Construction of Radial Basis Function Networks
with Diversified Topologies
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Abstract In this review we bring together some of our recent work frwve &ngle
of the diversified RBF topologies, including three differépologies; (i) the RBF
network with tunable nodes; (ii) the Box-Cox output tramefation based RBF net-
work (Box-Cox RBF); and (iii) the RBF network with boundarglue constraints
(BVC-RBF). We show that the modified topologies have someathges over the
conventional RBF topology for specific problems. For eachdified topology, the
model construction algorithms have been developed. Thegmped RBF topolo-
gies are respectively aimed at enhancing the modellingxstipes of; (i)flexible ba-
sis function shaping for improved model generalisatiorwlie minimal model; i)
effectively handling some dynamical processes in whichnttoelel residuals ex-
hibit heteroscedasticity; and (iii) achieving automatmstraints satisfaction so as
to incorporate deterministiprior knowledge with ease. It is shown that it is ad-
vantageous that the linear learning algorithms, e.g. ttteogonal forward selection
(OFS) algorithm based leave-one-out (LOO) criteria, aiteagiplicable as part of
the proposed algorithms.

1 Introduction

The identification of nonlinear systems using only obsefirdte data sets has be-
come a mature research area over the last two decades [ligé d&ss of non-

linear models and neural networks can be classified as ainghe-parameters
model [2, 3]. These are well structured for adaptive leagnirave provable learn-
ing and convergence conditions, have the capability ofllgh@ocessing and have
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clear applications in many engineering applications [46]5ln particular, the radial
basis function (RBF) network is a popular type of lineartie-parameters model
and has been widely applied in diverse fields of engineeiing,[9, 10]. The ulti-
mate objective of model construction from observed dass®buld be to produce
a model which captures the true underlying dynamics andigeedccurately the
output for unseen data. This translates into the practi@atiple in nonlinear mod-
elling of finding the smallest model that generalizes wataiSe models are prefer-
able in engineering applications since a models’ compurtaticomplexity scales
with its model complexity. Furthermore, a sparse model @egao interpret from
the angle of knowledge extraction from observed data sets.

A fundamental concept in the evaluation of model generédinecapability is
that of cross validation [11] which is often used to derive thformation theo-
retic metrics, e.g. the leave-one-out (LOO) cross valatatias been used to derive
model selective criteria such as the Akaike informatiotecion (AIC) [12]. Model
selective criteria can be used for predicting a model'sqrerance on unseen data
and evaluating a model’s quality amongst other competitieglels. The forward
orthogonal least squares (OLS) algorithm is an efficientinear system identifi-
cation algorithm [13, 14] which selects regressors in a &dvmanner by virtue
of their contribution to the maximization of the model erreduction ratio (ERR).
In order to produce a model with good generalization cajiegsi) the AIC [12] is
usually incorporated into the forward orthogonal leastesgs (OLS) algorithm to
determinate the model construction process. The OLS dfgoitias become a pop-
ular modelling tool in a wide range of applications [15, 18, 18]. Note that most
of model selective criteria are formula of approximating tHtOO mean-square er-
ror (mse), and due to the approximation, have lost discaeipower in selecting
terms if being used in the forward OLS algorithm. The LOO mequare error
(MSE) criterion, which directly measures the model genea#ibn capability, has
been introduced into the framework of forward OLS algoritfif] in which the
LOO mean-square error (MSE) criterion is calculated effitye(as outlined in Sec-
tion 2). An additional advantage is that the process is fallfomatic, so that there
is no need for the user to specify a termination criteriorhef todel construction
process.

In this review we bring together some of our recent work fréva &ngle of the
diversified RBF topologies, including three different ttgapes; (i) the RBF net-
work with tunable nodes [20]; (ii) the Box-Cox RBF [21]; and)(the BVC-RBF
network [22]. The RBF network with tunable nodes is initfatlescribed in Sec-
tion 3. Note that the parameters of the RBF network incluslednter vectors and
variance or the covariance matrices of the basis functiowedsas the connect-
ing weights from the RBF nodes to the network output. In [193 anany other
RBF modelling paradigms [23, 24, 25, 26], the RBF centergesticted to be se-
lected from the input data sets and a common variance is gegkor every RBF
node. The common variance should be treated as a hyperparaand determined
via cross-validation, which may be computationally casiliie recent work [20]
has introduced a construction algorithm for the tunable RB&vork, where each
RBF node has a tunable center and an adjustable diagonalamsa matrix. An
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OFS procedure is developed to append the RBF units one byyon@rimizing
the LOO mse. Because the extra flexibility for the basis fiamst is allowed in
the tunable RBF topology and all the parameters are optamiminimizing the
LOO mean-square error (MSE) criterion, the algorithm is patationally efficient
and the resultant models have sparser representationgxdgétient generalization
capability, in comparison with the existing sparse kernetlaling methods.

