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Abstract In this review we bring together some of our recent work from the angle
of the diversified RBF topologies, including three different topologies; (i) the RBF
network with tunable nodes; (ii) the Box-Cox output transformation based RBF net-
work (Box-Cox RBF); and (iii) the RBF network with boundary value constraints
(BVC-RBF). We show that the modified topologies have some advantages over the
conventional RBF topology for specific problems. For each modified topology, the
model construction algorithms have been developed. These proposed RBF topolo-
gies are respectively aimed at enhancing the modelling capabilities of; (i)flexible ba-
sis function shaping for improved model generalisation with the minimal model;(ii)
effectively handling some dynamical processes in which themodel residuals ex-
hibit heteroscedasticity; and (iii) achieving automatic constraints satisfaction so as
to incorporate deterministicprior knowledge with ease. It is shown that it is ad-
vantageous that the linear learning algorithms, e.g. the orthogonal forward selection
(OFS) algorithm based leave-one-out (LOO) criteria, are still applicable as part of
the proposed algorithms.

1 Introduction

The identification of nonlinear systems using only observedfinite data sets has be-
come a mature research area over the last two decades [1]. A large class of non-
linear models and neural networks can be classified as a linear-in-the-parameters
model [2, 3]. These are well structured for adaptive learning, have provable learn-
ing and convergence conditions, have the capability of parallel processing and have
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clear applications in many engineering applications [4, 5,6]. In particular, the radial
basis function (RBF) network is a popular type of linear-in-the-parameters model
and has been widely applied in diverse fields of engineering [7, 8, 9, 10]. The ulti-
mate objective of model construction from observed data sets should be to produce
a model which captures the true underlying dynamics and predicts accurately the
output for unseen data. This translates into the practical principle in nonlinear mod-
elling of finding the smallest model that generalizes well. Sparse models are prefer-
able in engineering applications since a models’ computational complexity scales
with its model complexity. Furthermore, a sparse model is easier to interpret from
the angle of knowledge extraction from observed data sets.

A fundamental concept in the evaluation of model generalization capability is
that of cross validation [11] which is often used to derive the information theo-
retic metrics, e.g. the leave-one-out (LOO) cross validation has been used to derive
model selective criteria such as the Akaike information criterion (AIC) [12]. Model
selective criteria can be used for predicting a model’s performance on unseen data
and evaluating a model’s quality amongst other competitivemodels. The forward
orthogonal least squares (OLS) algorithm is an efficient nonlinear system identifi-
cation algorithm [13, 14] which selects regressors in a forward manner by virtue
of their contribution to the maximization of the model errorreduction ratio (ERR).
In order to produce a model with good generalization capabilities, the AIC [12] is
usually incorporated into the forward orthogonal least squares (OLS) algorithm to
determinate the model construction process. The OLS algorithm has become a pop-
ular modelling tool in a wide range of applications [15, 16, 17, 18]. Note that most
of model selective criteria are formula of approximating the LOO mean-square er-
ror (mse), and due to the approximation, have lost discriminate power in selecting
terms if being used in the forward OLS algorithm. The LOO mean-square error
(MSE) criterion, which directly measures the model generalization capability, has
been introduced into the framework of forward OLS algorithm[19] in which the
LOO mean-square error (MSE) criterion is calculated efficiently (as outlined in Sec-
tion 2). An additional advantage is that the process is fullyautomatic, so that there
is no need for the user to specify a termination criterion of the model construction
process.

In this review we bring together some of our recent work from the angle of the
diversified RBF topologies, including three different topologies; (i) the RBF net-
work with tunable nodes [20]; (ii) the Box-Cox RBF [21]; and (iii) the BVC-RBF
network [22]. The RBF network with tunable nodes is initially described in Sec-
tion 3. Note that the parameters of the RBF network include its center vectors and
variance or the covariance matrices of the basis function aswell as the connect-
ing weights from the RBF nodes to the network output. In [19] and many other
RBF modelling paradigms [23, 24, 25, 26], the RBF centers arerestricted to be se-
lected from the input data sets and a common variance is employed for every RBF
node. The common variance should be treated as a hyperparameter and determined
via cross-validation, which may be computationally costly. The recent work [20]
has introduced a construction algorithm for the tunable RBFnetwork, where each
RBF node has a tunable center and an adjustable diagonal covariance matrix. An
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OFS procedure is developed to append the RBF units one by one by minimizing
the LOO mse. Because the extra flexibility for the basis functions is allowed in
the tunable RBF topology and all the parameters are optimized via minimizing the
LOO mean-square error (MSE) criterion, the algorithm is computationally efficient
and the resultant models have sparser representations withexcellent generalization
capability, in comparison with the existing sparse kernel modeling methods.

