 : 8S ·S 2 SEQUENCE) rear(S) /2 middle(S)

We prove that the sequence ADT is a valid representation of the region ADT with
the instantiation of the set REGION TYPE by SEQUENCE TYPE , the constants

REGION by SEQUENCE , extend by prepend , etc. We replace (instantiate) the oper-
ations contained and disjoint using head , rear , middle , and connection . For example,
contained is instantiated as follows.

contained =

8
>>>>>><

>>>>>>:

S1 7! S2 |

S1 2 SEQUENCE ^ S2 2 SEQUENCE ^
connection(S1) ✓ connection(S2) ^
middle(S1) ✓ middle(S2) ^
head(S1) 2 {head(S2)} [middle(S2) [{rear(S2)}
rear(S1) 2 {head(S2)} [middle(S2) [{rear(S2)}
. . .

9
>>>>>>=

>>>>>>;

Note that we omit from our presentation additional conditions related to the exact posi-
tion of the head and rear within the section.

At this point the sequence ADT is still abstract. In particular, we do not give the
exact definition for sequences and we still rely on the operators such as head , rear ,
middle , and connection and the relationships between them.

Given the instantiation, we subsequently refine the dynamic behaviour of the system
(i.e., the machines). For event train extend, the refinement removes the reference to
contained in the guard.

train extend :

any t , s where

t 2 dom(train)
head(train(t)) 6= head(ma(t))
. . . // other guards related to head/rear positions

then

train(t) := prepend(train(t) 7! s)
end

The Arbitrarily-based Array Data Type. The model based on the sequence ADT
is abstract. To ensure that the model is implementable, we must give a representation
for the sequence ADT. In our development, we use an arbitrarily-based array data type
as the implementation for the sequence ADT. An arbitrarily-based array is an array
that starts from an arbitrary index, in contrast to the common zero-based array that
always starts from 0. More formally, each arbitrarily-based array can be represented
by a tuple (a, b, f), where a and b are the starting and ending indices and f represents
the array’s content. The operations of the arbitrarily-based array such as head , rear ,
middle , and connection are defined accordingly. For example, the head operation is
defined as follows.

head = (� a 7! b 7! f ·a 7! b 7! f 2 ARRAY | f(a))

The advantage of using arbitrarily-based arrays compared to normal (zero-based)
arrays is that there is no need to shift indices when extending or reducing the arrays.
For example, the prepend operation is defined as follows.

prepend = (� (a 7! b 7! f) 7! s · a 7! b 7! f 2 ARRAY ^ s 2 SECTION ^ . . .
| (a� 1) 7! b 7! (f C� {a� 1 7! s}))

This simplifies the proof that the sequence ADT is correctly implemented by the array
data type.

4.4 Development Summary

In our development of the train control system, the transformation of the region ADT
into the sequence ADT is carried out in several instantiation steps. The benefit of having
steps with small changes in the ADTs is that the machines that are specified using ADTs
can also be gradually transformed in small steps. This also serves to decompose the
proof of correctness of the systems into small instantiation and refinement steps.

Our development contains five different stages (numbered 0–4), connected by in-
stantiation relationships, where a subsequent stage starts as an instantiation of the pre-
vious stage. Each stage contains several refinement steps for developing the system’s
main functionality.

Stage 0: We formalise the system at the most abstract, generic level, using the region
ADT and the network ADT. In the refinement steps, we gradually introduce the active
network, the active trains, the trains’ movement authorities, the movement authorities
calculated by the controller, and the relationships between them.

Stage 1–3: We carry out the transformation from the region ADT to the sequence ADT
in three different instantiations. First, we instantiate the contained operation. Second,
we instantiate the operation “part-of” between the region ADT and the network ADT
(stating whether or not a region is part of a network). Finally, we instantiate the disjoint
operation. The refinement steps in these stages have two purposes: (1) they transform
the events to use the new data types, and (2) they introduce the design details of the
system, including notions like train ahead, train behind, and last train within a section.