In Section 4, the Box-Cox RBF topology and its fast model ¢atsion algo-
rithm [21] is described. It is a common practice to constithet RBF network in
order to represent a systems’ input/output mapping. Fon#te/ork training the
system output observations are used as the direct targe¢ ahodel output. Least
squares algorithm is often used as the parameter estimdiah is equivalent to
the maximum likelihood estimator (MLE) under the assumptioat the noise is
additive and independent identically distributed (i.GBussian with zero mean and
constant variance. In practice the variance of procesg maggy vary with the output,
e.g. the variance of noise may increase as the system ontpaaises. For some dy-
namical processes in which the model residuals exhibirbstedasticity, e.g. with
nonconstant variance or skewed distribution, or being iplidative to the model,
using conventional RBF models to construct a direct syst@msit/output map-
ping based on the least squares estimator is no longer apgteprhe work [21]
has modified RBF topology based on Box-Cox transformatidwe fRst identifica-
tion algorithm [21] is developed based on a maximum likedith@stimator (MLE)
to find the required Box-Cox transformation. It is shown tHeS2LOO algorithm is
readily applicable to construct a sparse Box-Cox RBF modtbl good generalisa-
tion [19, 27, 21].

Finally Section 5 describes the topology of the BVC-RBF rat{22]. Note that
most of RBF modelling algorithms fit into the statisticalrieimg framework, i.e. the
model is determined based on the observational data ontyahy modelling tasks,
there are more or less prior knowledge available. Althougy arior knowledge
about the system should help to improve the model genetializan general in-
corporating the deterministic prior knowledge into a statally learning paradigm
would make the development of modelling algorithms morgadift if not impossi-
ble. The work [22] has introduced the idea of modifying RBpdlmgy in order to
enhance its capability of automatic constraints satigfactVe considered a special
type of prior knowledge given by a type of boundary value t@ists (BVC), and
introduced the BVC-RBF as a new topology of RBF neural neftwibat has the
capability of satisfying the BVC automatically. The BVC-RBetwork [22] is con-
structed and parameterized based on the given BVC. It isishioat the BVC-RBF
remains as a linear-in-the-parameter structure just asdheentional RBF does.
Therefore many of the existing modelling algorithms for aw@ntional RBF are al-
most directly applicable to the new BVC-RBF without addegbaithmic complex-
ity nor computational cost. Consequently the topology efBlVC-RBF effectively
lends itself as a single framework in which both the deterstimprior knowledge
and stochastic data are fused with ease.
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2 Orthogonal forward selection (OFS) algorithm based on
leave-one-out (LOO) criteria

Consider the regression problem of approximating\hmairs of training dat®y =
{Xk, Yk}, with a linear-in-the-parameter model defined in

M
Yk =Yk + &= _ZLWigi(Xk)‘f‘eK:gT(k)W"'eK 1)

where the inpuixx € O™, the desired outpuyy € 0, Yk denotes the model out-
put, & = yk — Yk is the modelling errorg;(e) for 1 <i < M is a known nonlin-
ear basis function mapping, such as RBF, polynomial or Bispfunctions, and
9(k) = [910x) G2(xk) -~ gm(xi)]", w = [wr wp - wy] € OM is the weight
vector, M is the number of basis functions. By definigg= [y1 y> --- yn]",
e=[ere - en]’, andG = [g1 g2 --- gm] With g = [gi(x1) ai(x2) --- Gi(xn)]T,
1 <1 <M. The regression model (1) over the training data set can lttewin the
matrix form

y=Gw+e (2)

Hereg is thelth column of whileg" (k) thekth row of G.

Let an orthogonal decomposition Gf be G = PA, whereA = {qjj } is anM x
M unit upper triangular matrix anB = [p1 p2 --- pm] is anN x M matrix with
orthogonal columns that satisfy

PTP =diag{Ky,....km} (3)

wherek; = p|Tp| for 1 <| < M. The regression model (2) can be alternatively ex-
pressed as
y=PO+e 4)

where@ =[6;, 6, --- 6y]" satisfies the triangular systelw = 6. The model output
Yk can be equivalently expressed by

