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Abstract: In the cloud-assisted industrial Internet of Things (IIoT), since the cloud server is not always
trusted, the leakage of data privacy becomes a critical problem. Dynamic symmetric searchable
encryption (DSSE) allows for the secure retrieval of outsourced data stored on cloud servers while
ensuring data privacy. Forward privacy and backward privacy are necessary security requirements
for DSSE. However, most existing schemes either trade the server’s large storage overhead for
forward privacy or trade efficiency/overhead for weak backward privacy. These schemes cannot
fully meet the security requirements of cloud-assisted IIoT systems. We propose a fast and firmly
secure SSE scheme called Veruna to address these limitations. To this end, we design a new state
chain structure, which can not only ensure forward privacy with less storage overhead of the server
but also achieve strong backward privacy with only a few cryptographic operations in the server.
Security analysis proves that our scheme possesses forward privacy and Type-II backward privacy.
Compared with many state-of-the-art schemes, our scheme has an advantage in search and update
performance. The high efficiency and robust security make Veruna an ideal scheme for deployment
in cloud-assisted IIoT systems.

Keywords: cloud-assisted IIoT; symmetric searchable encryption; forward and backward privacy;
state chain structure

1. Introduction

As an extension of the Internet of Things (IoT) to the industrial field, the industrial
IoT (IIoT) plays a crucial part in Industry 4.0 and smart cities [1–3]. Massive industrial
data are monitored, collected, and analyzed by physical devices deployed in IIoT, such
as IoT nodes, sensors, and actuators, which promote productivity, efficiency, safety, and
other economic benefits [4,5]. In addition, with the rapid development of cloud computing,
the cloud-assisted IIoT system, which outsources industrial data to the cloud server, can
provide more robust data processing and flexible storage space. However, since the cloud
server may not always be trusted, data privacy leakage becomes a critical consideration.
Intuitively, this problem can be solved by encrypting data and uploading it to the server.
Since encrypted data lose their processing flexibility and cannot be used to retrieve data,
researching how to perform effective retrieval on ciphertext becomes a new challenge.
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Symmetric searchable encryption (SSE) was proposed to address the above issue. SSE
is designed on symmetric cryptographic primitives, achieving ciphertext retrieval by gener-
ating an encrypted index for each encrypted file. The encrypted files and corresponding
indexes are generally uploaded to the server. When retrieving the files containing a specific
keyword, the client can generate a search token that encrypts the keyword and sends the
search token to the cloud server. Then, the server uses the search token and the encrypted
index to execute the search algorithm and returns the relevant file to the client [6].

Although the early SSE scheme based on static data allows ciphertext retrieval [7–9], it
needs to leak some information to the server to achieve this function. This leakage includes
search patterns and access patterns. The search pattern reveals which queries correspond
to the exact keywords, and the access pattern reveals which files were received by a search
query [10]. It is worth noting that the static-based scheme makes it difficult to achieve
the dynamic data update in IIoT. To support adding or deleting files, Kamara et al. [11]
introduced the dynamic SSE (DSSE). However, DSSE needs to leak additional privacy to
trade for updates. These leakages include the following two cases: (a) when inserting a file
into the database, it will reveal whether the file contains a keyword that has been searched
before, and (b) when searching for a specific keyword, the files that contain the keyword
but have been deleted from the database will still be retrieved. To avoid the leakage of the
above private information and implement the DSSE more securely in IIoT, it is necessary to
introduce forward and backward privacy [12].

The notion of forward privacy and backward privacy was introduced by Stefanov
et al. [13]. Forward privacy ensures that the newly inserted files cannot be linked with
the previous search queries. DSSE schemes with forward privacy can resist powerful file
injection attacks, which exploit the leakage in case (a). Backward privacy ensures that the
current search query cannot be linked with the deleted files, which is leakage in case (b).
Therefore, when a search query on keyword w is issued, the DSSE scheme with backward
privacy does not retrieve the deleted files containing w.

The forward-private DSSE schemes [14–21] offer some original effective results. How-
ever, the structures in these schemes need more consideration of backward privacy, and
they require a large storage overhead on the server side, which will reduce the efficiency
of data processing. The DSSE with backward privacy is comparatively more recent. Bost
et al. [22] formally defined three types of backward privacy. Specifically, Type-I reveals the
number of updates (insertions and deletions) on keyword w, the current file identifiers con-
taining w, and their insertion timestamps. Type-II additionally leaks the timestamp of each
update for w, while Type-III further reveals precisely which delete operation cancels which
insert operation. The security progressively weakens from Type-I to Type-III. Subsequently,
a few schemes with backward privacy [23–28] have been proposed recently. These schemes
introduce additional cryptographic primitives (e.g., Homomorphic Encryption (HE), Punc-
turable Encryption (PE), Symmetric Revocable Encryption (SRE), etc.) to support backward
privacy. However, these cryptographic primitives undoubtedly increase the cryptographic
operations in the server and search overhead. More importantly, most of these schemes
only achieve Type-III backward privacy. Note that Type-III backward privacy leaked the
timestamp of when the files were deleted. For IIoT systems, time is critical information that
many attacks [29,30] can exploit to break the system’s security. For DSSE, the adversary
can correlate the information of subsequent queries or make statistical inferences based on
when the file was deleted. Therefore, the scheme with Type-III backward privacy cannot
meet the systems’ security requirements.

To sum up, most existing schemes either trade the server’s large storage overhead for
forward privacy or trade efficiency/overhead for Type-III weak backward privacy.

Our Contributions

To address the above issues, we are facing the following two challenges, more specifi-
cally, (1) how to design a practical structure that requires less server storage while main-
taining the property of forward privacy, and (2) how to achieve Type-II backward privacy
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without compromising search efficiency. This paper addresses these challenges and presents
Veruna, which is an efficient DSSE scheme with strong forward and backward privacy.

We first design a novel state chain structure that shares a similar basic idea as the
keyed-based blocks chain (KBBC) structure in [17], encrypting file identifiers with ran-
dom keys stored in the client side to achieve forward privacy. However, our state chain
structure uses a state token to track the state of each keyword instead of storing additional
blocks of file identifiers, as in KBBC, which reduces the storage overhead. For backward
privacy, the key to achieving Type-II backward privacy on our state chain structure without
compromising search efficiency is achieved by reducing leakage during the search with
fewer cryptographic operations. To this end, we implement a simple yet effective approach
to accomplish deletions locally with simple cryptographic operations in the server while
capturing the essential properties of Type-II backward privacy. Veruna’s key contributions
are summarized below. We also summarize the comparison of our scheme, Veruna, with
other existing DSSE schemes in Table 1.

Table 1. Comparison of existing schemes with the proposed Veruna.