In Section 4, the Box-Cox RBF topology and its fast model construction algo-
rithm [21] is described. It is a common practice to constructthe RBF network in
order to represent a systems’ input/output mapping. For thenetwork training the
system output observations are used as the direct target of the model output. Least
squares algorithm is often used as the parameter estimator,which is equivalent to
the maximum likelihood estimator (MLE) under the assumption that the noise is
additive and independent identically distributed (i.i.d)Gaussian with zero mean and
constant variance. In practice the variance of process noise may vary with the output,
e.g. the variance of noise may increase as the system output increases. For some dy-
namical processes in which the model residuals exhibit heteroscedasticity, e.g. with
nonconstant variance or skewed distribution, or being multiplicative to the model,
using conventional RBF models to construct a direct systems’ input/output map-
ping based on the least squares estimator is no longer appropriate. The work [21]
has modified RBF topology based on Box-Cox transformation. The fast identifica-
tion algorithm [21] is developed based on a maximum likelihood estimator (MLE)
to find the required Box-Cox transformation. It is shown the OFS-LOO algorithm is
readily applicable to construct a sparse Box-Cox RBF model with good generalisa-
tion [19, 27, 21].

Finally Section 5 describes the topology of the BVC-RBF network [22]. Note that
most of RBF modelling algorithms fit into the statistical learning framework, i.e. the
model is determined based on the observational data only. Inmany modelling tasks,
there are more or less prior knowledge available. Although any prior knowledge
about the system should help to improve the model generalization, in general in-
corporating the deterministic prior knowledge into a statistically learning paradigm
would make the development of modelling algorithms more difficult if not impossi-
ble. The work [22] has introduced the idea of modifying RBF topology in order to
enhance its capability of automatic constraints satisfaction. We considered a special
type of prior knowledge given by a type of boundary value constraints (BVC), and
introduced the BVC-RBF as a new topology of RBF neural network that has the
capability of satisfying the BVC automatically. The BVC-RBF network [22] is con-
structed and parameterized based on the given BVC. It is shown that the BVC-RBF
remains as a linear-in-the-parameter structure just as theconventional RBF does.
Therefore many of the existing modelling algorithms for a conventional RBF are al-
most directly applicable to the new BVC-RBF without added algorithmic complex-
ity nor computational cost. Consequently the topology of the BVC-RBF effectively
lends itself as a single framework in which both the deterministic prior knowledge
and stochastic data are fused with ease.
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2 Orthogonal forward selection (OFS) algorithm based on
leave-one-out (LOO) criteria

Consider the regression problem of approximating theN pairs of training dataDN =
{xk,yk}N

k=1 with a linear-in-the-parameter model defined in

yk = ŷk +ek =
M

∑
i=1

wigi(xk)+ek = gT(k)w+ek (1)

where the inputxk ∈ ℜm, the desired outputyk ∈ ℜ, ŷk denotes the model out-
put, ek = yk − ŷk is the modelling error,gi(•) for 1 ≤ i ≤ M is a known nonlin-
ear basis function mapping, such as RBF, polynomial or B-spline functions, and
g(k) = [g1(xk) g2(xk) · · · gM(xk)]

T , w = [w1 w2 · · · wM] ∈ ℜM is the weight
vector, M is the number of basis functions. By definingy = [y1 y2 · · · yN]T ,
e= [e1 e2 · · · eN]T , andG = [g1 g2 · · · gM] with gl = [gl(x1) gl (x2) · · · gl (xN)]T ,
1≤ l ≤ M. The regression model (1) over the training data set can be written in the
matrix form

y = Gw+e (2)

Heregl is thel th column of whilegT(k) thekth row ofG.
Let an orthogonal decomposition ofG beG = PA, whereA = {αi j } is anM×

M unit upper triangular matrix andP = [p1 p2 · · · pM] is anN×M matrix with
orthogonal columns that satisfy

PTP = diag{κ1, ...,κM} (3)

whereκl = pT
l pl for 1≤ l ≤ M. The regression model (2) can be alternatively ex-

pressed as
y = Pθ +e (4)

whereθ = [θ1 θ2 · · · θM]T satisfies the triangular systemAw = θ . The model output
ŷk can be equivalently expressed by

ŷk = pT(k)θ (5)

wherepT(k) = [p1(xk) p2(xk) · · · pM(xk)] is thekth row ofP.
Consider the modeling process that has produced then-unit model. Let us denote

the constructedn model columns asPn = [p1, ...,pn] , thekth model output of this

n unit model identified using the entire training data set as ˆy(n)
k = ∑n

i=1 θi pi(k), and

the correspondingkth modeling errore(n)
k = yk− ŷ(n)

k .