Ye=p" (k)6 (5)

wherep” (k) = [p1(xk) P2(Xk) --- Pm(Xk)] is thekth row of P.
Consider the modeling process that has produced-tidt model. Let us denote
the constructed model columns aP, = [p1,...,pn| , thekth model output of this

n unit model identified using the entire training data seyfﬁ)sé i, 6pi(k), and
the correspondingth modeling errog” =y, — 9\

Definition 1 The leave-one-out (LOO) mse: If we “remove” tkié data point from
the traing data set and use the remainiNg- 1) data points to identify the-unit
model instead, the “test” error of the resulting model carcdleulated on the data
point removed from training. This LOO modeling error. (Tk@rresponds to the
LOO pseudo-modeling error in the context of Box-Cox RBF rek\(see Section



Construction of Radial Basis Function Networks with Diviesl Topologies 5

4)), denoted as," ¥, is given by [28]

o =e"/n" (6)

Wherenén> is the LOO error weighting [28]. The LOO mse (This correspotadthe
LOO pseudo-mse in the context of Box-Cox RBF network (se¢i@ed)) for the
n-unit model is then defined by

= % kgl (e‘((nﬁk)) 2 ' 7)

which is a measure of the model generalisation capabilBy 12].
For model (5) the computation of the LOO criteridnis very efficient, because

e” andn" can be computed recursively using [19, 27]

et((n) = e|(<n71) — 6hpn(K) (8)
2
m _ -1 _ Pa(k)
N = Nk Py 9

wherev > 0 is a small regularization parameter.

The orthogonal forward selection (OFS) algorithm baseddeme-out (LOO)
criteria was proposed [19, 27], in which the LOO ndgavas minimized by search-
ing a set of candidate regressors at each forward orthogege¢ssion stage. It
is shown [19] thatl, is concave with respect to the number of model terms, and
this means that the model construction process becomgsfutthmatic without us-
ing additional termination criterion. Furthermore notatt, directly measures the
model generalization capability so that there is no needéoauseparate validation
data set. Other advantages for using LOO mse criteria até @@ mseJ, has not
lost discriminative power in selecting terms as happenk AiC, and that there is
no extra tuning parameters in the model selective criterion

3 RBF network with tunable nodes

A popular approach is to construct the RBF models with thesSian basis func-
tions, in which the candidate regressgi®) are formed using the training data set,
and agivencommon variance is employed for every RBF node. In order @ din
satisfactory value of the common variance, the algorithmj&9®, 27] need to be re-
peated, e.g. via grid search based cross validation. @l#seltrue cost of modeling
must take into account the cost of determining all the patarsge.g. optimizing
the value the the common variance. This is because most afdimplexity for
many existing learning algorithms is due to the need to tuararpeters that have
nonlinear relationship to the system output via cross waéilich. Therefore a model
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with less parameters that are tuned via cross validatioldqmtentially lead to the
significant reduction to the true cost of modeling.

Alternatively if the regressoig (e) are viewed as the building blocks of the RBF
network, then it is intuitive to make these more flexible blaxeng the constraint
that each regressor has the same shape, because this Gkomedel generaliza-
tion capability to be maximized for a model with the smalk@ge. The tunable RBF
network was recently introduced [20], in which each nodéefrietwork has a tun-
able center and an adjustable diagonal covariance matgarig the tunable RBF
topology has more parameters that are nonlinear to thersysigput, and nonlinear
optimization is necessary, leading to the additional cotaipon costs. Note that it
would be computationally prohibitive to tune a large numbkextra parameters
via cross validation. Significantly the OFS-LOO algorithime construction algo-
rithm developed for the tunable RBF network in [20], optieszll the associated
parameters in order to achieve model generalization witbmss validation. This
potentially leads to considerable saving in terms of the tost of modeling, de-
spite the fact that more parameters that have nonlineaiaeship to the system
output are introduced in the tunable RBF topology.

Consider the general RBF regressor of the form [20]

gi(x) =K <\/(X_“i)TZi1(X_IJi)) (10)

wherey; is the center vector of thigh RBF unit, the diagonal covariance matrix has
the form2; = diag{ i 1,---, Gim}, andK(e) is the chosen basis or kernel function.
The proposed algorithm constructs the RBF units one by ongodsitioning and
shaping the RBF nodes while minimizing the LOO ndgeSpecifically, at thenth
stage of the constructing procedure, tile RBF unit is determined by minimizing
Jn with respect to the node’s center vecigrand the diagonal covariance matgix

Ig’nljgan(un,Zn) (11)

and the construction procedure is automatically termhateenJy < Jv, 1, yield-
ing anM-term RBF network. Intuitively the extra number of tunabgmeters in
each RBF node can enhance the modeling capability suchhdinial model size
M could be much smaller than that of fixed RBF with each unitiga common
variance, leading to another part of saving in computatiost,cand this is often
confirmed in simulation studies.