Scheme
Computation Communication Backward

Search Update Search RT Update Privacy

Sophos [14] O(aw) O(1) O(nw) 1 O(1) None

Fsse [17] O(aw) O(1) O(nw) 1 O(1) None

Moneta [22] Õ(aw log N + log3 N) Õ(log2 N) Õ(aw log N + log3 N) 3 Õ(log3 N) I

Diana [22] O(aw) O(log aw) O(dw log aw + nw) 2 O(1) III

Janus [22] O(nwdw) O(1) O(nw) 1 O(1) III

Janus++ [23] O(nwdw) O(1) O(nw) 1 O(1) III

Mitra [24] O(aw) O(1) O(aw) 2 O(1) II

Orion [24] O(nw log2 N) O(log2 N) O(nw log2 N) O(log N) O(log2 N) I

Hour [24] O(nw log dw log N) O(log2 N) O(nw log dw log N) O(log dw) O(log2 N) III

SDa [26] O(aw + log N) O(log N) O(aw + log N) 2 O(log N) II

Qos [26] O(nw log iw + log2 |W|) O(log3 N) O(nw log iw + log2 |W|) O(log |W|) O(log3 N) III

Veruna O(aw) O(1) O(aw) 2 O(1) II

N is the number of keyword/document pairs, |W| is the number of total keywords, and RT is the number of
roundtrips in the search protocol. For keyword w ∈ W , aw is the total number of keyword updates, dw is the
number of deleted operations for w, iw is the number of add operations for w, and nw is the number of results
currently matching w. The notion Õ hides polylog factors, and hence Õ(A) > O(A).

• We design a novel state chain structure that links the keyword’s state nodes for each
update through a state token. As each state of the keyword is randomly generated and
the state token is only associated with the current and previous states, the previous
search queries cannot be linked to the future state of the keyword. Therefore, our
scheme achieves the property of forward privacy. In addition, less storage space
is required in the server to support the state chain structure for executing search
operations.

• To achieve Type-II backward privacy without compromising search efficiency, we
reduce leakage during the search using a simple local deletion method. The scheme
directly sends encrypted entries retrieved by the server to the client during the search.
The client decrypts them locally and filters out the deleted files. This method ensures
the server cannot correlate current search queries with deleted files while only reveal-
ing the update timestamp during the search. The cryptographic operations involved
are simple XOR operations, which enhance search efficiency and make the scheme
practical for IIoT systems.



Sensors 2024, 24, 7597 4 of 22

• We analyze the security of our scheme and show that it features forward privacy and
Type-II backward privacy. We also compared the proposed scheme with state-of-the-
art schemes through experiments to evaluate its performance.

The organization of this paper is as follows. Section 2 reviews the related work, and
Section 3 introduces the cryptographic background and relevant definitions of DSSE used
in this paper. The proposed scheme and its security analysis are presented in Section 4. The
performance evaluation of the scheme can be found in Section 5. Finally, Section 6 provides
the conclusion and future work.

2. Review of Existing Works

The first SSE scheme was introduced by Song et al. [7], which was based on a linear
search time construction. This led to some further work on SSE. However, all these works
focused on static settings, which cannot achieve the real-time update of large data in IIoT.
In 2012, Karama et al. [11] formally introduced the notion of DSSE and proposed a DSSE
scheme, which allows the client to add or delete data from the database. Subsequently,
a series of works were carried out focusing on DSSE function [31–33], security [34–36],
and efficiency [35,37,38]. In particular, due to the rich expressiveness of attribute-based
encryption (ABE), Liu et al. [39] and Yu et al. [40] used attribute-based encryption and
blockchain technology to implement fine-grained search and revocable functions. Yin
et al. [41] designed a novel access policy-based secure index and an attribute-based search
token, which enable the scheme to achieve a fine-grained search while implementing access
control. Li et al. [42] introduces an efficient electronic medical records (EMR) management
model OLOS and a quantum-resistant KS-ABE scheme, enhancing data security, reducing
communication costs, and ensuring secure cross-institutional EMR sharing. Although
they have effectively reduced the overhead in decryption and revocation processes, DSSE
schemes based on ABE are still challenging to apply in resource-constrained network
environments. Moreover, some works focused on the common query and result pattern
leakage in SSE protocols. Yang et al. [43] developed OpenSE, which is a verifiable searchable
encryption scheme utilizing the oblivious polynomial evaluation (OPE) protocol to protect
query and result pattern privacy. Xu et al. [44] addressed keyword pair result pattern
(KPRP) leakage by proposing a DSSE scheme to counter this vulnerability. Chen et al. [45]
introduced MFSSE, which was an SSE scheme that hides search patterns by altering the
search trapdoor for each query and incorporating random errors to defend against access
pattern leakage.

Forward and backward privacy can effectively control the leakage in DSSE. The
notion of forward privacy was first proposed by Chang and Mitzenmacher [46] in 2005.
Several DSSE schemes were initially based on the oblivious RAM (ORAM) structure
to achieve forward privacy, but they suffer from high communication costs. In 2016,
Bost [14] proposed a seminal forward private scheme called Sophos, which uses a one-
way trapdoor permutation to achieve forward privacy with a low communication cost.
However, the performance bottleneck of Sophos is based on public key cryptographic
primitives. Subsequently, many works [17,18] further optimized this scheme. In particular,
Wei et al. [17] designed key blockchain structures based on symmetric cryptographic
primitives to achieve forward privacy. Guo et al. [47] proposed a dual indexing structure to
achieve conjunctive keyword search with forward privacy. Li et al. [48] proposed a forward
privacy scheme for healthcare systems using a triple dictionary structure, but complex
update operations hinder the scheme’s efficiency. Wang et al. [20] established a trapdoor
permutation function based on symmetric cryptographic primitives to ensure forward
privacy in their scheme. However, only considering forward privacy and neglecting
backward privacy can make applying a DSSE scheme in practice challenging.

Several schemes with backward privacy were recently proposed [22–28,49]. To be more
specific, Bost et al. [22] formally defined backward privacy and proposed several schemes
with different leakages. Their first scheme, called Fides, is a Type-II construction, while
their other two schemes, referred to as Diana and Janus, are both Type-III constructions
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based on puncturable encryption (PE). The fourth scheme of [22], known as Moneta,
achieves Type-I backward privacy based on the ORAM [19]. Later, Sun et al. [23] pointed
out that the PE in Janus is a public key cryptographic primitive, and its deletion efficiency
is low. Therefore, the authors of [23] constructed a symmetric PE primitive using the
pseudo-random function to improve the update efficiency. However, this scheme only
achieves backwards privacy in Type-III. At the same time, Chamani et al. [24] proposed
three improved schemes: Mitra, Orion, and Hours. Mitra, a Type-II scheme, performs
better than Fides [22] by using symmetric key encryption. Orion is a Type-I scheme based
on ORAM, and Hours, a Type-III scheme, optimizes the performance of Orion at the cost of
leaking more information. Demertzis et al. [26] proposed a QoS scheme to reduce client-side
storage. To the best of our knowledge, Qos is the first quasi-optimal Type-III backward
privacy scheme. Sun et al. [27] first introduced a new symmetric revocable encryption (SRE)
in the DSSE scheme. All these schemes make different trade-offs between security and
efficiency. However, most existing schemes rely on additional cryptographic primitives
or achieve only weak Type-III backward privacy. It should also be noted that although
a few schemes, such as Moneta [22] and Orion [24], achieve Type-I backward privacy,
their huge communication and computation overhead limit their potential for adoption in
practice [22,24,26,27,50]. Also, Orion incurs many rounds of client–server communication
during searches.