Definition 1: The leave-one-out (LOO) mse: If we “remove” thekth data point from
the traing data set and use the remaining(N−1) data points to identify then-unit
model instead, the “test” error of the resulting model can becalculated on the data
point removed from training. This LOO modeling error. (Thiscorresponds to the
LOO pseudo-modeling error in the context of Box-Cox RBF network (see Section
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4)), denoted ase(n,−k)
k , is given by [28]

e(n,−k)
k = e(n)

k /η(n)
k (6)

whereη(n)
k is the LOO error weighting [28]. The LOO mse (This corresponds to the

LOO pseudo-mse in the context of Box-Cox RBF network (see Section 4)) for the
n-unit model is then defined by

Jn =
1
N

N

∑
k=1

(

e(n,−k)
k

)2
. (7)

which is a measure of the model generalisation capability [28, 11].
For model (5) the computation of the LOO criterionJn is very efficient, because

e(n)
k andη(n)

k can be computed recursively using [19, 27]

e(n)
k = e(n−1)

k −θnpn(k) (8)

η(n)
k = η(n−1)

k − p2
n(k)

κn + ν
(9)

whereν ≥ 0 is a small regularization parameter.
The orthogonal forward selection (OFS) algorithm based leave-one-out (LOO)

criteria was proposed [19, 27], in which the LOO mseJn was minimized by search-
ing a set of candidate regressors at each forward orthogonalregression stage. It
is shown [19] thatJn is concave with respect to the number of model terms, and
this means that the model construction process becomes fully automatic without us-
ing additional termination criterion. Furthermore note that Jn directly measures the
model generalization capability so that there is no need to use a separate validation
data set. Other advantages for using LOO mse criteria are that LOO mseJn has not
lost discriminative power in selecting terms as happens with AIC, and that there is
no extra tuning parameters in the model selective criterion.

3 RBF network with tunable nodes

A popular approach is to construct the RBF models with the Gaussian basis func-
tions, in which the candidate regressorsgi(•) are formed using the training data set,
and agivencommon variance is employed for every RBF node. In order to find a
satisfactory value of the common variance, the algorithms in [19, 27] need to be re-
peated, e.g. via grid search based cross validation. Clearly the true cost of modeling
must take into account the cost of determining all the parameters, e.g. optimizing
the value the the common variance. This is because most of thecomplexity for
many existing learning algorithms is due to the need to tune parameters that have
nonlinear relationship to the system output via cross validation. Therefore a model



6 X. Hong, S. Chen and C. J. Harris

with less parameters that are tuned via cross validation could potentially lead to the
significant reduction to the true cost of modeling.

Alternatively if the regressorsgi(•) are viewed as the building blocks of the RBF
network, then it is intuitive to make these more flexible by relaxing the constraint
that each regressor has the same shape, because this allows the model generaliza-
tion capability to be maximized for a model with the smallestsize. The tunable RBF
network was recently introduced [20], in which each node of the network has a tun-
able center and an adjustable diagonal covariance matrix. Clearly the tunable RBF
topology has more parameters that are nonlinear to the system output, and nonlinear
optimization is necessary, leading to the additional computation costs. Note that it
would be computationally prohibitive to tune a large numberof extra parameters
via cross validation. Significantly the OFS-LOO algorithm,the construction algo-
rithm developed for the tunable RBF network in [20], optimizes all the associated
parameters in order to achieve model generalization without cross validation. This
potentially leads to considerable saving in terms of the true cost of modeling, de-
spite the fact that more parameters that have nonlinear relationship to the system
output are introduced in the tunable RBF topology.

Consider the general RBF regressor of the form [20]

gi(x) = K

(

√

(x− µ i)
T Σ−1

i (x− µ i)

)

(10)

whereµ i is the center vector of theith RBF unit, the diagonal covariance matrix has
the formΣi = diag{σi,1, · · · ,σi,m}, andK(•) is the chosen basis or kernel function.
The proposed algorithm constructs the RBF units one by one bypositioning and
shaping the RBF nodes while minimizing the LOO mseJn. Specifically, at thenth
stage of the constructing procedure, thenth RBF unit is determined by minimizing
Jn with respect to the node’s center vectorµn and the diagonal covariance matrixΣn

min
µn,Σn

Jn(µn,Σn) (11)

and the construction procedure is automatically terminated whenJM ≤ JM+1, yield-
ing anM-term RBF network. Intuitively the extra number of tunable parameters in
each RBF node can enhance the modeling capability such that the final model size
M could be much smaller than that of fixed RBF with each unit having a common
variance, leading to another part of saving in computation cost, and this is often
confirmed in simulation studies.

In [20], a simple yet efficient global search algorithm called the repeating
weighted boosting search (RWBS) algorithm [29] was proposed to solve the task
of the nonconvex optimization problem(11). The procedure is summarized here.
Let u be the vector that containsµn andΣn. Giving the following initial conditions:

e(0)
k = yk andη(0)

k = 1, 1≤ k≤ N
J0 = 1

N yTy = 1
N ∑N

k=1y2
k

}

(12)
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Specify the RWBS algorithmic parameters, namely, the population sizePs, the num-
ber of generations in the repeated searchNG, and the number of weighted boosting
search iterationsMI .