Stage 4: We instantiate the sequence ADT by the arbitrarily-based array data type. We
also incrementally introduce details on the calculation of the trains’ MAs.

Statistics and Comparison. We present statistics for our development in Table 1 and
compare the development of the train control system with and without ADTs. Table 1a
shows the proof statistics for our first attempt where we did not use ADTs. After 14
refinement steps and 45 difficult manual proofs, we stopped our development with nu-
merous remaining undischarged proof obligations, due to missing invariants. We would
have needed additional invariants that are complex to express and lead to even more
complex proofs. Considering the proof effort needed up to this point, and the additional
effort anticipated to complete the development, we were forced to adapt our develop-
ment strategy and find additional abstraction techniques to simplify the proofs.

Table 1b shows the proof statistics of the development using ADTs. We distinguish
between proofs related to instantiation and proofs related to refinement. Overall, 14%
of the proofs are related to instantiation, and the other 86% are related to refinement.
As expected, the machines at the more abstract and generic levels are more automated.
Most of the manual proofs originating from instantiation (in particular of Stage 4) have

a similar structure that includes manually expanding the instantiation definitions. These
proof steps could be automated with a dedicated proof strategy, which would increase
the amount of proof automation. Overall, the instantiation proofs have a better automa-
tion rate (82%) compared to the refinement proofs (58%).

The number of refinement steps as well as the total number of discharged proof
obligations indicate that the size and complexity of our case study is significantly higher
than typical academic examples. Moreover, given the level of detail in our model, stem-
ming from realistic requirements, this supports our claims about the relevance of our
approach for large and complex systems.

Obligations Auto. Manual Undischarged
14 Refinements 666 497 (75%) 45 (7%) 124 (18%)

(a) Development without ADTs

Obligations Auto. Manual
Stage 0 8 Refinements 267 267 0
Stage 1 Instantiation 34 24 10

14 Refinements 632 477 155
Stage 2 Instantiation 165 161 4

1 Refinement 52 44 8
Stage 3 Instantiation 175 172 3

16 Refinements 765 314 451
Stage 4 Instantiation 174 90 84

18 Refinements 1748 891 857
Total 4012 2440 (61%) 1572 (39%)

Instantiation 548 (14%) 447 (82%) 101 (18%)
Refinement 3464 (86%) 1993 (58%) 1471 (42%)

(b) Development using ADTs
Table 1: Statistics

5 Related Work

5.1 Instantiation and Data Types

In our approach to introducing ADTs into formal development, generic instantiation [5]
is the key technique for realising the ADTs. This differs from [19] where instantiation
provides a means to reuse formal models in combination with a composition technique.
In particular, to guarantee the correctness of the instantiated model, carrier sets (which
are assumed to be non-empty and maximal) must be instantiated by type expressions.
This has been overlooked in [5] and [19].

Part of our approach was previously published in [7]. There, our main motivation
for using ADTs was to encapsulate data and to split the development process into two

parts that can be handled by a domain expert and a formal methods expert, respectively.
In this paper, we focus more on the need for alternative forms of abstraction when
developing large and complex systems in Event-B. We not only use ADTs to abstract
away implementation details for the domain expert, but we use them as an integral part
from the beginning of our development to simplify the proofs. We describe relations
between different ADTs to abstractly specify the system’s properties.

The development of the Theory Plug-in [11] for Rodin allows users to extend the
mathematical language of Event-B, for example, by including new data types. Theo-
rems about new data types can be stated and later used by a dedicated tactic associated
with the Theory Plug-in. There is also a clear distinction between the theory modules
(capturing data structures and their properties) and the Event-B models using the newly
defined data structures. The main difference between the Theory Plug-in and our ap-
proach is that the data types in the Theory Plug-in are “concrete”. One must give the
definitions for the data types and prove theorems about them before using these data
types for modelling. This bottom-up approach is in contrast with our top-down approach
where the choice of implementations for ADTs can be delayed. More specifically, we
can have different implementations for the ADTs. For example, instead of implement-
ing the sequence ADT using arbitrarily-based arrays, we can use standard, zero-based
arrays for the same purpose. In fact, we did experiment with both implementations and
decided to use arbitrarily-based arrays due to the simpler proofs for the systems.