In addition, some hardware-based schemes [28,49] achieved different types of back-
ward privacy. For example, Amjad et al. [49] used Intel SGX [51] to propose several
backward-private schemes. Unfortunately, some works [30,52,53] have identified security
vulnerabilities in SGX, which presents a potential risk to the schemes of [49]. More recently,
some state-of-the-art schemes focus on innovations in the expressive power of DSSE. Chen
et al. [54] employed the idea of inner product matching to realize conjunctive keyword
search and introduced a mechanism for duplicate data deletion. Li et al. [55] proposed
a scheme with verifiable functionality for Boolean keyword queries using puncturable
encryption. Chen et al. [56] proposed a searchable encryption scheme with verification
capability for medical data using blockchain and hash-proof chain.

In summary, more research is still needed on the security and efficiency of DSSE.

3. Preliminaries

In this section, we introduce the notions used in this paper, the cryptographic back-
ground, and related definitions involved in dynamic searchable encryption.

3.1. Notations

We use x $→ X to denote that x is uniformly and randomly sampled from the finite
set X. Given a sufficiently large security parameter λ ∈ N, a function µ : N→ R is said to
be a negligible function in λ if for each positive polynomial p, µ(λ) < 1

p(λ) always holds.
We denote by poly(λ) and negl(λ) unspecified polynomial and negligible functions in λ,
respectively.

We store all documents containing keyword w ∈ W in the database DB as keyword-
file identifier pair (w, ind), where ind is the file identifier, and W denotes the set of all
keywords that appear in DB. We denote by |W| the number of distinct keywords and by
DB(w) the set of file identifiers that contain the keyword w.

3.2. Searchable Encryption

A DSSE scheme consists of an algorithm Setup and two protocols Update and Search
run by the client and the server.

Setup(λ,DB) is an algorithm that generates keys and constructs an encrypted database.
It takes the security parameters and the database as inputs and outputs (sk, σ; EDB), where
sk is the client’s secret key, σ is the local state for the client, and EDB is an encrypted
database, which is initially empty.
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Update(sk, σ, w, ind, op; EDB) is a client–server protocol for adding an entry to or
removing an entry from a database. The client takes the secret key sk, the local state σ, an
operation type op, and a keyword-file identifier pair (w, ind) as inputs. The server takes
the encrypted database EDB as input. The protocol outputs the updated local state to the
client and the updated encrypted database to the server as requested by the client.

Search(sk, w, σ; EDB) is a client–server protocol for searching the database correspond-
ing to keyword w. The client’s inputs include the secret key sk, the keyword w, and the
local state σ. The server’s input is the encrypted database EDB. The protocol generates
DB(w) as output, and the client’s local state σ and the encrypted database EDB may also
be modified.

The above contents follow the formal definition of dynamic searchable encryption
in [24]. However, other works [15,16] use different definitions for dynamic searchable
encryption that takes as input an entire file for addition/deletion in the Update protocol,
and the protocol adds/removes all the relevant keywords to/from the database. This is
functionally equivalent to executing the multiple above Update protocol on the relevant
keyword-identifier pairs. Finally, we implicitly assume that after receiving DB(w), the
client still needs additional interaction with the server to obtain the actual files.

3.3. Definitions of Correctness and Security

Correctness. The correctness of a dynamic searchable encryption scheme Σ = (Setup,
Update, Search) means that for each query q and database DB, the search protocol always
returns the correct result DB(q).

Security. Informally, an SSE scheme is secure if no more information is leaked than
allowed. The security of searchable encryption was first formalized by Curtmola et al. [8].
Specifically, through two games REAL and IDEAL, a secure scheme with leakage function L
should reveal nothing other than this leakage. The leakage functionL = (LStp,LUpdt,LSrch)
is used to capture all information learned by the adversary, where LStp, LUpdt and LSrch

denote the information leaked by Setup, Update and Search, respectively.

Definition 1 (Adaptive Security of DSSE). Let Σ = (Setup, Update, Search) be a dynamic
searchable encryption scheme, A be a probabilistic polynomial-time (PPT) adversary, and S be a
simulator. The games REAL

Σ
A(λ) and IDEAL

Σ
A,S(λ) are defined as follows.

• REAL
Σ
A(λ): AdversaryA chooses an initial database DB, and this game returns the encrypted

database EDB toA by running Setup(˘, DB). Then,A adaptively performs a series of queries
containing both search and update queries. For a search query, the game runs Search(sk, w, σ;
EDB), and for an update query, the game runs Update(sk, σ, ind, w, op;
EDB). Finally, Adversary A observes real results of all operations and outputs a bit b ∈
{0, 1}.

• IDEAL
Σ
A,S(λ): Adversary A chooses an initial database DB. Simulator S uses the leakage

function LStp(DB) to generate an encrypted database EDB ← S(LStp(DB)) and returns
it to A. Then, A adaptively performs a series of queries. For a search query q, Simulator S
runs S(LSrch(q)), and for an update query q, S runs S(LUpdt(q)). Finally, Adversary A
observes the simulated results of all operations and outputs a bit b ∈ {0, 1}.
The dynamic searchable encryption scheme Σ is said to be L-adaptively-secure if for all PPT

adversaries A, there exists a simulator S in the above game model such that∣∣Pr
(
REAL

Σ
A(λ)=1

)
−Pr

(
IDEAL

Σ
A,S(λ)=1

)∣∣≤ negl(λ). (1)

3.4. Forward and Backward Privacy

A dynamic, searchable encryption scheme can achieve the real-time update of data,
including adding and deleting files. However, more information will be leaked during the
update. Achieving forward and backward privacy for dynamic searchable encryption can
control the information leakage in the update operation [13,22].
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Forward privacy. This security property is focused on file addition operations to
ensure that an update query leaks no information about the keywords to be updated. A
searchable encryption scheme without forwarding privacy leaks information when insert-
ing a file. Based on this information, the server tests the previous search token on the new
update to observe whether the old search token matches the new update. A file-injection
attack exploits this point to recover information about the keyword. First, the server can
trick the client into injecting some files containing certain specific keywords. After the
client has uploaded the injected files, the server uses the search token previously submitted
by the client to search for the injected files and recovers the keyword corresponding to
the token based on the search result. This attack can be prevented, since forward privacy
ensures the previous search token cannot match a newly inserted file.

Definition 2 (Forward Privacy [17]). An L-adaptively-secure SSE scheme with forward privacy
ensures that for an update query qi = (wi, indi, op), the leakage function is LUpdt(qi) = (indi, op)
during the update.

Backward privacy. This security property focuses on file deletion operations to
ensure that when a keyword-identifier pair (w, ind) is inserted into and removed from the
database, subsequent search queries on w do not reveal the identifier ind. A searchable
encryption scheme with backward privacy should leak nothing about the deleted file’s
identifier. Formally, the definition of backward privacy was given in [22], which includes
three different types of backward privacy, namely, Type-I, Type-II and Type-III, and from
Type-I to Type-III, the security becomes progressively weaker. Before going into the details
of these definitions, we refer to the notions in [22] to introduce some functions involved in
backward security.