Outer loop: generationsFor ( l = 1;l ≤ NG; l = l +1) {

Generation Initialization:Initialize the population by settingu[l ]
1 = u[l−1]

best and ran-

domly generating the rest of the population membersu[l ]
i ,2 ≤ i ≤ PS, whereu[l−1]

best

denotes the solution found in the previous generation. Ifl = 1, u[l ]
1 is also randomly

chosen.

Weighted boosting search initialization:Assign the initial distribution weighting
factorsδi(0) = 1/Ps, 1≤ i ≤ Ps, for the population. Then

1) For 1≤ i ≤ PS, generategi)
n from u[l ]

i , the candidates for thenth model column,
and orthogonalize them

α i)
j ,n = pT

j gi)
n/pT

j p j 1≤ j < n (13)

pi)
n = gi)

n −
n−1

∑
j=1

α i)
j ,np j (14)

θ i)
n = (pi)

n )Ty/
(

(pi)
n )Tpi)

n + ν
)

(15)

2) For 1≤ i ≤ Ps, calculate the LOO cost for eachu[l ]
i

e(n)
k (i) = e(n−1)

k − pi)
n (k)θ i)

n , 1≤ k < N (16)

η(n)
k (i) = η(n−1)

k −
(

pi)
n (k)

)2
/
(

(pi)
n )Tpi)

n + ν
)

, 1≤ k < N (17)

Ji)
n =

1
N

N

∑
k=1

(

e(n)
k (i)

η(n)
k (i)

)2

(18)

wherepi)
n (k) is thekth element ofpi)

n .

Inner loop: weighted boosting searchFor (t = 1;t ≤ MI ; t = t +1) {
Step 1: Boosting

1. Find

ibest = arg min
1≤i≤Ps

Ji)
n (19)

iworst = arg max
1≤i≤Ps

Ji)
n (20)

Denoteu[l ]
best= u[l ]

ibest
andu[l ]

worst = u[l ]
iworst

,
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2. Normalize the cost function values

J̄i)
n =

Ji)
n

∑Ps
j=1J j)

n

, 1≤ i ≤ Ps. (21)

3. Compute a weighting factorβt according to

ξt =
Ps

∑
i=1

δi(t −1)J̄i)
n , βt =

ξt

1− ξt
. (22)

4. Update the distribution weightings for 1≤ i ≤ Ps

δi(t) =







δi(t −1)β J̄
i)
n

t for β ≤ 1

δi(t −1)β 1−J̄
i)
n

t for β > 1
(23)

and normalize them

δi(t) =
δi(t)

∑Ps
j=1 δ j(t)

, 1≤ i ≤ Ps. (24)

Step 2: Parameter Updating

1. Construct the(Ps+1)th point using

uPs+1 =
Ps

∑
i=1

δi(t)u
[l ]
i (25)

2. Construct the(Ps+2)th point using

uPs+2 = u[l)]
best+

(

u[l ]
best−uPs+1

)

(26)

3. CalculategPs+1)
n andgPs+2)

n from uPs+1 anduPs+2, orthogonalize these two candi-
date model columns (as in (13)-(15), and compute the corresponding LOO cost

function valuesJi)
n , i = Ps+1,Ps+2 (as in (16)-(18)). Then find

i∗ = arg min
i=Ps+1,Ps+2

Ji)
n . (27)

(ui∗ ,J
i∗)
n ), which replace(u[l ]

worst,J
iworst)
n ) in the population.

} End of inner loop This solution found in thel th generation isu = u[l ]
best.

} End of outer loop This yields the solutionu = u(NG)
best , i.e.,µn, Σn of thenth RBF

node, thenth model columngn, the orthogonalization coefficientsα j ,n, 1≤ j < n,
the corresponding orthogonal model columnpn, and the weightθn, as well as the
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n-term modelling errorse(n)
k and the associated LOO modelling error weightings

η(n)
k for 1≤ k≤ N.

Note that the algorithmic parametersPs, NG andMI are found empirically, and
some general rules are discussed in [29].

Table 1 Comparative results for Boston housing data set [20]; The results were averaged over 100
realisations and quoted as the mean± standard deviation

algorithm RBF type model size training MSE test MSE

ε-SVM fixed 243.2± 5.3 6.7986± 0.4444 23.1750± 9.0459
LROLS-LOO fixed 58.6± 11.3 12.9690± 2.6628 17.4157± 4.6670
OFS-LOO tunable 34.6± 8.4 10.0997± 3.4047 14.0745± 3.6178

Example 1[20]: Boston Housing Data
This benchmark data set is available at the University of California, Irvine (UCI)

repository [30]. The data set comprises 506 data points with14 variables. The task of
predicting the median house value was performed from the remaining 13 attributes.
456 data points were randomly selected from the data set for training and the remain-
ing 50 data points were used as a test data set. The experimentwas repeated and the
average results over 100 repetitions were given [20]. Threeconstruction algorithms,
the ε-SVM [24], the LROLS-LOO [27] and the OFS-LOO [20] were compared,
and the Gaussian basis function was used to form the basis function. Table 1 sum-
marize the results for three algorithms over the 100 realizations. The experiments
parameters setting can be found [20]. Discussions on the computational complexity
comparison can be found [20], in which it is argued that the OFS-LOO algorithm is
highly competitive in terms of the real cost of modeling.

