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tFor the 
lass of equalisers that employs a symbol-de
ision �nite-memorystru
ture with de
ision feedba
k, the optimal solution is known to be theBayesian de
ision feedba
k equaliser (DFE). The 
omplexity of the op-timal Bayesian DFE however in
reases exponentially with the length ofthe 
hannel impulse response (CIR). It has been noted that, when thesignal to noise ratio (SNR) tends to in�nity, the de
ision boundary of theBayesian DFE is asymptoti
ally pie
ewise linear and 
onsists of severalhyperplanes. This asymptoti
 property 
an be exploited for eÆ
ient simu-lation and implementation of the Bayesian DFE. An importan
e sampling(IS) simulation te
hnique is presented based on this asymptoti
 propertyfor evaluating the lower-bound bit error rate (BER) of the Bayesian DFEunder the assumption of 
orre
t de
isions being fed ba
k. A design pro-
edure is developed, whi
h 
hooses appropriate bias ve
tors for the simu-lation density to ensure asymptoti
 eÆ
ien
y of the IS simulation. As theset of hyperplanes that form the asymptoti
 Bayesian de
ision boundary
an easily be found, they 
an be used to partition the observation spa
e.The resulting multiple-hyperplane dete
tor 
an 
losely approximate theoptimal Bayesian dete
tor, at an advantage of 
onsiderably redu
ed de
i-sion 
omplexity.1 Introdu
tionEqualisation te
hnique plays an ever-in
reasing role in 
ombating distortion andinterferen
e in 
ommuni
ation links [1, 2℄ and high-density data storage systems[3, 4℄. For the 
lass of equalisers based on a symbol-by-symbol de
ision with1



de
ision feedba
k, the Bayesian DFE [5, 6, 7℄ is known to provide the best per-forman
e. The 
omplexity of this optimal Bayesian solution, however, in
reasesexponentially with the CIR length, and this limits its pra
ti
al usefulness. Forexample, due to its 
ompli
ated stru
ture, performan
e analysis of the BayesianDFE is usually based on 
onventional Monte Carlo simulation, whi
h is 
om-putationally 
ostly even for modest SNR 
onditions. To obtain a reliable BERestimate, at least 100 errors should o

ur during a simulation. Thus, for a BERlevel of 10�6, at least 108 data samples are needed. Investigating the BayesianDFE under BER performan
e better than 10�6 is very diÆ
ult if not impossible,using a 
onventional Monte Carlo simulation. In order for the Bayesian DFE tobe more widely adopted in pra
ti
e, it is also ne
essary and desired to redu
eits implementation 
omplexity without sa
ri�
ing performan
e too mu
h.Geometri
ally, the 
omplexity of the Bayesian DFE is a 
onsequen
e of the needto form the optimal de
ision boundary that is a hypersurfa
e in the observationspa
e [6℄. It 
an be shown that asymptoti
ally, as the SNR tends to in�nity,the Bayesian hypersurfa
e be
omes pie
ewise linear and is made up of a set ofhyperplanes [8℄. In pra
ti
e, at large rather than in�nite SNR, the performan
edi�eren
e between Bayesian de
ision boundary and a pie
ewise linear approx-imation is negligible. Ea
h of these 
omponent hyperplanes is determined bya pair of so-
alled dominant opposite-
lass 
hannel states. This asymptoti
property 
an be utilized for various purposes. For instan
e, in a previous work[9℄, the Bayesian equalisation solution is approximated by only using the setof the dominant signal state pairs in 
omputation. In this paper, we exploitthis asymptoti
 property to develop an IS simulation te
hnique for performan
eevaluation of the Bayesian DFE and to implement the Bayesian DFE in a 
om-putationally very eÆ
ient multiple-hyperplane form.Iltis [8℄ developed a randomized bias te
hnique for the IS simulation of Bayesianequalisers without de
ision feedba
k. Although it 
an only guarantee asymp-toti
 eÆ
ien
y, as de�ned in [10℄, for 
ertain 
hannels, this IS simulation te
h-nique provides a valuable method in assessing the performan
e of the Bayesianequaliser. We extend this IS simulation te
hnique to evaluate the lower-boundBER of the Bayesian DFE. By viewing de
ision feedba
k as a geometri
 trans-lation, the Bayesian DFE is \
onverted" to the Bayesian equalizer in the trans-lated spa
e [11℄, with a desired property that opposite-
lass 
hannel states arealways linearly separable. A design pro
edure is developed, whi
h determinesthe set of hyperplanes that form the asymptoti
 Bayesian de
ision boundary and
onstru
ts the 
onvex regions asso
iated with individual states by interse
tinghyperplanes that are rea
hable from the states 
on
erned. This provides the ap-propriate bias ve
tors for the simulation density to ensure asymptoti
 eÆ
ien
y.A multiple-hyperplane partition te
hnique for equalisation was developed byKim and Moon [12, 13℄. Their design method determines a set of hyperplaneswhi
h separate 
lusters of 
hannel states. A 
ombinatorial sear
h and optimiza-tion pro
ess is 
arried out to �nd these hyperplanes, whi
h is 
omputationally2