The leakage function holds a list of all queries Q. The search query is stored in the
entry as (u, w), and the update query is stored in the entry as (u, op, (ind, w)), where u
is the timestamp of the query, and op = add/del. For keyword w, search pattern sp(w)
records the timestamps of all search queries on w, which are formally defined as

sp(w) = {u|(u, w) ∈ Q}. (2)

TimeDB(w) is a list of the files that contain keyword w, but the list does not contain
information about the files that have been removed from the database DB. Formally, it is
defined as

TimeDB(w) =
{
(u, ind)|(u, add, (w, ind)) ∈ Q

and ∀u
′
,
(
u
′
, del, (w, ind)

)
/∈ Q

}
. (3)

Note that each entry in TimeDB(w) is stored as a timestamp-identifier pair (u, ind).
Updates(w) is a list of update timestamps for keyword w, which is formally
defined as

Updates(w) ={u|(u, add, (w, ind)) ∈ Q

or (u, del, (w, ind)) ∈ Q}. (4)

The timestamp of insertion and deletion of keyword-identifiers pair (w, ind) is contained
in Updates(w). Finally, DelHist(w) is a list of the history of deleted entries for keyword
w. Formally, DelHist(w) is defined as

DelHist(w) =
{(

uadd, udel)| ∃ ind s.t.
(
udel , del,

(w, ind)
)
∈ Q and

(
uadd, add, (w, ind)

)
∈ Q

}
. (5)
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Using the above functions, we refer to the definitions of backward privacy in [22–24]
and make minor modifications. In [22–24], the definition of backward privacy does not
explicitly include the common leakage sp(w) in the search protocol. However, this leakage
has to be considered in these schemes. We take sp(w) into account and define the notion of
backward privacy as follows.

Definition 3 (Backward Privacy). An L-adaptively-secure SSE scheme has backward privacy of

Type-I : if LUpdt(op, w, ind)=L′(op) and

LSrch(w)=L′′
(
sp(w), TimeDB(w), aw

)
, (6)

Type-II : if LUpdt(op, w, ind)=L′(op, w) and

LSrch(w)=L′′
(
sp(w), TimeDB(w), Updates(w)

)
, (7)

Type-III : if LUpdt(op, w, ind)=L′(op, w) and

LSrch(w)=L′′
(
sp(w), TimeDB(w), DelHist(w)

)
. (8)

For keyword w, Type-I reveals the number of updates (insertions and deletions) associated with w,
the file identifiers currently containing w, and when they were inserted into the database. Apart
from the leakage in Type-I, Type-II also leaks each update’s timestamp and operation type involving
w. Type-III further leaks which deletion operation cancelled which insertion operation in addition
to the leakage in Type-II. It can be seen that from Type-I to Type-III, the security is progressively
weaker.

4. Veruna: Fast and Strong Security Symmetric Searchable Encryption Scheme

This section presents Veruna, which is our searchable encryption scheme with for-
ward and backward privacy. We design a new state chain structure and a simple yet
effective approach to ensure that nothing about the encrypted entry is leaked to the server
during the updates, and only the timestamp of the updated entry is leaked during the
searches. Compared to the existing schemes [17,22,23], our construction achieves a stronger
Type-II backward privacy without relying on additional techniques while reducing server
storage space.

4.1. System Model

The system model of our scheme is shown in Figure 1, which contains two entities:
the client and cloud server, as detailed below.

Figure 1. The system model of Veruna.

Client: The client is responsible for encrypting files and constructing secure indexes
based on the keywords contained in the files. As shown in Figure 2, the client constructs
an inverted index for the files in the database, where each entry in the indexed database
corresponds to a keyword and the file identifiers containing that keyword. Subsequently,
the client sends the encrypted files and corresponding encrypted secure indexes to the
cloud server. In addition, the client can either be the data owner or the data user. When
clients query the file containing a specific keyword, they must generate a search query
request based on the keyword and send it to the cloud server. In this paper, we default to
the client being legal.
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Cloud Server: The cloud server is responsible for storing encrypted files and indexes
and executing search algorithms based on the client’s search requests. Specifically, when
the server receives a keyword query request from a client, it retrieves all file identifiers that
meet the criteria and returns them to the client. In addition, we assume the server is honest
but curious. It honestly executes update and search protocols and returns the correct search
results to the client. However, the cloud server may extract privacy information from the
client’s data.

Figure 2. Secure index database building.

In practical IoT applications, the system model could manage and query encrypted
sensor data. For instance, consider a healthcare IoT system where wearable medical devices
continuously monitor patient vitals such as heart rate, blood pressure, and temperature.
The data collected by these devices are encrypted and stored on a cloud server. Each set of
sensor readings represents a file and the associated metadata (e.g., patient ID, timestamp,
and type of reading) form keywords for search queries. Using this DSSE system model,
authorized healthcare providers could securely search the cloud storage using encrypted
keywords to retrieve relevant files, such as all heart rate files. This process ensures the
confidentiality of patient data and allows efficient data retrieval.

4.2. Our Construction

Wei et al. [17] proposed a forward privacy scheme whose index structure consists of
keyed-block chains. Although this structure does not consider the backward privacy and
its large server storage overhead, the idea of the state chain structure is attractive. Further
inspired by the hash linked list, we use state tokens to establish a state chain structure
based on symmetric cryptography primitive, improving forward privacy efficiency and
achieving Type-II backward privacy by a simple yet effective approach. Specifically, the
client randomly generates the current state every time and links the current state to the
previous state by a state token. Then, the server uses a key-value dictionary that stores
state tokens and encrypted index entries. During the search, the server uses the search
token sent by the client to generate the locations and obtains the current state token and
the corresponding encrypted index entry accordingly. However, there is no decryption
operation on the encrypted index entry in the server. Since the server cannot infer the future
state based on the currently known states and state tokens, and the size of each search token
is fixed, our scheme achieves forward privacy. Veruna further achieves backward privacy
because the server uses the search token to generate the locations, but the encrypted entry’s
decryption happens locally at the client.

Algorithm 1 summarizes the setup, update and search protocols of Veruna. Specifically,
the structure of state chains is shown in Figure 3, while Setup, Update, and Search protocols
are detailed below.

Setup. The client generates a secret key ks and an empty map W in the setup protocol.
The key ks is constructed from a λ-bits random string that is used to encrypt keywords,
and the map W is used to store the state of each keyword. The server also generates an
empty map T, which is used to store the encrypted index.