4 Box-Cox output transformation based RBF network (Box-Cox
RBF)

In this section we review a modified RBF topology [21], in which a conventional
RBF network was introduced to represent the Box-Cox transformed system output,
rather than the actual system output. One of the motivationsof [21] is to provide a
computationally efficient approach to construct a sparse Box-Cox RBF network for
some systems with the heteroscedasticity. Provided that there is a suitable Box-Cox
transformation, the pseudo model errors that are the model residuals between the
transformed system output and model output can be stabilized so that it follows a
normal assumption [32, 33, 34]. Provided that the optimal parameterλ used in Box-
Cox transformation, the number and location of candidate RBF centers are known,
various orthogonal forward regression (OFR) algorithms [35, 13, 36, 37] are readily
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applicable to model structure selection and parameter estimation for the proposed
Box-Cox transformed based RBF network.

Consider the problem of approximating theN pairs of training data{xk,yk}N
k=1,

whereyk is positive system output. If the original system output is not negative,
thenyk +c→ yk > 0 is used wherec is a chosen positive number just large enough
to enableyk to be positive. The Box-Cox transformation is a transformation to the
system output given by

h(y,λ ) =

{

(yλ −1)/(λ ỹλ−1) if λ 6= 0
ỹlog(y) if λ = 0

(28)

whereỹ = N
√

∏N
k=1 yk, the geometric mean of the output observations.

The Box-Cox transformation based RBF networks (Box-Cox RBF) [21] is illus-
trated in Figure 1. For a givenλ , the Box-Cox RBF network with a single output
can be formulated as

h(yk,λ ) = ĥk +ek =
M

∑
i=1

wigi(xk)+ek = gT(k)w+ek. (29)

Hereek = h(yk,λ )− ĥk is referred as the pseudo error. (In order to reduce the number
of notations,ek is still used here in spite of the difference between (1) and (29). This
allows that the algorithm in Section 2 to be shared for the different topologies.) The
regressorsgi(xk) are formed using some known RBF functions (see Section 2). Note
that

lim
λ→0

h(y,λ ) = lim
λ→0

[(yλ −1)/(λ ỹλ−1)] = ỹlog(y) (30)

and the inverse of Box-Cox transformation uponĥk for givenλ 6= 0 is

ŷk = h−1(ĥk) =
λ
√

1+ λ ỹλ−1ĥk. (31)

If λ = 0, then ˆyk = exp[ĥk/ỹ].
Supposing all the training data were used as centres to construct the candidate

regressorsgi(xk), (29) can be rewritten in a vector form as

e= h(λ )−Gw (32)

in whichh(λ ) = [h(y1,λ ), ...,h(yN,λ )]T ∈ ℜN is transformed system outputs’ vec-
tor. e= [e1, ...,eN]T ∈ ℜN is the pseudo-error vector.

The parameter estimation for the Box-Cox RBF network is to adapt model pa-
rameters based on the fundamentals of feedback learning andweight adjustment
found in conventional parametric optimization so that the model produces a good
approximation to the true system, e.g. to minimize pseudo errors as shown Figure
1. Compared to the conventional RBF neural networks, there is an additional task
of determining the required Box-Cox transformation, i.e. finding the optimalλ . The
method introduced in [21] is based on the underlying assumption that there exists a
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Fig. 1 The Topology of the Box-Cox RBF network.

suitable Box-Cox RBF network such that the resultant model residuals, or pseudo
errorsek, become Gaussian with zero mean and constant varianceσ2 [32, 33]. This
leads to a fast algorithm for determiningλ based on MLE, as described below.

Because the parameter estimators for linear-in-the-parameters models rely on the
well-conditioning of the model, yet using the full data set to form RBF regressors
usually results in ill-conditioning. Initially we consider the singular value decompo-
sition (SVD) of matrixG with orthonormal matrixQN ∈ ℜN×N, such that

QT
NGQN = Σ N = diag(σ1,σ2, ...,σL,0, ...,0) ∈ ℜN×N (33)

whereσ1 ≥ σ2 ≥ ... ≥ σL are L nonnegative singular values ofG. DenoteΣ =
diag(σ1,σ2, ...,σL) ∈ ℜL×L, and the submatrix of the firstL columns ofQN as Q =
[q1, ...,qL] ∈ ℜN×L, andqk = [qk(x1), ...,qk(xN)]T . (32) becomes

e(ϑ λ ) = h(λ )−QΣQTw = h(λ )−Qϑ (34)

in which ϑ = [ϑ1, ...,ϑL]T ∈ ℜL, ϑ λ is defined asϑ λ = [ϑ T ,λ ]T . Denotee(ϑ λ )
= [e1(ϑ λ ), · · · ,eN(ϑ λ )]T .