very expensive. The 
onvex regions asso
iated with individual 
hannel statesare 
onstru
ted by appropriately interse
ting hyperplanes. The overall de
isionregion is then formed from these 
onvex regions. The de
ision 
omplexity andperforman
e of the multiple-hyperplane dete
tor are 
ontrolled during design bya spe
i�ed minimum separating distan
e. Although it is possible to a
hieve theasymptoti
 Bayesian solution by an appropriate 
hoi
e of the minimum sepa-rating distan
e, this is by no means guaranteed as the 
ombinatorial sear
h andoptimization pro
ess does not ne
essarily produ
e the set of hyperplanes whi
hform the asymptoti
 Bayesian de
ision boundary. We propose a mu
h simpleralternative design to expli
itly realize the asymptoti
 Bayesian DFE.2 The Bayesian DFEWe will assume that the 
hannel is real-valued and the re
eived signal sampleis given by: y(k) = na�1Xi=0 ais(k � i) + e(k) ; (1)where na is the CIR length, ai are the 
hannel taps, the Gaussian white noisee(k) has zero mean and varian
e �2e , and the transmitted symbol s(k) takesvalues from the set f�1g. A DFE uses the observation ve
tor y(k) = [y(k) � � �y(k � m + 1)℄T and the past dete
ted symbol ve
tor ŝb(k) = [ŝ(k � d � 1) � � �ŝ(k � d� n)℄T to produ
e an estimate ŝ(k � d) of s(k � d). Without the loss ofgenerality, the de
ision delay of d = na � 1, feedforward order of m = na andfeedba
k order of n = na� 1 are 
hosen, as this 
hoi
e is suÆ
ient to guaranteethe linear separability [11℄. The re
eived signal ve
tor 
an be expressed as:y(k) = F1sf (k) + F2sb(k) + e(k) ; (2)where sf (k) = [s(k) � � � s(k � d)℄T , sb(k) = [s(k � d � 1) � � � s(k � d � n)℄T ,e(k) = [e(k) � � � e(k �m + 1)℄T , and the m � (d + 1) and m � n CIR matri
esF1 and F2 are, respe
tively,F1 = 266664 a0 a1 � � � ana�10 a0 . . . ...... . . . . . . a10 � � � 0 a0 377775 ; (3)
F2 = 266666664 0 0 � � � 0ana�1 0 . . . ...ana�2 ana�1 . . . 0... . . . . . . 0a1 � � � ana�2 ana�1

377777775 : (4)
3



Assuming 
orre
t past de
isions, we have y(k) = F1sf (k) + F2ŝb(k) + e(k).Thus the de
ision feedba
k translates the original spa
e y(k) into a new spa
e:r(k) 4= y(k) � F2ŝb(k) : (5)Let the Nf = 2d+1 sequen
es of sf (k) be sf;j , 1 � j � Nf . The set of thenoiseless 
hannel states in the translated spa
e is de�ned asR 4= frj = F1sf;j ; 1 � j � Nfg ; (6)whi
h 
an be partitioned into the two subsets 
onditioned on s(k � d):R(�) 4= frj 2 R : s(k � d) = �1g : (7)We point out thatR(+) andR(�) are always linearly separable [11℄. The optimalequalisation solution, however, is de�ned by the Bayesian de
ision fun
tion [6, 7℄:fB(r(k)) = Xr(+)j 2R(+) exp��


r(k)� r(+)j 


2 =2�2e�� Xr(�)j 2R(�) exp��


r(k)� r(�)j 


2 =2�2e� ; (8)assuming equiprobable states. The de
ision boundary of this Bayesian DFEDB 4= fr : fB(r) = 0g (9)is generally a hypersurfa
e and 
annot be realized by one hyperplane. Letwe introdu
e the following de�nition. A pair of opposite-
lass states (r(+) 2R(+); r(�) 2 R(�)) is said to be dominant if 8rj 2 R, rj 6= r(+), rj 6= r(�):krj � r0k2 > kr(+) � r0k2 ; (10)where r0 = �r(+) + r(�)� =2. We 
an now des
ribe the asymptoti
 Bayesiande
ision boundary for SNR!1 (or �2e ! 0).Proposition 1 The asymptoti
 de
ision boundary DB of the Bayesian DFE forlarge SNR is pie
ewise linear and made up of a set of L hyperplanes. Ea
h ofthese hyperplanes is de�ned by a pair of dominant opposite-
lass states (r(+)l 2R(+); r(�)l 2 R(�)), su
h that the hyperplane is orthogonal to the line 
onne
tingthe pair of dominant states and passes through the midpoint of the line.Proof: See [8℄. As �2e ! 0, a ne
essary 
ondition for a point r 2 DB isr = r(+)l + r(�)l2 + "r(+)l � r(�)l2 #? ; (11)4



where x? denotes an arbitrary ve
tor in the subspa
e orthogonal to x; and thesuÆ
ient 
onditions for r 2 DB arekr� r(+)l k2 < kr� rik2; 8ri 2 R(+); ri 6= r(+)l ; (12)kr� r(�)l k2 < kr� rjk2; 8rj 2 R(�); rj 6= r(�)l ; (13)kr� r(+)l k2 = kr� r(�)l k2 : (14)Proposition 1 follows as a dire
t 
onsequen
e. The set of all the dominant statepairs fr(+)l ; r(�)l gLl=1 
an easily be determined using a simple algorithm basedon the 
onditions (11){(14) [8, 9℄.3 IS simulation methodAn ex
ellent introdu
tion to the IS method 
an be found in [14℄. Sin
e theBayesian DFE is redu
ed to the Bayesian equalizer in the translated spa
e, theIS simulation te
hnique of [8℄ 
an be extended to evaluate its lower-bound BERunder the 
ondition of 
orre
t bits being fed ba
k, whi
h is given by:P̂e = 1Ns 1Nk NsXi=1 NkXk=1 IE(ri(k)) p(ri(k)jri)p�(ri(k)jri) ; (15)where the indi
ator fun
tion IE(r(k)) = 1 if r(k) 
auses an error, and IE(r(k)) =0 otherwise; p(ri(k)jri) is the true 
onditional density given ri 2 R(+), andNs = 2d is the number of states in R(+); the sample ri(k) is generated usingthe simulation density p�(ri(k)jri) 
hosen to bep�(ri(k)jri) = LiXj=1 pj;i 1(2��2e)m2 exp��kri(k)� vj;ik22�2e � : (16)In (16), Li is the number of the bias ve
tors 
j;i = �ri + vj;i for ri 2 R(+),pj;i � 0 for 1 � j � Li, and PLij=1 pj;i = 1. An estimate of the IS gain, whi
his de�ned as the ratio of the numbers of trials required for the same estimatevarian
e using the Monte Carlo and IS methods, is given in [8℄. To a
hieveasymptoti
 eÆ
ien
y, f
j;ig must meet 
ertain 
onditions [10℄. We present thefollowing pro
edure of 
onstru
ting p�(ri(k)jri) to meet these 
onditions.Ea
h of the L dominant state pairs fr(+)l ; r(�)l g de�nes a hyperplane Hl(r) =wTl r+ bl = 0. The weight ve
tor wl and bias bl of the hyperplane are given by:wl = 2�r(+)l � r(�)l �kr(+)l � r(�)l k2 ; bl = � (r(+)l � r(�)l )T (r(+)l + r(�)l )kr(+)l � r(�)l k2 : (17)5