In [20], a simple yet efficient global search algorithm cdllhe repeating
weighted boosting search (RWBS) algorithm [29] was progddsesolve the task
of the nonconvex optimization problefd1). The procedure is summarized here.
Letu be the vector that containg, andZ,. Giving the following initial conditions:
ei((0> =Yk andné0> =1 1<k<N (12)
Jo =YY = § Sk Yk
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Specify the RWBS algorithmic parameters, namely, the patfn sizePs, the num-
ber of generations in the repeated sedighand the number of weighted boosting
search iterationd,.

Outer loop: generationsFor (I =1;1 <Ng;l =1+1){

Generation Initialization:nitialize the population by setting[l'} = uge’;} and ran-
domly generating the rest of the population memhxé'rls2 <i <P whereugej]
denotes the solution found in the previous generation=IfL, u[l'} is also randomly

chosen.
Weighted boosting search initializatiosssign the initial distribution weighting
factorsdi(0) = 1/Ps, 1 <i < P, for the population. Then

1) For 1<i < P, generat@in) from ui“], the candidates for theth model column,
and orthogonalize them

al,=plai/plp; 1<j<n (13)
D _ ) e
Pn =0n— ) ajPj (14)
j=1
67 = (pn)Ty/ ((P) PR +) (15)

2) For 1<i < P, calculate the LOO cost for eadH]

e()=e"V—pl(key, 1<k<N (16)

a0 = 0V - () / (DT +v). 1<k<N @)
N/ M\ 2

JI) 1 ek (|)> 18

N k;(min)(i) e

wherepirg(k) is thekth element o’pL).
Inner loop: weighted boosting searchor (t =1;t <M;;t =t+1) {
Step 1: Boosting

1. Find
) B I
Ipest = arg, Qpﬁlr;SJn (19)
iworst = arglggp)i\]ﬁ) (20)

Denoteugéstz ul andu\[,'\,]orst —ul!

Ibest lworst’



8 X. Hong, S. Chen and C. J. Harris
2. Normalize the cost function values
)

o
Ji = o
5,3

1<i<Ps. (21)

3. Compute a weighting factg according to

P
= i &
—Sat-1F, =t 22
&=3 at-Di. A= (22)
4. Update the distribution weightings fori < Ps
0]
t—1)B" forp<i1
&(t) = a( )[if) h< (23)
Gt—1)p "forf>1
and normalize them
&(t) :
Gt)=—5——-—, 1<i<P. (24)
SE10i(t)
Step 2: Parameter Updating
1. Construct th¢Ps+ 1)th point using
< 5yl
Ups1= S &(t)u (25)
S
2. Construct th¢Ps+ 2)th point using
Upst2 = uy))e]st"' (UELst_ UPS+1) (26)

3. Calculategﬁsw andgﬁs+2) fromup,1 andup, 2, orthogonalize these two candi-

date model columns (as in (13)-(15), and compute the casresipg LOO cost
function values],?, i =Ps+1,Ps+ 2 (asin (16)-(18)). Then find

i = argizpsﬂi’gﬁz\];,). 27)

(ui*,J,i{‘)), which replace{u\[,'v]orst, J,i1w°’5‘)) in the population.

} End of inner loop This solution found in théth generation isi = ug]esr

} End of outer loop This yields the solution = u(Ne) i.e., U, Zn of thenth RBF

best
node, thenth model columrgy, the orthogonalization coefficients n, 1 < j < n,

the corresponding orthogonal model colupy) and the weigh®,, as well as the
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n-term modelling errorseﬁ”) and the associated LOO modelling error weightings
n‘im for1 <k <N.

Note that the algorithmic parametd®s Ng andM; are found empirically, and
some general rules are discussed in [29].

Table 1 Comparative results for Boston housing data set [20]; Thelt® were averaged over 100
realisations and quoted as the meastandard deviation

[ algorithm | RBF type]model size] training MSE | test MSE |
&-SVM fixed |243.2+ 5.3 6.7986+ 0.4444|23.1750+ 9.0459
LROLS-LOQ| fixed |58.6+ 11.312.9690+ 2.662417.4157+ 4.6670
OFS-LOO | tunable |34.6+ 8.4|10.099% 3.4047/14.0745+ 3.6178

Example 120]: Boston Housing Data

This benchmark data set is available at the University oif@alia, Irvine (UCI)
repository [30]. The data set comprises 506 data pointsiditrariables. The task of
predicting the median house value was performed from thairgng 13 attributes.
456 data points were randomly selected from the data sesifioirtg and the remain-
ing 50 data points were used as a test data set. The expeasnépeated and the
average results over 100 repetitions were given [20]. Tboastruction algorithms,
the e-SVM [24], the LROLS-LOO [27] and the OFS-LOO [20] were comga,
and the Gaussian basis function was used to form the bagiidanTable 1 sum-
marize the results for three algorithms over the 100 retidiza. The experiments
parameters setting can be found [20]. Discussions on th@utational complexity
comparison can be found [20], in which it is argued that th&@PO algorithm is
highly competitive in terms of the real cost of modeling.