Consider the MLE forϑ λ under the assumption that the pseudo errors,ek, is
Gaussian with zero mean and constant varianceσ2 [32, 33]. Specifically, suppose
that there exists a suitable Box-Cox transformation given by (28) such that the trans-
formed output observationsh(y,λ ) satisfy the normal assumption with the probabil-
ity density function [32, 33] in relation to the original observationsyk, k = 1, · · · ,N
proportional to the following function

1√
2πσ

exp

{

−e2
k(ϑ λ )

2σ2

}

J (k,λ ) (35)
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where

ek(ϑ λ ) = h(yk,λ )−
L

∑
i=1

qi(xk)ϑi (36)

andJ (k,λ ) is the Jacobian of the Box-Cox transformation given by [32, 33]

J (k,λ ) =
∂h(y,λ )

∂y
|y=yk =

[

yk

ỹ

]λ−1

. (37)

Define a loglikelihood function as follows [32, 33]

L(θ λ ) = −N log(σ)−
N

∑
k=1

e2
k(ϑ λ )

2σ2 (38)

in which (37) is applied. Hence MLE ofϑ λ can be solved by nonlinear least squares
algorithm such as Gauss-Newton algorithm to minimize the mean squares pseudo
errors∑N

k=1e2
k(ϑ λ ).

Consider the minimization of∑N
k=1e2

k(ϑ λ ) with respect toϑ λ by using Gauss-
Newton algorithm [38]. Denote an iteration step variablel by a superscript(l). With

an initial ϑ (0)
λ , the iteration formula is given by

ϑ (l)
λ = ϑ (l−1)

λ + α{[Q(l)]TQ(l)}−1[Q(l)]Te(ϑ (l−1)
λ ) (39)

whereα > 0 is a small positive step size.Q (the superscript(l) is removed here for
notational simplicity) is the Jacobian matrix ofek(ϑ λ ) with respect toϑ λ , given by

Q =











∂
∂θ1

e1(ϑ λ ) ∂
∂ϑ2

e1(ϑ λ ) · · · ∂
∂ϑL

e1(ϑ λ ) ∂
∂λ e1(ϑ λ )

∂
∂θ1

e2(ϑ λ ) ∂
∂ϑ2

e2(θ λ ) · · · ∂
∂ϑL

e2(ϑ) ∂
∂λ e2(ϑ λ )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂

∂ϑ1
e(ϑ λ ,N) ∂

∂ϑ2
eN(ϑ λ ) · · · ∂

∂ϑL
eN(ϑ λ ) ∂

∂λ eN(ϑ λ )











∈ ℜN×(L+1) (40)

or equivalently
Q = [−Q,∇λ h(k,λ )] (41)

where

∇λ h(k,λ ) = [
∂

∂λ
h(y1,λ ),

∂
∂λ

h(y2,λ )...,
∂

∂λ
h(yN,λ )]T ∈ ℜN, (42)

in which,
∂

∂λ
h(yk,λ ) =

λyλ
k log[yk]− (yλ

k −1)(1+ λ logỹ)

λ 2ỹλ−1
(43)

as derived from (28). Hence, due to the fact thatQ is orthonormal,

QTQ =

[

I b(λ )
bT(λ ) d(λ )

]

(44)
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in which I is an unit matrix.

b(λ ) = −QT∇λ h(t,λ ) = −[qT
1 ∇λ h(t,λ ), ..., qT

L ∇λ h(t,λ ))]T

d(λ ) = {∇λ h(λ )}T∇λ h(λ ) (45)

At the l th iteration step with previous parameter estimator asϑ (l−1)
λ = [ϑ (l−1),λ (l−1)]T .

DenoteK (l) =
{

[Q(l)]TQ(l)
}−1

. Apply the inverse of matrix block decomposition

lemma to (44), in whichb(λ ), d(λ ), Q are replaced byb(λ (l−1)), d(λ (l−1)) and

Q(l), to yield,

K (l) =
1

h(λ (l−1))

[

I +b(λ (l−1))bT(λ (l−1)) −b(λ (l−1))

−bT(λ (l−1)) 1

]

(46)

where
h(λ (l−1)) = d(λ (l−1))−bT(λ (l−1))b(λ (l−1)). (47)

The proposed algorithm is fast and stable, as the update ofK (l) over iteration step
l is simplified with no need of matrix inversion. Following deriving the MLE for
λ by using the above fast Gauss-Newton algorithm, the Box-Coxtransformation is
readily applied to form the transformed output.

For system modelling and control, it is desirable that the model is represented
as (29) with a minimal number ofM basis functions. Provided that the optimal
parameterλ used in Box-Cox transformation, the number and location of candi-
date RBF centers are known, various orthogonal forward regression(OFR) algo-
rithms [35, 13, 36, 37] are readily applicable for model structure selection and pa-
rameter estimation for the Box-Cox RBF network, simply by using the transformed
system output as target of the RBF networks output. This is based on the assump-
tion that the MLE estimator ofλ as derived above can be treated as true parameter
of λ . For the complete algorithm to construct a sparse Box-Cox RBF model with
good generalisation, see [21], which simply extends the algorithm [19, 27] (see
also Section 2) to Box-Cox RBF model.