Note that the theory of support ve
tor ma
hines [15, 16℄ has been applied todetermine Hl with (r(+)l ; r(�)l ) as its two support ve
tors, and Hl is a 
anoni
alhyperplane having the property Hl(r(+)l ) = 1 and Hl(r(�)l ) = �1.A state ri 2 R is said to be suÆ
iently separable by the hyperplane Hl, if Hl
an separate ri 
orre
tly with jwTl ri + blj � 1. Thus, if wTl r(+)i + bl � 1 forr(+)i 2 R(+), r(+)i is suÆ
iently separable by Hl and a separability index h(+)l;iis set to 1; otherwise h(+)l;i = 0. Similarly, if r(�)i 2 R(�) satis�es wTl r(�)i + bl ��1, it is suÆ
iently separable by Hl and h(�)l;i = 1; otherwise h(�)l;i = 0. Therea
hability of Hl from r(+)i 2 R(+) 
an be tested by 
omputing
l;i = �0:5�wTl r(+)i + bl��r(+)l � r(�)l � : (18)If vl;i = r(+)i +
l;i 2 DB , Hl is said to be rea
hable from r(+)i (
l;i is then a biasve
tor), and the rea
hability index is 
l;i = 1; otherwise 
l;i = 0. The pro
essprodu
es the following separability and rea
hability table:r(�)1 � � � r(�)Ns r(+)1 � � � r(+)NsH1 h(�)1;1 � � � h(�)1;Ns h(+)1;1 (
1;1) � � � h(+)1;Ns (
1;Ns)... ... � � � ... ... � � � ...HL h(�)L;1 � � � h(�)L;Ns h(+)L;1 (
L;1) � � � h(+)L;Ns (
L;Ns)In order to 
onstru
t a 
onvex region R(+)i for r(+)i 2 R(+), we sele
t thosehyperplanes that 
an suÆ
iently separate r(+)i and that are rea
hable from r(+)iwith the aid of the above table. This yields the following integer set:G(+)i 4= fj : h(+)j;i = 1 and 
j;i = 1g : (19)Then R(+)i is the interse
tion of all the half-spa
es H(+)j 4= fr : Hj(r) � 0g withj 2 G(+)i . In fa
t, it is not ne
essary to use every hyperplanes de�ned in G(+)ito 
onstru
t R(+)i . A subset of these hyperplanes will be suÆ
ient, providedthat every opposite-
lass state in R(�) 
an suÆ
iently be separated by at leastone hyperplane in the subset. If su
h a G(+)i exists for ea
h r(+)i , the simulationdensity 
onstru
ted with the bias ve
tors f
j;ig, j 2 G(+)i , will a
hieve asymp-toti
 eÆ
ien
y, sin
e all the hyperplanes de�ned in G(+)i are rea
hable from r(+)iand obviously at least one of fvj;ig is the minimum rate point (as de�ned in[10℄), and the error region E satis�esE � R(+)i 4= [j2G(+)i H(�)j (20)6



Table 1: The separability and rea
hability table for the CIR of a = [�0:8 1:0 �0:5℄T .The DFE stru
ture is de�ned by m = 3, d = 2 and n = 2.r(�)1 r(�)2 r(�)3 r(�)4 r(+)1 r(+)2 r(+)3 r(+)4H1 1 1 0 1 0 0 1 (1) 0H2 1 0 1 1 1 (1) 1 (1) 0 1 (1)H3 1 1 1 1 0 1 (1) 0 0H4 0 1 0 0 1 (1) 0 1 (0) 1 (1)H5 0 0 1 0 1 (1) 1 (1) 1 (1) 1 (1)with the half-spa
es H(�)j 4= fr : Hj(r) < 0g.An example. The IS te
hnique for the Bayesian DFE was simulated using the3-tap CIR de�ned by a = [�0:8 1:0 � 0:5℄T . The bias ve
tors were generatedusing the pro
edure des
ribed above. As in [8℄, the bias ve
tors were sele
tedwith uniform probability in the simulation. For all the 
ases, 105 iterations wereemployed at ea
h SNR, averaging over all the possible states in R(+). Sin
e the
hannel had a length of na = 3, the DFE stru
ture was spe
i�ed by m = 3,d = 2 and n = 2. The asymptoti
 de
ision boundary 
onsisted of 5 hyperplanes.Table 1 gives the separability and rea
hability table for this 
hannel.
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Signal to Noise Ratio (dB)(a) (b)Figure 1: The lower-bound BERs (a) and the IS gain (b) of the Bayesian DFE forthe CIR of a = [�0:8 1:0 � 0:5℄T using 
onventional sampling (CS) and importan
esampling (IS) simulation. The DFE stru
ture is de�ned by m = 3, d = 2 and n = 2.The states r(+)1 and r(+)4 require the two hyperplanes H2 and H4 to separatethem from all the opposite-
lass states, and H2 and H4 are rea
hable from theboth states. Thus, there are two bias ve
tors for r(+)1 and r(+)4 , respe
tively, andE � H(�)2 SH(�)4 . The state r(+)2 is separated from R(�) by the single rea
hable7