Update. In the update procedure, when updating (op = add/del) a file that contains
the keyword w and whose identifier is ind, the client first needs to obtain some variables
from map W, containing the previous state of the keyword w and a counter c that denotes
the update times of the keyword w. Then, it generates a random current state, and map W
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is updated (lines 5–10). Next, the client runs the hash functions H1(kw, stc+1), H2(k∗w, c + 1)
and H3(kw, stc+1) with key kw or k∗w, respectively. H1(kw, stc+1) is used as location u to
indicate which encrypted index entry e is stored in the server; H2(k∗w, c + 1) is used to
encrypt (ind||op) and output the encrypted index entry e. In comparison, the H3(kw, stc+1)
output is XORed with the previous state, and the result becomes the state token which
evolves the state (lines 11–13). Finally, the client sends (uc+1, (ec+1, Cstc)) to the server who
stores it as T[uc+1] = (ec+1, Cstc).

Figure 3. The structure of state chain.

Algorithm 1. Veruna with forward and backward privacy

Setup(λ) 13: Cstc ←− stc ⊕ H3(kw, stc+1) 26: Val[i]←− ei

Client : 14: Send (uc+1, ec+1, Cstc ) to server 27: sti−1 ←− Csti−1 ⊕ H3(kw, sti)

1: ks
$←− {0, 1}λ Server : 28: end for

2: W←− empty map 15: T[uc+1] = (ec+1, Cstc ) 29: Send Val to client

Server : Search(ks, W, w; T) Client :

3: T←− empty map Client : 30: Res←− ∅

Update(ks, W, w, ind, op; T) 16: kw || k∗w ←− F(ks, w) 31: for i = 1 to |Val.size| do

Client : 17: (stc, c)←− W[w] 32: (indi||opi)←− Val[i]⊕ H2(k∗w, i)
4: kw || k∗w ←− F(ks, w) 18: if (stc, c) =⊥ then 33: if opi = add then

5: (stc, c)←− W[w] 19: return ∅ 34: Res←− Res ∪ indi

6: if (stc, c) =⊥ then 20: end if 35: else

7: st0
$←− {0, 1}λ , c←− 0 21: Send (kw, stc, c) to server 36: Res←− Res \ indi

8: end if Server : 37: end if

9: stc+1
$←− {0, 1}λ 22: Val←− ∅ 38: end for

10: W[w]←− (stc+1, c + 1) 23: for i = c to 1 do 39: Return Res

11: uc+1 ←− H1(kw, stc+1) 24: ui ←− H1(kw, sti)

12: ec+1 ←− (ind||op)⊕ H2(k∗w, c + 1) 25: (ei, Csti−1 )←− T[ui]

Search. To search all files containing keyword w, the client first runs a pseudo-random
function F with the key ks to encrypt the keyword w and retrieves the current state and
counter c from W[w] (lines 16–20). Then, the client sends the search token that contains the
encrypted keyword, current state, and counter to the server (line 21). Given the search token,
the server can compute the location of the current state and retrieve the corresponding
encrypted index entry and state token from map T. The encrypted index entry is then
stored in the list Val, and the server uses the state token and the current state to infer a
previous state (lines 24–27). Iteratively, the server obtains all states and corresponding
encrypted index entries about keyword w and sends the list Val containing all the encrypted
index entries to the client. Upon receiving these encrypted values, the client decrypts them
to obtain (ind||op) (line 32). If op = add, the corresponding ind is stored in the list Res;
otherwise, the corresponding ind is removed from the list Res (lines 33–36).
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The above content presents the execution details of each protocol. For easier com-
prehension, Figure 4 with a brief introduction given in Table 2 provides a higher-level
perspective, illustrating the interaction flow between the client and the cloud server during
the update and search. In brief, if updating keyword/identifier pairs (w1, ind1), (w1, ind2),
and (w1, ind3) sequentially, the client first generates a random state sti, i = 1, 2, 3 for each
pair to be updated. Then, these states are connected to construct the secure index, and the
encrypted file and index are sent to the server. Upon receiving the information, the server
stores the encrypted files and their corresponding secure index in the encrypted database
EDB. To search for files containing the keyword w1, the client generates relevant search
tokens (including the encrypted keyword, the latest state of w1, and the update count)
and sends them to the server. Upon receiving the search tokens, the server sequentially
retrieves all states of w1 along with their corresponding encrypted entries and returns the
results to the client. Finally, the client decrypts and filters the results.

Figure 4. The flowchart of Veruna.

Table 2. Major functions of our scheme.

Update keyword/identifier pair (w1, ind1), (w1, ind2), (w1, ind3)

Client:
(1) create the encrypted inverted index
(2) send the encrypted indices and file to the server
Server:
(3) add received messages to the encrypted database (EDB)

Keyword search w1
Client:
(1) create a search token for w1
(2) send the search token to the server
Server:
(3) search the state of w1 along with encrypted entries from the invert index
(4) return the results to the client
Client:
(5) decrypt and filter the results

4.3. Security Analysis

We now informally show that Veruna achieves forward privacy and Type-II backward
privacy. Since the state is randomly generated, the value of each state that the server
observes during an update is indistinguishable from a randomly drawn value, and the
server cannot infer the future state relying on the current search token, which contains the
current state and state token. Therefore, the forward privacy is guaranteed. For analyzing
the backward privacy of Veruna, consider that during a search, the server computes a set of
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locations for keyword w, which was observed previously during updates. This information
reveals the timestamp of each update for keyword w. Apart from this information, the
server obtains nothing else. In particular, it cannot learn which delete operation corresponds
to which add operation. Referring to the definition of the leakage function in Subsection III-
D, after the above leakage is captured, the formal definition of Veruna’s leakage functions
is as follows:

LUpdt(w, ind, op) =⊥,

LSrch(w) = (sp(w), TimeDB(w), Updates(w)). (9)

According to Definition 2 of forward privacy and Definition 3 of backward privacy,
our scheme achieves forward privacy and Type-II backward privacy.

Formally, Veruna’s adaptive security is stated in the following theorem.

Theorem 1. Assume that F is a secure pseudo-random function, while H1, H2 and H3 are hash
functions modeled as random oracles. Then, Veruna is an L-adaptively-secure SSE scheme with the
leakage functions LUpdt(w, ind, op) =⊥ and LSrch(w) = (sp(w), TimeDB(w), Updates(w)).

Proof. We use the REAL-IDEAL model defined in Subsection II-C to prove the security of
Veruna. A sequence of games is constructed from REAL

Σ
A(λ) and reached to IDEAL

Σ
A,S (λ).

We prove that REAL
Σ
A(λ) and IDEAL

Σ
A,S (λ) are indistinguishable by proving the indistin-

guishability between two adjacent games.
Game G0: G0 is the real-world game REAL

Σ
A(λ).

Pr
(

REAL
Σ
A(λ) = 1

)
= Pr(G0 = 1). (10)

Game G1: The difference between G1 and G0 is that instead of using F to generate
kw, a random kw is chosen and stored in the mapping Key. For the subsequent query
on w, the corresponding kw can be directly extracted from Key. Since we cannot dis-
tinguish the pseudo-random function F from the truly random function, G1 and G0 are
indistinguishable.

