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Section A

A1. The free Dirac equation is given by

(iγµ∂µ − m)ψ = 0

where m is the particle’s mass and γµ are the Dirac gamma matrices. Show

that for the equation to be consistent with the Theory of Relativity the gamma

matrices must satisfy the algebra

{γµ, γν} = 2gµν.

(Hint: relate the Dirac gamma matrices to the Dirac alpha and beta matrices.) [4]

A2. Write an explicit expression for the ratio

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

assuming only photon mediation. [4]

A3. List nine colour states that can be built from a quark and an anti-quark and

identify the linear combinations that transform as ‘singlets’ and ‘octets’ under

S U(3) colour transformations. Explain what they refer to. [4]

A4. Draw four potentially interesting Feynman diagrams corresponding to Standard

Model Higgs boson production at the Large Hadron Collider (LHC). [4]

A5. Explain what particle physicists mean by the word ’regularisation’. [2]

A6. Explain what particle physicists mean by the term ’transverse momentum’. [2]
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Section B

B1.

(a) Justify the Klein-Gordon equation

(∂µ∂
µ
+ m2)φ = 0

for a wave-function φ ≡ φ(x) ≡ φ(t, x) representing a relativistic scalar particle

of mass m. [4]

(b) For plane-wave solutions in co-ordinate space, show that the corresponding

energy eigenvalues are not positive definite. [4]

(c) Derive the continuity equation corresponding to the Klein-Gordon equation and

prove that the probability density is not positive definite either. [8]

(d) Explain the Feynman-Stuckelberg interpretation of the negative energy solu-

tions. Sketch a diagram to illustrate a physical process where this is manifest.

[4]

TURN OVER
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B2. Compton scattering (the scattering of an electron and a photon) is described

by the two Feynman diagrams

(a) We normally assume that the external photons satisfy the free Maxwell’s

equation

∂ν∂νA
µ(x) = 0.

Show that there are solutions of the form Aµ(x) = ǫµ(q)e−iqλxλ where xλ is

the position four-vector and ǫµ is any polarisation vector. [2]

(b) Similarly the external electron fields satisfy the free Dirac equation

(iγµ∂µ − m)ψ(x) = 0.

There are solutions of the form ψ(x) = u(p)e−ipλxλ. Show that u(p) satisfies

(γµpµ − m)u(p) = 0.

[1]
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(c) The amplitude at leading order in perturbation theory for the scattering of

an electron of charge q from a state a to a state c as the result of the

interaction with a U(1) gauge potential Aµ(x) is

Mac = −i
∫

Jµac(x) Aµ(x) d4x where Jµac(x) = iq(ψ̄c(x)γµψa(x)).

The internal (or virtual) electron wave function ψint(x) may be found by

solving the Dirac equation in the presence of the photon gauge field

(iγµ∂µ − m)ψint(x) = qγµAµ
ext(y)ψext(y),

where the subscript ext corresponds to an external (or real) particle at the

vertex.

Using these results show that the contribution to the scattering amplitude

from the first diagram above is given by

−iMac = ū(p′)
(

ǫ∗ν (k
′) iqγν i(p′/+k′/)+m

(p′+k′)2−m2 iqγµ ǫµ(k)
)

u(p)

(2π)4δ4(p + k − p′ − k′).

[10]

(d) Explain how this expression can be associated with a set of Feynman rules

for the external electron and photon states, the vertices and the internal

fermion propagator. [4]

(e) Using the Feynman rules derived in (d) write down the contribution to the

scattering amplitude for the second diagram above. [3]

TURN OVER
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B3. The Lagrangian for a complex scalar field is given by

Ls = (∂µφ)†(∂µφ) + µ2φ†φ − λ(φ†φ)2

where

φ =

(

φ+

φ0

)

and µ2 and λ are constants.

(a) Show that, if we parameterise the four independent components of the complex

doublet field φ as

φ =
1√
2

(

φ1 + iφ2

φ3 + iφ4

)

,

then Ls is invariant under O(4) rotations, i.e.,

φi → φ′i = r̂i jφ j, with i = 1, ...4,

where r̂ is the four-dimensional rotation matrix

r̂T r̂ = r̂r̂T
= I.

(Here the symbol T refers to the transpose of a matrix.) [6]

(b) Show that, if we write

π = (φ1, φ2, φ4), σ = φ3,

then the Lagrangian can be rewritten as

Ls =
1
2

[(∂µπ)2
+ (∂µσ)2] +

µ2

2
(π2
+ σ2) − λ

4
(π2
+ σ2)2.

[3]
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(c) For spontaneous symmetry breaking, we have

φ3 = σ = v + H, with v2 =
µ2

λ
.

Write the Lagrangian in terms of H and π. What is the H field ? Extract the H

mass. [7]

(d) Finally find the Hπ+π− and Hzz couplings, where

π+ =
1√
2

(π1 − iπ2) and z = π3.

What are the π± and z fields ? [4]

TURN OVER
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B4. Consider a two-to-two particle scattering

where the four-momenta of the particles pµ1, pµ2, pµ3 and pµ4 are such that

pµ1 + pµ2 = pµ3 + pµ4

and

p2
1 = m2

1, p2
2 = m2

2, p2
3 = m2

3, p2
4 = m2

4,

where m1,m2,m3 and m4 are the particle masses.

(a) Define the Mandelstam invariants s, t and u. [3]

(b) Prove that

s + t + u = m2
1 + m2

2 + m2
3 + m2

4.

[4]

(c) The letters s, t and u are also used in the terms s-channel, t-channel

and u-channel. These channels represent Feynman diagrams of different



9 PHYS6011W1

possible scattering events where the interaction involves the exchange of an

intermediate particle whose squared four-momentum equals s, t or u. Sketch

these Feynman diagrams. [3]

(d) The differential cross section for this process is given by the formula

dσ =
|M|2

4
√

(p1 · p2)2 − m2
1m2

2

dΦ2(p1, p2, p3, p4)

where M is the scattering matrix element and dΦ2 is the Lorentz Invariant

Phase Space (LIPS) for a two-body final state. Write the corresponding

expression for the LIPS term and explain the meaning of each term in it. [4]

(e) The above expression for the cross section is valid in any inertial reference

frame. Prove that, in the centre-of-mass frame (i.e., p1 = −p2), one has

√

(p1 · p2)2 − m2
1m2

2 = |p1|
√

s = |p2|
√

s

for the so-called flux factor. [6]

END OF PAPER