Example 2:[21] Non-stationary time series data: Beveridge wheat price indices
from 1500 to 1869[39]. The comparison study comprises two different topologies,
the conventional RBF network and the Box-Cox RBF. For both topologies, all the
data (N = 370) were used as training data set, and the input vector was set as
xk = [yk−1,yk−2 ,yk−3,yk−4,yk−5]

T . The thin-plate-spline basis functiongi(xk) =
‖xk−ci‖2 log‖xk−ci‖ was used as basis function with all data sets initially used as
candidate centresci ’s. The experimental results is given in Figure 2 and the further
details can be found in [21].
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5 The RBF Network with Boundary Value Constraints
(BVC-RBF)

In this section we describe a newly introduced RBF topology [22] which aims to
handle effectively a special type of prior knowledge given by a type of boundary
value constraints (BVC). In many modelling tasks, there aremore or less some
prior knowledge available. Note that most of the RBF modelling algorithms are
conditioned on that the model is determined based on the observational data only,
so that these fit into the statistical learning framework. However, despite the fact
that the availability of prior knowledge about the system could help to improve
the model generalization, incorporating the deterministic prior knowledge into a
statistically learning paradigm would generally make the development of modelling
algorithms more difficult if not impossible.

The new topology of RBF network [22] is referred as the BVC-RBF and as
shown in Figure 3. The BVC-RBF is constructed and parameterized based on the
given BVC and has the capability of satisfying the BVC automatically. Because the
BVC-RBF remains as a linear-in-the-parameter structure just as the conventional
RBF does, it is advantageous that many of the existing modelling algorithms for a
conventional RBF are almost directly applicable without added algorithmic com-
plexity nor computational cost. Consequently the BVC-RBF effectively lends itself
as a single framework in which both the deterministic prior knowledge and stochas-
tic data are fused with ease.

Consider the identification of a semi-unknown system. Givena training data set
DN consisting ofN input/output data pairs{xk,yk}N

k=1, the goal is to find the under-
lying system dynamics

yk = f (xk)+ εk (48)
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Fig. 2 (a)Modelling results of the Box-Cox RBF networks (80 centres) for Example 2; and (b)
Autocorrelation function coefficients based on pseudo errors of Box-Cox RBF network (80 centre
model) for Example 2, where the dotted line is calculated as± 1.96√
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The underlying functionf : ℜm → ℜ is unknown.εk is the noise, which is often
assumed to be independent and identically distributed (i.i.d.) with constant variance.
In addition, it is required that the modelstrictly satisfies a set ofL boundary value
constraints (BVC) given by

f (x′j ) = d j , j = 1, ...,L (49)

wherex′j ∈ℜm andd j ∈ℜ are known. Note that the information from the given BVC
is fundamentally different from that of the observational data setDN and should
be treated differently. The BVC is a deterministic condition but DN is subject to
observation noise and possesses stochastic characteristics. The BVC may represent
the fact that at some critical regions, there is a complete knowledge about the system.

If the underlying functionf (.) is represented by a conventional RBF network
(formulated as (1)), then resultant RBF network using the conventionl modelling
procedure, e.g. Section 2, cannot meet the BVC given by (49).Clearly the prior
knowledge about the system from BVC should help to improve the model gener-
alization, but equally this makes the modelling process more difficult, since with
constraints we are facing a constrained optimization problem. A simple yet effec-
tive treatment was introduced to ease the problem [22], as summarized below.

The design goal in [22] is to find a new topology of RBF such thatthe BVC is
automatically satisfied, and as a consequence the system identification can be carried
out without added algorithmic complexity nor computational cost compared to any
modelling algorithm for a conventional RBF. The BVC-RBF is parameterized and
dependent upon the given BVC as shown below. Consider the following BVC-RBF
model representation

ŷk =
M

∑
i=1

gi(xk)wi + h̄(xk) (50)

where the proposed RBF function for BVC-RBF model [22] is given by

gi(xk) = s(xk)exp(−‖xk−ci‖2

τ2
1

) (51)

wheres(xk) = L

√

∏L
j=1‖xk−x′j‖ is the geometric mean of the data samplexk to the

set of boundary valuesx′j , j = 1, ...,L . ci ∈ ℜm is the RBF centers,τ1 is a positive
scalar.

h̄(xk) =
L

∑
j=1

α j exp(−
‖xk−x′j‖2

τ2
2

) (52)

τ2 is also a positive scalar.α j is a set of parameters that is obtained by solving a set
of linear equationsg(x j) = d j , j = 1, ...,L . That is