4 Box-Cox output transformation based RBF network (Box-Cox
RBF)

In this section we review a modified RBF topology [21], in whia conventional
RBF network was introduced to represent the Box-Cox transfd system output,
rather than the actual system output. One of the motivatiér{21] is to provide a
computationally efficient approach to construct a sparse ®ox RBF network for
some systems with the heteroscedasticity. Provided thet b a suitable Box-Cox
transformation, the pseudo model errors that are the medaluals between the
transformed system output and model output can be stadbifaethat it follows a
normal assumption [32, 33, 34]. Provided that the optimedpeeterd used in Box-
Cox transformation, the number and location of candidaté R&nters are known,
various orthogonal forward regression (OFR) algorithnis [[8, 36, 37] are readily
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applicable to model structure selection and parametenastn for the proposed
Box-Cox transformed based RBF network.

Consider the problem of approximating tNepairs of training data{xk,yk}wzl,
whereyy is positive system output. If the original system output @& negative,
thenyy + ¢ — yx > 0 is used where is a chosen positive number just large enough
to enabley to be positive. The Box-Cox transformation is a transforarato the
system output given by

[ -1/OF i A£0
LZIES R A (28)

wherey= \/ |‘|E:1yk, the geometric mean of the output observations.

The Box-Cox transformation based RBF networks (Box-Cox RRHE] is illus-
trated in Figure 1. For a giveh, the Box-Cox RBF network with a single output
can be formulated as

R M
h(yk,A) =+ &= ZiWigi (%) + &= g" (KW + &. (29)

Heree, = h(yx,A) — hy is referred as the pseudo error. (In order to reduce the numbe
of notationsg is still used here in spite of the difference between (1) &%).(This
allows that the algorithm in Section 2 to be shared for thfedkht topologies.) The
regressorg;(xy) are formed using some known RBF functions (see Section 2 No
that

lim h(y,A) = A"Lno[(yA ~1)/(A9" )] =ylog(y) (30)

and the inverse of Box-Cox transformation u;fwfor givenA £0is

c=h"t(h) = {/1+A9*1he. (31)

If A =0, thenyk = explhy/¥].
Supposing all the training data were used as centres torocoh#hie candidate
regressorgi(Xx), (29) can be rewritten in a vector form as

e=h(A)-Gw (32)

in whichh(A) = [h(y1,A),....h(yn,A)]T € ON is transformed system outputs’ vec-
tor.e= [ey,...,en]’ € ON is the pseudo-error vector.

The parameter estimation for the Box-Cox RBF network is tapaanodel pa-
rameters based on the fundamentals of feedback learningvaigtht adjustment
found in conventional parametric optimization so that thedel produces a good
approximation to the true system, e.g. to minimize pseudwrgras shown Figure
1. Compared to the conventional RBF neural networks, treemiadditional task
of determining the required Box-Cox transformation, i.edfing the optimal . The
method introduced in [21] is based on the underlying assiomitat there exists a
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Fig. 1 The Topology of the Box-Cox RBF network.

suitable Box-Cox RBF network such that the resultant moesiduals, or pseudo
errorse,, become Gaussian with zero mean and constant var@hf22, 33]. This
leads to a fast algorithm for determinidgbased on MLE, as described below.

Because the parameter estimators for linear-in-the-patensyimodels rely on the
well-conditioning of the model, yet using the full data seférm RBF regressors
usually results in ill-conditioning. Initially we considthe singular value decompo-
sition (SVD) of matrixG with orthonormal matrixQy € ON*N, such that

Ql,GQn = =y =diag 01,0, ...,01,0,...,0) ¢ ONN (33)

whereg; > 0, > ... > 0. areL nonnegative singular values &. Denote> =
diag(oy,0z,...,01) € O*L, and the submatrix of the firttcolumns ofQy as Q =
(A1, qu] € OV, anday = [ak(x1), -, A(xn)] - (32) becomes

ed,)=h(A) -QZQ"w=h(A) - Q¥ (34)

in whichd = [9,...,8.]T € O%, 9, is defined as?, = [97,A]T. Denotee(d,)
= [e1(82),---,en(82)]"