Game G2: The difference between G2 and G1 is that G2 no longer calls H1 to generate
a location in the update protocol but uses random numbers instead. Concretely, it replaces

u←− H1(kw, stc+1) with u $←− {0, 1}λ and executes L[kw||stc+1]←− u, where L is a mapping
maintained by G2. Then, H1[kw||stc+1] ←− L[kw||stc+1] is executed in the search protocol,
where H1 is the table of the random oracles H1. Thus, H1 is not updated immediately, and
when an adversary accesses H1[kw||stc+1] before a search query is issued, H1[kw||stc+1] will
randomly generate a value u∗ that is not equal to u. If the adversary queries H1[kw||stc+1]
again after the next search query, it will obtain the value u that has been updated to H1. By
observing the difference between the two queries, the adversary may know it is in-game
G2. Below, we show that the probability of this case is negligible.

This case will only occur if the adversary uses kw||stc+1 to query H1. Since stc+1 is
randomly generated, the adversary chooses stc+1 with probability 1

2λ + negl(λ). Assuming
that a PPT adversary makes at most p = poly(λ) guesses, the probability of adversary
chooses stc+1 is p

2λ + p · negl(λ). This probability is negligible and, therefore, G2 and G1
are indistinguishable, i.e.,

Pr(G1 = 1)− Pr(G2 = 1) ≤ p
2λ

+ p · negl(λ). (11)

Game G3: The difference between G3 and G2 is that in the update protocol of G3, H2
is processed in the same way as H1 in G2. Since the probability that the adversary guesses
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the correct key without knowing k∗ is 1
2λ + negl(λ), and the probability that the adversary

queries p = poly(λ) polynomially is p
2λ + p · negl(λ), G3 and G2 are indistinguishable, i.e.,

Pr(G2 = 1)− Pr(G3 = 1) ≤ p
2λ

+ p · negl(λ). (12)

Game G4: The difference between G4 and G3 is that H3 is modeled as a random
oracle in the update protocol of G4. Similar to the previous analysis, G4 and G3 are
indistinguishable, i.e.,

Pr(G3 = 1)− Pr(G4 = 1) ≤ p
2λ

+ p · negl(λ). (13)

Game G5: The difference between G5 and G4 is that st in G5 is generated on the fly
during the search. Algorithm 2 shows the changes on the client side. G5 uses Hist to record
the update history since the last search and parse out the current update timestamp and
set of files containing keyword w. Unlike G4, G5 randomly selects the query result of a
random oracle without the information about st. Then, sti is generated when a search query
is issued, and the random oracle is updated. From the adversary’s perspective, since G4
and G5 output three random strings in the update and (kw, stc, c) in the search, G4 and G5
are completely indistinguishable, i.e.,

Pr(G4 = 1)− Pr(G5 = 1) = 0. (14)

Algorithm 2. Game G5

Setup(λ) 13: if W[w] =⊥ then

Client : 14: W[w]
$←− {0, 1}λ

1: L, E, C←− empty map 15: end if

2: t←− 0 16: Parse Hist[w] as Time[w]

Update(ks, W, w, ind, op; T) 17: Parse Hist[w] as DB[w]

Client : 18: (t0, t1, · · · , tc)←− Time[w]

3: Add (t, op, ind) to Hist[w] 19: st0 ←− W[w]

4: L[t] $←− {0, 1}λ 20: c←− |Time[w]|

5:E[t] $←− {0, 1}l+1 21: for i = 1 to c do

6: C[t] $←− {0, 1}λ 22: sti
$←− {0, 1}λ

7: t←− t + 1 23: H1[kw||sti]←− L[ti]

8: Send (L, E, C) to server 24: H3[kw||sti]←− C[ti]⊕ sti−1

Search(ks, W, w; T) 25: end for

Client : 26: for ind ∈ DB[w] do

9: if Key[w] =⊥ then 27: H2[k∗w||sti]←− E[ti]

10: Key[w]
$←− {0, 1}λ ⊕(ind||op)

11: end if 28: end for

12: kw||k∗w ←− Key[w] 29: Send (kw, stc, c) to server

Simulator: In IDEAL
Σ
A,S(λ), the simulator S generates a view according to the given leakage

function. Algorithm 3 shows simulator S , which maintains three maps for random Oracle
queries and a counter for updates. The value of each map is also randomly generated during
the update. Unlike G5, S uses w←− min sp(w) to represent the timestamp of the first search
keyword w in the search, and the leakage function TimeDB[w] and Updates[w] are used
directly as input to parse the timestamp of each update and the set of files containing the
keyword currently instead of counting against the update history Hist. Then, S randomly
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generates sti and updates the random oracle based on the above information. The view
generated by the S is completely indistinguishable from G5, and hence

Pr
(

IDEAL
Σ
A,S(λ) = 1

)
− Pr(G5 = 1) = 0. (15)

Algorithm 3. Simulator S

S .Setup() 13: if W[w] =⊥ then

Client : 14: W[w]
$←− {0, 1}λ

1: L, E, C←− empty map 15: end if

2: t←− 0 16: Parse TimeDB[w] as DB[w]

S .Update() 17: (t0, t1, · · · , tc)←− Updates[w]

Client : 18: st0 ←− W[w]

3: L[t] $←− {0, 1}λ 19: c←− |Updates[w]|

4: E[t] $←− {0, 1}l+1 20: for i = 1 to c do

5: C[t] $←− {0, 1}λ 21: sti
$←− {0, 1}λ

6: t←− t + 1 22: H1[kw||sti]←− L[ti]

7: Send (L, E, C) to server 23: H3[kw||sti]←− C[ti]⊕ sti−1

S .Search(LSrch(w)) 24: end for

Client : 25: for ind ∈ DB[w] do

8: w←− min sp(w) 26: H2[k∗w||sti]←− E[ti]

9: if Key[w] =⊥ then ⊕(ind||op)

10: Key[w]
$←− {0, 1}λ 27: end for

11: end if 28: Send (kw, stc, c) to server

12: kw||k∗w ←− Key[w]

Finally, utilizing (10) to (15) leads to

Pr
(

REAL
Σ
A(λ) = 1

)
− Pr

(
IDEAL

Σ
A,S(λ) = 1

)
≤ negl(λ). (16)

4.4. Efficiency of Veruna

As the number of operations for the client and server is constant during the update,
the computational complexity of both the client and server is O(1) in the update operations.
The communication complexity of updating a single identifier-keyword pair is also O(1).
For search operations, the client requires aw hash operations and XOR operations, while the
server requires aw XOR operations and 2aw hash operations, where aw is the total number
of updates for keyword w. Therefore, the computational complexity of the search is O(aw)
for both the client and server; the same is true for the communication. The client stores a
λ bit secret key ks and a map W containing all keywords’ states. The size of W is O(|W|),
where |W| is the total number of keywords. After N pairs of values are added to the map
T, the storage at the server is O(N).

For FSSE [17], the server-side index size is N · (λ + 1 + l + 2δ), where N is the number
of entries, λ is the length of the key, l is the identifier’s size of files, 1 bit is the size of
the operation type, and δ is the identifier’s size of blocks. By contrast, for Veruna, the
server-side index size is N · (λ + 1 + l), where λ is the length of the state token. Compared
to FSSE, Veruna does not need to store additional block identifiers, which reduces the
storage overhead.