Our approach of using ADTs in Event-B is similar to work on algebraic specifi-
cations [18]. In this domain, a specification contains a collection of sorts, operations,
and axioms constraining the operations. Specifications can be enriched by additional
sorts, operations, or axioms. Furthermore, to develop programs from specifications, the
specifications are transformed via a sequence of small “refinement” steps. During these
steps, the operations are “coded” until the specification becomes a concrete descrip-
tion of a program. For each such refinement step, one must prove that the code of the
operations satisfies the axioms constraining them. An algebraic specification therefore
corresponds to an Event-B context, while refinement in algebraic specifications is simi-
lar to generic instantiation in Event-B. In contrast to algebraic specifications [12], where
the entire functionality of a system is modelled as ADTs (in the form of many-sorted
algebras) [18], we use ADTs to abstract only part of our system’s functionality. Mod-
elling every aspect of a complex system like our example as an algebraic specification
would be very challenging. In addition to the data types, the transition systems must
also be encoded as ADTs in the specification. This would require a large number of
axioms to describe the transitions.

5.2 Formal Development of Railway Systems

Bjørner gives in [9] a comprehensive overview of formal techniques and tools used for
developing software for transportation systems. Beside techniques like model checking
and model-based test case generation, he mentions approaches using refinement. The
following approaches are of special interest for us.

The development of Metro line 14 in Paris [8,2] is one of the better known indus-
trial application of formal methods. In particular, the safety critical part of the software
was developed using the (classical) B Method [1]. The formal reasoning there was only

at the software-level, i.e., reasoning about the correctness of the software in isolation.
In contrast, in our work we not only model the train control system, but also its en-
vironment such as the trains and their movement behaviour. Hence, we can reason on
the system-level covering the overall structure of the system, its components, and their
relationship [4].

In [14], Haxthausen and Peleska present the formal development and verification of
a distributed railway control system using the RAISE formal method. Their approach
is similar to our work as they also use stepwise refinement and ADTs to cope with the
complexity of their system. However, their system is overly simplified at some points
which reduced the development challenges that we found to be the most difficult in our
work. First, they only consider simple network topologies without loops. Second, they
develop a system where sections are either fully occupied or free. Third, their trains can
occupy at most two sections. Although they claim that the system can be easily adapted
for trains occupying more than two sections, from our experience, this generalisation
is a challenging task. Moreover, in their proof they require that if any two events are
enabled in a valid state, executing one of the events and therefore changing the state
cannot disable the other event’s guard. This is a strong property that is cumbersome
to verify as one must prove it for all pairs of events. Our model does not require this
property in order to guarantee the system’s safety.

Platzer and Quesel verify parts of a similar train control system in [17] using their
own verification tool KeYmaera. While we developed the functionality of the controller,
their work focuses on developing the onboard unit. In their development, the controller
belongs to the environment of the onboard unit and they assume that the controller does
not issue MAs that are physically impossible for the trains. Our development fulfils this
assumption by guaranteeing that the MAs are never reduced.

6 Conclusion

In this paper we presented an approach to building formal models in Event-B using
ADTs. ADTs allow us to hide irrelevant details that are unimportant for proving abstract
properties. On an abstract level, one can therefore focus on modelling the system’s core
functionality.

The way we introduce ADTs in our approach allows us to utilise generic instantia-
tion. This handles both the instantiation of an ADT by the chosen data structure as well
as the generation of the required proof obligations to guarantee that the chosen structure
is a valid instance of the ADT. As a large scale case study we have successfully applied
our approach to the development of a realistic train control system. We identified the
limitations of only using refinement for this system and showed how we overcome these
limitations using ADTs.