Consider the MLE for?, under the assumption that the pseudo erregsis
Gaussian with zero mean and constant variao¢32, 33]. Specifically, suppose
that there exists a suitable Box-Cox transformation giwe(28) such that the trans-
formed output observatioigy, A ) satisfy the normal assumption with the probabil-
ity density function [32, 33] in relation to the original aysationsyy, k=1,---,N
proportional to the following function

ﬁexp{—%} F(kA) (35)



12 X. Hong, S. Chen and C. J. Harris

where
&(dx) = h(yk,A qu Xi) 9 (36)
and_# (k,A) is the Jacobian of the Box-Cox transformation given by [3, 3
_ oh(y,A) ]
sl = N, T @)

Define a loglikelihood function as follows [32, 33]

L(6,) = —Nlog(o z 2 (38)

in which (37) is applied. Hence MLE df, can be solved by nonlinear least squares
algorithm such as Gauss-Newton algorithm to minimize thamexuares pseudo
errorsy N, €2(8,).

Consider the minimization ozk_leﬁ 9, ) with respect to, by using Gauss-

Newton algorithm [38]. Denote an iteration step varidlddg a superscriptl ). With
an initial 195\0), the iteration formula is given by

9 =9\ M+ a{lQ""Q"} Q" Te9] ) (39)

wherea > 0 is a small positive step siz@. (the superscriptl ) is removed here for
notational simplicity) is the Jacobian matrix&f(d , ) with respect ta3 ,, given by

e(9,) ﬁi,%el(sA)...%elw” 2 e(9)
o= | 72 F5%(61) - Fed) Fred

~—

c DNX(L+1) (40)

or equivalently

Q=[-Q,0xh(k,A)] (41)
where
0 0 7}
Oah(kA) = [5h(ys,A), h(y2.4)..., 5 S-hiyw,A)TedV, (42
in which, /2 /2
4 _ Ay logly] — (v —1)(1+Alogy)
0/\ h(y )\) - /\2)7)\71 (43)
as derived from (28). Hence, due to the fact t@as orthonormal,
_| 1 b(A)
QTQ_ |:bT()\)d(/\)] (44)
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in whichl is an unit matrix.

b(}) = —QTThh(t,A)
d(A) = {0,h(1)} 7,

Atthelth iteration step with previous parameter estimatd® §s” = [9(~1, A (- 11T,

= —[a1 Oxh(t,A), ..., al Oy h(t,A))]"
h() (45)

1
DenoteK () = {[@”]Tg(')} . Apply the inverse of matrix block decomposition
lemma to (44), in whictb(A), d(A), Q are replaced bp(A(-1), d(A(-Y) and
QWY to yield,

1 | +bA0=D)pT (A1) —p(A(-D
K(D = h()\ (Ifl)) |: (_bT(/\)(lfl()) ) ( 1 )] (46)
where
h(A (=) =d(A (=) —pT(A(1=L)p(A (1 -D), (47)

The proposed algorithm is fast and stable, as the updaté'bbver iteration step
I is simplified with no need of matrix inversion. Following deéng the MLE for
A by using the above fast Gauss-Newton algorithm, the Boxi@msformation is
readily applied to form the transformed output.

For system modelling and control, it is desirable that thalehds represented
as (29) with a minimal number d1 basis functions. Provided that the optimal
parametel used in Box-Cox transformation, the number and locationaofdé-
date RBF centers are known, various orthogonal forwardessjon(OFR) algo-
rithms [35, 13, 36, 37] are readily applicable for model stuwe selection and pa-
rameter estimation for the Box-Cox RBF network, simply bingghe transformed
system output as target of the RBF networks output. Thissed@&n the assump-
tion that the MLE estimator of as derived above can be treated as true parameter
of A. For the complete algorithm to construct a sparse Box-Cok Ri®del with
good generalisation, see [21], which simply extends therdlyn [19, 27] (see
also Section 2) to Box-Cox RBF model.