Moreover, Veruna is a fast scheme. Table 3 compares the computation and communi-
cation cost of our scheme with Fsse [17], Mitra [24], and Qos [26] on the client and server
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during the search and update process as well as the security of the scheme. In Table 2, Õ
hides polylog factors, aw denotes the number of updates for keyword w, nw denotes the
current matching count for w, iw denotes the number of additions for w, N is the sum of
update counts, and |W| is the sum of different keyword counts. It can be observed that
Veruna’s computation and communication costs are superior to QoS’s. Compared with Fsse,
the main distinction between Veruna and Fsse lies in the communication cost of Veruna’s
server during the search, which is higher than that of Fsse. Specifically, the communication
cost at the server side for Fsse is O(nw), whereas for Veruna, it is O(aw). This is because
Veruna’s server sends all update entries matching keyword w to the client, while Fsse’s
server sends file identifiers containing w to the client. However, Fsse lacks consideration
for backward privacy. Veruna and Mitra both belong to Type-II backward privacy schemes.
However, the computation and communication costs of Veruna’s client are in constant order
during the search, whereas for Mitra, they are related to aw. In Section 5, we implemented
Veruna and compared it with Mitra and Qos on real datasets. The experimental results
show that Veruna’s search performance outperforms Mitra and QoS. Note that Veruna has
only one cryptographic operation (compute the state of the keyword) in the server, which
improves server performance and deploys more easily.

Table 3. Comparison of existing schemes with proposed Veruna.

Scheme

Computation Communication
Forward
Privacy

Backward
Privacy

Search Update Search
Update

Client Server Client Server Client Server

Fsse O(1) O(aw) O(1) O(1) O(1) O(nw) O(1) ✓ ×

Mitra O(aw) O(aw) O(1) O(1) O(aw) O(aw) O(1) ✓ II

Qos O(log2 |W|) O(nw log iw) O(log3 N) O(1) O(log2 |W|) O(nw log iw) O(log3 N) ✓ III

Veruna O(1) O(aw) O(1) O(1) O(1) O(aw) O(1) ✓ II

4.5. Veruna with Cleanup

In Veruna of Algorithm 1, the size of the encrypted database grows as the client
continues to execute update operations. Moreover, the server will return the deleted file
identifier to the client for each search query. For example, the server repeatedly returns
the deleted entries to the client for the same query, which undoubtedly affects the client’s
communication cost and workload. To this end, we design a modified version of Veruna
with a ‘clean-up’ operation [14,24,26]. The server performs a clean-up operation during the
search while the client re-encrypts the remaining entries and sends them to the server. The
blue box in Algorithm 2 shows the modifications made to Veruna of Algorithm 1.

The overall structure of Algorithm 4 is the same as that of Algorithm 1. However,
the server in Algorithm 4 cleans up all the retrieved entries during the search (line 29).
After that, the client executes a re-encryption operation (lines 42–46) on the elements in
Res. It is worth noting that since Veruna uses deterministic encryption, re-encrypting the
same element will result in the same ciphertext, and the server can use this information to
obtain which of the previously observed entries disappeared, which will break the privacy
of the scheme. To solve this problem, we introduce a counter map Cnt, which will grow
after every search (line 42). Letting Cnt[w] as the input of the encryption operation can
effectively ensure the security of the scheme (lines 12–14). In terms of security, Algorithm 4
leaks no information in the update operation, and the server can only obtain the updated
timestamp in the search operation. Thus, this construction has the same forward and
backward privacy as Veruna of Algorithm 1. Algorithm 4, however, avoids repeated
operations related to the deleted entries in each search query and periodically cleans up
the entries stored in the server. Without new updates, this construction’s computational
and communication complexity in the search are both O(nw). At the same time, the storage
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size of the server is O(N∗), where nw is the number of current files matching the keyword
w and N∗ is the number of remaining entries in the server.

Algorithm 4. Modified Veruna with cleanup

Setup(λ) 15: Send (uc+1, ec+1, Cstc ) to server 30: end for

Client : Server : 31: Send Val to client

1: ks
$←− {0, 1}λ 16: T[uc+1] = (ec+1, Cstc ) Client :

2: W←− empty map Search(ks, W, Cnt, w; T) 32: Res←− ∅

3: Cnt←− 0 Client : 33: for i = 1 to |Val.size| do

Server : 17: kw || k∗w ←− F(ks, w) 34: (indi||opi) ←− Val[i]⊕ H2(kw||Cnt[w], i)
4: T←− empty map 18: (stc, c)←− W[w] 35: if opi = add then

Update(ks, W, Cnt, w, ind, op; T) 19: if (stc, c) =⊥ then 36: Res←− Res ∪ indi

Client : 20: return ∅ 37: else

5: kw || k∗w ←− F(ks, w) 21: end if 38: Res←− Res \ indi

6: (stc, c)←− W[w] 22: Send (kw, stc, c, Cnt[w]) to server 39: end if

7: if (stc, c) =⊥ then Server : 40: end for

8: st0
$←− {0, 1}λ , c←− 0 23: Val←− ∅ 41: Return Res

9: end if 24: for i = c to 1 do 42: Cnt[w]←− Cnt[w] + 1

10: stc+1
$←− {0, 1}λ 25: ui ←− H1(kw||Cnt[w], sti) 43: W[w]←−⊥

11: W[w]←− (stc+1, c + 1) 26: (ei, Csti−1 )←− T[ui] 44: for ind ∈ Res do ≪ In parallel

12: uc+1 ←− H1(kw||Cnt[w], stc+1) 27: Val[i]←− ei 45: Run Update

13: ec+1 ←− (ind||op)⊕ H2(k∗w ||Cnt[w], c + 1) 28: sti−1 ←− Csti−1 ⊕ H3(kw||Cnt[w], stc+1) 46: end for

14: Cstc ←− stc ⊕ H3(kw||Cnt[w], stc+1) 29: delete T[ui]

5. Performance Evaluation

In this section, we compare Veruna with the existing state-of-the-art Type-II scheme
Mitra [24] and Type-III scheme QoS [26]. To the best of our knowledge, considering both
update and search efficiency comprehensively, Mitra and QoS are the most efficient Type-II
and Type-III schemes, respectively. We use the publicly available codes for the Mitra
and QoS schemes in our evaluation comparison. Additionally, to minimize the impact of
parameters on experimental results, we maintain the same operating environment and
adopt similar function settings as much as possible. Since we have analyzed the storage
overhead of Veruna in Section 4.4, the evaluation metrics used in this section only include
the time cost of searches and updates and the effect of deletions.