As future work we would like to overcome some of the current limitations of our
work. As previously mentioned, we cannot presently specify parameterised ADTs. To
overcome this limitation, we need to extend the semantics of Event-B contexts and adapt
the generic instantiation technique accordingly. The Theory Plug-in might be useful to
specify parameterised ADTs.

References

1. J-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University Press,
1996.

2. J-R. Abrial. Formal Methods in Industry: Achievements, Problems, Future. In L.J. Osterweil,
H.D. Rombach, and M.L. Soffa, editors, ICSE, pages 761–768. ACM, 2006.

3. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University
Press, 2010.

4. J-R. Abrial. From Z to B and then Event-B: Assigning Proofs to Meaningful Programs. In
E.B. Johnsen and L. Petre, editors, IFM, volume 7940 of Lecture Notes in Computer Science,
pages 1–15. Springer, 2013.

5. J-R. Abrial and S. Hallerstede. Refinement, Decomposition, and Instantiation of Discrete
Models: Application to Event-B. Fundam. Inform., 77(1-2):1–28, 2007.

6. European Railway Agency. ERTMS/ETCS Functional Requirements Specification. European
Railway Agency, Valencinnes, France, 2007.

7. D. Basin, A. Fürst, T.S. Hoang, K. Miyazaki, and N. Sato. Abstract Data Types in Event-B
- An Application of Generic Instantiation. CoRR, 2012.

8. P. Behm, P. Benoit, A. Faivre, and J-M. Meynadier. Météor: A Successful Application of
B in a Large Project. In J. M. Wing, J. Woodcock, and J. Davies, editors, World Congress
on Formal Methods, volume 1708 of Lecture Notes in Computer Science, pages 369–387.
Springer, 1999.

9. D. Bjørner. New Results and Trends in Formal Techniques & Tools for the Development of
Software for Transportation Systems. In FORMS, 2003.

10. K. Breitman and A. Cavalcanti, editors. Formal Methods and Software Engineering, 11th
International Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro,
Brazil, December 9-12, 2009. Proceedings, volume 5885 of Lecture Notes in Computer Sci-
ence. Springer, 2009.

11. M. Butler and I. Maamria. Practical theory extension in Event-B. In Zhiming Liu, Jim
Woodcock, and Huibiao Zhu, editors, Theories of Programming and Formal Methods, vol-
ume 8051 of Lecture Notes in Computer Science, pages 67–81. Springer, 2013.

12. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations und Initial
Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer,
1985.

13. A. Fürst, K. Desai, T.S. Hoang, and N. Sato. Generic Instantiation Plug-in. http://

sourceforge.net/projects/gen-inst/.
14. A.E. Haxthausen and J. Peleska. Formal Development and Verification of a Distributed

Railway Control System. In J. M. Wing, J. Woodcock, and J. Davies, editors, World Congress
on Formal Methods, volume 1709 of Lecture Notes in Computer Science, pages 1546–1563.
Springer, 1999.

15. IEEE Std 1474.1-2004. IEEE Standard for Communications-Based Train Control (CBTC)
Performance and Functional Requirements. IEEE, New York, USA, 2005.

16. B. Liskov and S. Zilles. Programming with Abstract Data Types. In Proceedings of the ACM
SIGPLAN Symposium on Very High Level Languages, pages 50–59, New York, NY, USA,
1974. ACM.

17. A. Platzer and J-D. Quesel. European Train Control System: A Case Study in Formal Veri-
fication. In Breitman and Cavalcanti [10], pages 246–265.

18. D. Sannella and A. Tarlecki. Essential Concepts of Algebraic Specification and Program
Development. Formal Asp. Comput., 9(3):229–269, 1997.

19. R. Silva and M. Butler. Supporting Reuse of Event-B Developments through Generic Instan-
tiation. In Breitman and Cavalcanti [10], pages 466–484.

http://sourceforge.net/projects/gen-inst/
http://sourceforge.net/projects/gen-inst/

	Formal System ModellingUsing Abstract Data Types in Event-B