Example 2]21] Non-stationary time series data: Beveridge wheatepiriclices
from 1500 to 1869[39]. The comparison study comprises tvifeint topologies,
the conventional RBF network and the Box-Cox RBF. For bopiotogies, all the
data N\ = 370) were used as training data set, and the input vector etaass
Xk = [Yk-1,Yk—2 »Yk_3,Yk_4,Yk_s] . The thin-plate-spline basis functiap(xy) =
[|Ixk — Gi||?log ||x — ci|| was used as basis function with all data sets initially used a
candidate centres’s. The experimental results is given in Figure 2 and thehient
details can be found in [21].
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5 The RBF Network with Boundary Value Constraints
(BVC-RBF)

In this section we describe a newly introduced RBF topol®g] which aims to
handle effectively a special type of prior knowledge givenabtype of boundary
value constraints (BVC). In many modelling tasks, there ragre or less some
prior knowledge available. Note that most of the RBF modgllalgorithms are
conditioned on that the model is determined based on thenadigenal data only,
so that these fit into the statistical learning frameworkwideer, despite the fact
that the availability of prior knowledge about the systenuldohelp to improve
the model generalization, incorporating the determiniptior knowledge into a
statistically learning paradigm would generally make teeedopment of modelling
algorithms more difficult if not impossible.

The new topology of RBF network [22] is referred as the BVCHR&nd as
shown in Figure 3. The BVC-RBF is constructed and paranegdrbased on the
given BVC and has the capability of satisfying the BVC auttioadly. Because the
BVC-RBF remains as a linear-in-the-parameter structusé g the conventional
RBF does, it is advantageous that many of the existing miadedlgorithms for a
conventional RBF are almost directly applicable withoutledl algorithmic com-
plexity nor computational cost. Consequently the BVC-REEaively lends itself
as a single framework in which both the deterministic prioowledge and stochas-
tic data are fused with ease.

Consider the identification of a semi-unknown system. Gaéraining data set
Dy consisting ofN input/output data pair«Sxk,yk}E:l, the goal is to find the under-
lying system dynamics

Y= f(Xi) + & (48)

-+ Model predictions (80 centers)
3501 | —— Beveridge wheat price indices
-== Actual model residuals

ACF of pseudo errors

P R B N U L
R R e Ry R

1500 1550 1600 1650 1700 1750 1800 1850 1900 -o.

Year Lag

(@ (b)

Fig. 2 (a)Modelling results of the Box-Cox RBF networks (80 cesitrior Example 2; and (b)
Autocorrelation function coefficients based on pseudoremdBox-Cox RBF network (80 centre
model) for Example 2, where the dotted line is calculate&%%e. ©?2007 IET



Construction of Radial Basis Function Networks with Diviesl Topologies 15

The underlying functionf : O™ — O is unknown.g is the noise, which is often
assumed to be independent and identically distributed.jiwith constant variance.
In addition, it is required that the mod&trictly satisfies a set af# boundary value
constraints (BVC) given by

tX)=dj, j=1...2 (49)

wherex; € 0™ andd; € O are known. Note that the information from the given BVC
is fundamentally different from that of the observationatalsetDy and should
be treated differently. The BVC is a deterministic conditiout Dy is subject to
observation noise and possesses stochastic characgeridie BVC may represent
the fact that at some critical regions, there is a completsvkedge about the system.

If the underlying functionf(.) is represented by a conventional RBF network
(formulated as (1)), then resultant RBF network using theveationl modelling
procedure, e.g. Section 2, cannot meet the BVC given by @@garly the prior
knowledge about the system from BVC should help to improeerttodel gener-
alization, but equally this makes the modelling processenthfficult, since with
constraints we are facing a constrained optimization gmoblA simple yet effec-
tive treatment was introduced to ease the problem [22], asrgarized below.

The design goal in [22] is to find a new topology of RBF such thatBVC is
automatically satisfied, and as a consequence the systaeltificition can be carried
out without added algorithmic complexity nor computatibc@st compared to any
modelling algorithm for a conventional RBF. The BVC-RBF &rameterized and
dependent upon the given BVC as shown below. Consider tlmiolg BVC-RBF
model representation

M _
Y = -Zigi (Xi)Wi + h(xk) (50)

where the proposed RBF function for BVC-RBF model [22] isagi\by

X< —cil®
i

Gi (k) = S(Xk) exp(— ) (51)

wheres(xx) = £/ ﬂﬁl [k — Xj|| is the geometric mean of the data sampléo the

set of boundary valueﬁ, j=1,..,.%.c € 0Mis the RBF centerg; is a positive
scalar.
o) = 3 e X0 (52)
k) = ' ——
=1 J T22

T2 is also a positive scalam; is a set of parameters that is obtained by solving a set
of linear equationg(xj) =d;, j =1,...,.Z. Thatis

a=Hd (53)
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Offset function

ke x 1P
expt——Fm—— )

Fig. 3 A graphical illustration of the BVC-RBF network.