5.1. Implementation and Settings

We implement Veruna in Python and use the PyCrypto library to achieve sym-
metric cryptographic operations. Specifically, we use AES-256 to realize PRF F and all
hash operations achieved by SHA-256. We test the performance of the schemes com-
pared using the data from Enron email dataset (Enron Email Dataset: available online
at https://www.cs.cmu.edu/~enron/, accessed on 21 October 2009), which is derived
from the real world and consists of multiple folders containing email messages from about
150 different users. We choose 30,109 emails in the sent-email folder as the file set and
apply the keyword extraction process of [57,58] to obtain 77,000 unique keywords, which
exclude some stopwords like ‘a’, ‘the’, and ‘so’. Finally, we obtain variable datasets with
size |DB| = 2 × (102 ∼ 106). For each dataset, we also choose keywords that have
3× (100 ∼ 104) matching documents. All experiments were conducted on workstations
equipped with an Intel(R) Core(TM) i7-14700K 3.40 GHz CPU, 32 GB and 16 GB RAM,
running Windows 11 (64-bit). All the experiments are repeated 10 times, and the results are
averaged over the 10 runs.

5.2. Search and Update Performance

In Figure 5, we compare the execution times of Mitra, Qos, and Veruna in the search
operation. Specifically, Figure 5a shows the execution time of each scheme for searching
different result sizes when the database size is |DB| = 2× 106. As expected, the execution

https://www.cs.cmu.edu/~enron/
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times of all the schemes increase with the result size. It can be seen that Veruna outperforms
Mitra and Qos. For example, at the result size of 103, Veruna is four times faster than Qos
and 1.5 times faster than Mitra. It is worth noting that Mitra is an extremely fast scheme,
which is 145 to 253 times faster than Fides [22]. But our Veruna is even faster than Mitra.
Figure 5b depicts the execution times of the three schemes as the functions of the database
size given the result size of 100. It can be seen that the execution time increases almost
linearly with the database size. This should be compared with Figure 5a, which shows
that the influence of the result size on the execution time is much stronger. It can be seen
again that Veruna outperforms Mitra and Qos. According to the above experiments, the
performance of Type-III scheme Qos is worse than Mitra and Veruna. QoS is not good at
executing searches with small deletion rates (10% in our experiments). In Section 5.3, we
will investigate the effect of different deletion rates on the search performance.

(a) |DB| = 2× 106 (b) Result size = 100

(c) Client and Server search time cost

Figure 5. Search time comparison of Mitra, Qos and Veruna.

To further investigate the search performance of Mitra and Veruna, which are both
Type-II schemes, we count the time consumption of both schemes on the client and server,
respectively, as shown in Figure 5c. On the client side, as the result size increases from
3× 100 to 3× 104, Mitra’s time cost rises from 0.54 ms to 32.4 ms, while Veruna consistently
remains around 0.16 ms. The cost of Veruna is almost independent of the result size, which
can be explained by the computing steps required by the client. Specifically, Mitra needs
to generate a list containing all the file locations that match the keyword, and the list
size increases with the result size. By contrast, Veruna only needs to obtain encrypted
keywords and the keyword state as search tokens. Therefore, the cost of Veruna is lower
and independent of the result size. On the server side, Veruna’s cost is higher than Mitra’s
because Veruna has additional location computation and keyword state backtracking
operations. But this does not alter the fact that Veruna outperforms Mitra in terms of total
time cost, as demonstrated in Figure 5a.
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Figure 6 shows the update computation times of Mitra, Qos, and Veruna as the
functions of the database size. It can be seen that the time costs of Veruna and Mitra are
dramatically lower than that of Qos. Veruna’s performance is slightly worse than Mitra’s.
For example, at the database size of 2× 103, Veruna takes about 0.5 ms and Mitra 0.4 ms.
This can be explained by the update steps required. Compared to Mitra, Veruna requires
additional computation for the state of the keyword as well as the state token, which
leads to an increase in the update time cost. Although these additional calculations in the
update are not insignificant, they enable Veruna to perform better during the search, as
demonstrated in the above-mentioned experiments of search performance.

Figure 6. Update time comparison of Mitra, Qos and Veruna.

5.3. Effect of Deletions

In all the above experiments, we set the deletion rate of entries to 10%, and in this
case, Qos performs particularly poorly. We further experiment to investigate the impact of
different deletion rates on the search time of each scheme. In this experiment, we fix the
database size to |DB| = 2× 106 and consider two cases: (a) small result size of 100 and
(b) large result size of 2× 104. Given a result size, we set the deletion rate between 0∼70%.
With the result size 100, for example, a 10% deletion rate means we inserted 111 entries and
deleted 11.

Figure 7 compares the search performance of Mitra, Qos, and Veruna by varying the
deletion rate, where Figure 7a,b show the results for the small result size and large result
size, respectively. As the deletion rate increases, the time costs of Mitra and Veruna grow
progressively, while the opposite is true for Qos. Specifically, for result size = 2× 104, when
the deletion rate increases from 50% to 60%, Mitra’s time cost rises from 41.1 ms to 44.4 ms,
Veruna’s from 35.2 ms to 39.1 ms, while Qos’s decreases from 59.2 ms to 56.5 ms. This trend
is slight for the result size of 100 and more significant for the result size of 2× 104. The
results of Figure 7 are to be expected because the search operation of Mitra and Veruna is
related to aw, where aw is the total number of updates for keyword w. At the same time,
QoS is a quasi-optimal scheme related to nw, where nw is the number of results currently
matching w. As the deletion rate increases, the total number of updates for keyword w also
increases, while the number of files matching w decreases. In addition, when the deletion
rate is lower than 60, the time cost of Qos is higher than those of Mitra and Veruna, and
Veruna has the lowest time cost. Note that in practice, many deletions do not happen
frequently. Instead, a moderate number of deletions is the norm.

Note on Applicability to IoT Devices: Although the comparison experiments were
conducted on a high-performance workstation, the Veruna scheme is designed to be
adaptable for use in IoT environments with limited computational capabilities. In such
scenarios, IoT devices perform lightweight operations such as data collection and initial
encryption. The more demanding processes, such as handling search queries and updating
encrypted indices, can be offloaded to cloud servers with greater computational power.
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This division of tasks ensures that the scheme remains practical for IoT use cases without
compromising overall performance or security.

(a) Result size = 100 (b) Result size = 2× 104

Figure 7. Effect of deletions on search time.

6. Conclusions and Future Work

In this work, we proposed Veruna, which is a DSSE scheme for cloud-assisted IIoT
with fast search performance and strong security. To ensure that Veruna holds the forward
and (for Type-II) backward privacy, we have used the state token to connect the state of
each keyword and construct a state chain structure to support it, which only requires a
little server storage. Moreover, unlike most existing backward privacy schemes, which
introduce additional complex cryptographic operations and increase the server’s workload,
Veruna only needs to perform a simple XOR state backtracking on the server without
relying on other complex operations. This advantage is desirable for practical deployment
in cloud-assisted IIoT. Finally, we compared Veruna with two state-of-the-art schemes in
experiments, and the results demonstrated that our scheme was more effective.

Regarding future work, we refer to some of the latest research results and discover
widespread interest in the expressiveness of DSSE and non-interactive search. More
research is needed on implementing non-interactive range keyword queries and verification
functions in DSSE, and we aim to pursue research in this direction. Implementing these
features will facilitate the practical deployment of DSSE in various IoT environments.
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