Quantum Electrodynamics

Question 1:
Show that the E and B fields are invariant to gauge transformations.

Answer 1:
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The gauge transformations (with an arbitrary choice of ¥ (z*)) are
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B - VxA + Vx ﬁz/;
The seconﬁd term vanishes since V x 61/1 = 0 for any function . We're left with
the original B.
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The two new terms cancel against each other leaving the original E.

Question 2:(involved)

Use minimal substitution (7 — § + eA) in the Lagrangian describing a non-
relativistic charged particle in a time independent magnetic field and show that the
Euler Lagrange equations are the ones you would expect.

Answer 2:
In a time independent magnetic field one has the electric potential ¢ = 0 and the
vector potential A is time independent (B =V x A).
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The Lagrangian of a free particle is just L = %x = p?/2m. Minimal substitution
forces
P — preA
and hence
L= gx +q(F.A)

I've dropped the A? term because it won’t enter the Euler Lagrange equations.



The Euler Lagrange equation is
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or
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To see this is the equation we want we must first be careful about the time
dependence of A. Of course it doesn’t explicitly depend on time (ie drop 0A/dt), but
even if it’s constant the particle, as it moves, will see a time variation of the field.
This is accounted for using the chain rule
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So our equation of motion is

Next we use the identity

We have
dp 5 = =
— =qixVxA
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Rewriting in terms of B we have
dp > =
— =qr X B
it 1

which hopefully you recognize!



Question 3:(involved)

Starting from eqn (41), which you may assume holds for the Klein Gordon equa-
tion, compute the leading order Feynman rules for a spinless, charged particle scat-
tering with a photon.

Answer 3:
The KG equation, after minimal substitution may be written as

(O+m*)¢ + V=0

where

5V = ie(9, A" + A,0") + O(e?)

I've dropped the A? term since it’s sub-leading in the e expansion.
For the particle to scatter from a state a to ¢ via a photon interaction we have
from eqn (41)

Kea = —i[ ¢ 0V Pedix
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I've integrated by parts here and thrown away the surface term at infinite = (one
assumes that the value of the A* field out there is irrelevant to physics here, so zero!).
Note this interaction is again of the form J*A, but with the KG charge current, J*.

We shall assume that outside the interaction region the particles are described by
solutions of the free KG equation - ¢ = Ne~ . We have

Rea = _Z/GNGN:(pg —|—p5)€i(pc_Pa)-xAud4x

Next we compute the A* field produced by another particle scattering from a state
b to a state d

DA = Jhy = eNpNg(py + pa)te i)

The solution is

1
At = —?Jé‘d, ¢ = (pp — pa)*

We arrive at the expression

g = NaNoNE NG [ €00 diie(p + )" [_;gw] i€ (P + pa)”




We can associate this with the Feynman diagram rules:
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Question 4:
Draw the two Feynman diagrams appropriate to Compton scattering.

Answer 4:
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Question 5:

Show that for two body scattering of particles of equal mass m
s>4m? t<0, u<o0

Hint: since all variables are Lorentz invariant work in the CoM frame.

Answer 5:

In the centre of mass frame we can draw the event as

Pc= (E, pc)

Pa= (E, pa) / Py= (E, - pa)
Ve

py=(E. —pc)
where |p,| = [p.|. Now we can compute the frame invariant quantities using four-
vector multiplication rules

s = (pa+pe)? = (2E,0)% = 4E? > 4m?
t = (pa—p)® = (0,5, —p.)% = 2|pa|*(cosf—1) < 0

(0,7, —pa)* = 2|pa*(cosfd —1) < 0



Question 6:
Prove the Gordon Decomposition.

Answer 6:
It’s easiest to start with
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Let’s just do the terms with p! in. Use the Clifford algebra to write y“4* =
—yHyY 4 29" so we have
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The first and last term cancel. Now use the Dirac equation after substituting in
a free solution which becomes p!~v,u; = mu; we arrive at

Zig e~y

Now go back and repeat this process on the p’]ﬁ terms... one gets the same factor
out and we thus find by adding
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