wherea = [a1,...,a¢|7, d = [di,...,d.]T andH is given by

B HX’l—ZX’ZHZ - Hx’l—xz_/guz
1 e - ...e 2
[1x5—x4 (12 X5 —Xof 1
- - 2 - 2
H=| e = 1 ...e &2 (54)
N N L

e 2 e 2 1
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In the case of the ill-conditioning, the regularizationheirjue is applied to the
above solution. It is easy to verify that with the proposegbtogy of BVC-RBF
neural networks, the BVC is automatically satisfied [22].general,g;(xx) and
h(xx) act as building blocks of the BVC-RBF networks in (50), with@vel feature
compared to most of the existent neural networks architecithat is, by resorting
to the given boundary conditions, its topology is designadtlie boundary con-
straints satisfaction, or more generally, for incorpargtgiven prior knowledge.
Note that the boundary condition satisfaction via the nétwopology is an in-
herent, but often overlooked, feature for any model reprtag®n. For example,
the autoregressive with exogenous output (ARX) model aatmally satisfies the
boundary condition of (0) = 0, and for the conventional RBF with the Gaussian
basis functionsf () = 0. The aim of [22] is to introduce and exploit the boundary
condition satisfaction via the network topology in a cotit@ manner, so that the
modelling performance may be enhanced by incorporatin@theor knowledge
via boundary conditions satisfaction.
_Substituting (50) into (48) and defining an auxiliary outpatiablez = yy —
h(xk), we have

M

Z = Zigi (Xi)Wi + & (55)

conforming to (1), except that the auxiliary output var@hl is used as the target
of the first term in (50) (the adjustable part of BVC-RBF). Amg for improved
model robustness, the D-optimality in experimental de§i§} has been incorpo-
rated in the D-optimality based model selective criteribh]to selecM regressors
in a forward regression manner. For completeness the cadlroptimality based
orthogonal least squares algorithm [41] is used in the fallg example [22].

Example 322]: The Matlab logo was generated by the first eigenfumatibthe
L-shaped membrane. A 3431 meshed data sét{x;,x») is generated by using
Matlab commandnembranen, which is defined over a unit square input region
x1 € [0,1) andxz € [0, 1]. The data sef(x1,X2) = f(x1,X2) + €(x1,X2) is then gener-
ated by adding a noise tergiixs, x2) ~ N(0,0.01%). We use all the data points within
the boundary as the training data gt consisting of the set ofx1, X2, y(x1,X2) }
coordinatesl = 721). For comparison, the combined D-optimality basedagth
nal least squares algorithm was applied [41] to identify @ sp conventional RBF
model. The modeling results are shown in Figure 4 and Tablei&.shown that
the BVC-RBF can achieve significant improvement over the RBferms of the
modeling performance to the true function. In particularnve¢e that the BVC can
be satisfied with the proposed BVC-RBF model, but not by theventional RBF.
The detail of the parameters setting for the experiment ediolnd in [22].
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Fig. 4 Example 3; (a) the true functioh(xy, Xx2); (b) noisy datay(xa,x2); (c) the boundary points

and (d) the prediction of the resultant BVC-RBF model; (&) thodelling error between the true
function and the model predictiofy(xi,%2) — f (x1,%2)) for the BVC-RBF model; and (f) The

modelling error for the RBF model. IEEE2008 IEEE

Table 2 A comparison between the conventional RBF and the BVC-RBWwark for Example 3.

Model sizs MSE MSE MSE (boundary)

M Ex@-12 | F350-9? | 3;9() —d))?
BVC-RBF 68 4.3787x 10 °[1.0736x 10 4| 7.2598x 10 11
RBF 91 1.0229x 10 %]1.6894% 10 %] 2.1249x 10 %

6 Conclusions

Our recent work on diversified RBF topologies is reviewed.€Bdifferent topolo-
gies have been introduced aimed at enhancing the modebipghdlities of RBF
network by modifying their topologies for specific probleni$ the RBF network
with tunable nodes is introduced with the aim of flexible bdanction shaping for
achieving the minimal model and improved model generatisafii) the Box-Cox
RBF network is aimed at effectively handling some dynamgraktesses in which
the model residuals exhibit heteroscedasticity; andtfig) BVC-RBF is introduced
in order to achieve automatic constraints satisfactioniacarporating determinis-
tic prior knowledge with ease. It is advantageous that the model wantisin algo-
rithms for the diversified RBF topologies are either dirgygilecation or extension of
linear learning algorithms. In each case, an illustratixeneple is used to demon-
strate the efficacy of the proposed topology, together withapplication of the
modeling construction algorithm.
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