α = H̄−1d (53)
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Fig. 3 A graphical illustration of the BVC-RBF network.

whereα = [α1, ...,αL ]T , d = [d1, ...,dL]T andH̄ is given by

H̄ =





















1 e
− ‖x′1−x′2‖

2

τ2
2 . . . e

− ‖x′1−x′L ‖2

τ2
2

e
− ‖x′2−x′1‖

2

τ2
2 1 . . . e

− ‖x′2−x′L ‖2

τ2
2

. . . . . . . . . . . .

e
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2

τ2
2 e

− ‖x′L −x′2‖
2
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












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

(54)
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In the case of the ill-conditioning, the regularization technique is applied to the
above solution. It is easy to verify that with the proposed topology of BVC-RBF
neural networks, the BVC is automatically satisfied [22]. Ingeneral,gi(xk) and
h̄(xk) act as building blocks of the BVC-RBF networks in (50), with anovel feature
compared to most of the existent neural networks architecture. That is, by resorting
to the given boundary conditions, its topology is designed for the boundary con-
straints satisfaction, or more generally, for incorporating given prior knowledge.
Note that the boundary condition satisfaction via the network topology is an in-
herent, but often overlooked, feature for any model representation. For example,
the autoregressive with exogenous output (ARX) model automatically satisfies the
boundary condition off (0) = 0, and for the conventional RBF with the Gaussian
basis functions,f (∞) = 0. The aim of [22] is to introduce and exploit the boundary
condition satisfaction via the network topology in a controlled manner, so that the
modelling performance may be enhanced by incorporating thea prior knowledge
via boundary conditions satisfaction.

Substituting (50) into (48) and defining an auxiliary outputvariablezk = yk −
h̄(xk), we have

zk =
M

∑
i=1

gi(xk)wi +ek (55)

conforming to (1), except that the auxiliary output variable zk is used as the target
of the first term in (50) (the adjustable part of BVC-RBF). Aiming for improved
model robustness, the D-optimality in experimental design[40] has been incorpo-
rated in the D-optimality based model selective criterion [41] to selectM regressors
in a forward regression manner. For completeness the combined D-optimality based
orthogonal least squares algorithm [41] is used in the following example [22].

Example 3[22]: The Matlab logo was generated by the first eigenfunction of the
L-shaped membrane. A 31× 31 meshed data setf (x1,x2) is generated by using
Matlab commandmembrane.m, which is defined over a unit square input region
x1 ∈ [0,1] andx2 ∈ [0,1]. The data sety(x1,x2) = f (x1,x2)+ε(x1,x2) is then gener-
ated by adding a noise termε(x1,x2)∼N(0,0.012). We use all the data points within
the boundary as the training data setDN consisting of the set of{x1,x2,y(x1,x2)}
coordinates (N = 721). For comparison, the combined D-optimality based orthogo-
nal least squares algorithm was applied [41] to identify a sparse conventional RBF
model. The modeling results are shown in Figure 4 and Table 2.It is shown that
the BVC-RBF can achieve significant improvement over the RBFin terms of the
modeling performance to the true function. In particular wenote that the BVC can
be satisfied with the proposed BVC-RBF model, but not by the conventional RBF.
The detail of the parameters setting for the experiment can be found in [22].
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Fig. 4 Example 3; (a) the true functionf (x1,x2); (b) noisy datay(x1,x2); (c) the boundary points
and (d) the prediction of the resultant BVC-RBF model; (e) the modelling error between the true
function and the model prediction(ŷ(x1,x2)− f (x1,x2)) for the BVC-RBF model; and (f) The
modelling error for the RBF model. IEEEc©2008 IEEE

Table 2 A comparison between the conventional RBF and the BVC-RBF network for Example 3.

Model size MSE MSE MSE (boundary)
M 1

N ∑(ŷ− f )2 1
N ∑(ŷ−y)2 1

L ∑ j (ŷ(x
′
j )−d j )

2

BVC-RBF 68 4.3787×10−5 1.0736×10−4 7.2598×10−11

RBF 91 1.0229×10−4 1.6894×10−4 2.1249×10−4

6 Conclusions

Our recent work on diversified RBF topologies is reviewed. Three different topolo-
gies have been introduced aimed at enhancing the modelling capabilities of RBF
network by modifying their topologies for specific problems; (i) the RBF network
with tunable nodes is introduced with the aim of flexible basis function shaping for
achieving the minimal model and improved model generalisation; (ii) the Box-Cox
RBF network is aimed at effectively handling some dynamicalprocesses in which
the model residuals exhibit heteroscedasticity; and (iii)the BVC-RBF is introduced
in order to achieve automatic constraints satisfaction andincorporating determinis-
tic prior knowledge with ease. It is advantageous that the model construction algo-
rithms for the diversified RBF topologies are either direct application or extension of
linear learning algorithms. In each case, an illustrative example is used to demon-
strate the efficacy of the proposed topology, together with the application of the
modeling construction algorithm.
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