hyperplane H3. Thus, there exists one bias ve
tor for r(+)2 and E � H(�)3 . Thestate r(+)3 is separated from R(�) by the two rea
hable hyperplanes H1 and H5,there are two bias ve
tors for r(+)3 and E � H(�)1 SH(�)5 . Asymptoti
 eÆ
ien
yof the IS simulation is therefore guaranteed for this example.Fig. 1 (a) shows the lower-bound BERs obtained using the IS and 
onventionalsampling (CS) simulation methods, respe
tively. It 
an be seen that the 
on-ventional Monte Carlo results for low SNR 
onditions agreed with those of theIS simulation. The estimated IS gains, depi
ted in Fig. 1 (b), indi
ate thatexponential IS gains were obtained with in
reasing SNRs. For SNR=20 dB, theBER of the Bayesian DFE with 
orre
t bits being fed ba
k 
al
ulated by theIS te
hnique is 1:2 � 10�11. The CS method 
ould not work under the sameSNR 
ondition and, to a
hieve the same BER estimation a

ura
y, it would re-quire approximately 4:8� 108 times of the samples needed by the IS simulationmethod. As the IS method used 4 � 105 data samples, the CS method wouldrequire approximately 2�1014 samples to a
hieve a similar estimation varian
e.
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Figure 2: Multiple-hyperplane dete
tor for realizing the asymptoti
 Bayesian DFE.4 Multiple-hyperplane dete
torSin
e the set of the L hyperplanes that form the asymptoti
 Bayesian de
isionboundary 
an easily be obtained, they 
an be used for partitioning the obser-vation spa
e to form a multiple-hyperplane dete
tor whi
h has a stru
ture asdepi
ted in Fig. 2. To 
onstru
t su
h a dete
tor, there is no need to test whethera hyperplane Hl is rea
hable from ea
h state in R(+) and only a separabilitytable is required. To 
onstru
t a 
onvex regionR(+)i 
overing r(+)i 2 R(+), sele
thyperplanes whi
h 
an suÆ
iently separate r(+)i from the separability table anddenote ~G(+)i 4= fl : h(+)l;i = 1g : (21)Then R(+)i is obtained by the interse
tion of all the H(+)j with j 2 ~G(+)iR(+)i = \j2 ~G(+)i H(+)j : (22)8



Table 2: Comparison of de
ision 
omplexity for the full Bayesian and multiple-hyperplane dete
tors. L (usually � 2na) is the number of hyperplanes, and na is theCIR length. The DFE stru
ture is 
hosen to be m = na, d = na � 1 and n = na � 1.Bayesian DFE Multiple-hyperplane dete
torMultipli
ations (na + 1)� 2na na � LAdditions na � 2na+1 � 1 na � LOthers 2na exp(�) logi
 ANDs � 2na�1fun
tion evaluations a logi
 ORAgain, a subset of the hyperplanes de�ned by (21) is enough in the 
onstru
tionof R(+)i , provided that every state in R(�) 
an suÆ
iently be separated by atleast one hyperplane in the subset. The overall de
ision region R(+) asso
iatedwith the de
ision ŝ(k � d) = 1 is simply formed as the union of all the R(+)iR(+) = Ns[i=1R(+)i : (23)The resulting multiple-hyperplane dete
tor is now 
ompletely de�ned. Let athreshold dete
tor output �j(r(k)) for a linear dis
riminant fun
tion Hj(r(k))have Boolean logi
 value 1 or 0 depending on r(k) 2 H(+)j or not. A Booleanlogi
 value �(+)i (r(k)) indi
ating whether r(k) 2 R(+)i or not is obtained via alogi
 AND operation of f�j(r(k)) : j 2 ~G(+)i g. A Boolean logi
 value indi
atingwhether r(k) 2 R(+) (that is, ŝ(k � d) = 1) or not is obtained via a logi
 ORoperation of f�(+)i (r(k))g for all i. This dete
tor a
hieves asymptoti
ally theoptimal Bayesian performan
e sin
e it realizes exa
tly the asymptoti
 Bayesiande
ision boundary. Table 2 
ompares de
ision 
omplexity for the full BayesianDFE and the multiple-hyperplane dete
tor. The multiple-hyperplane dete
torgenerally has mu
h simpler de
ision 
omplexity than the full Bayesian dete
tor,sin
e usually L� Nf .An example. The CIR was given by a = [0:4 0:7 0:4℄T . The stru
ture param-eters of the DFE were set to m = 3, d = 2 and n = 2. The asymptoti
 de
isionboundary 
onsisted of 5 hyperplanes. Table 3 gives the separability table forthis 
hannel. The state r(+)1 requires the two hyperplanes H1 and H2 to be sep-arated from all the opposite-
lass states R(�) and, therefore, the 
onvex regionR(+)1 for r(+)1 is the interse
tion of the two half-spa
es H(+)1 and H(+)2 . Thestates r(+)2 and r(+)3 are separated from R(�) by the two hyperplanes H3 andH4. Thus R(+)2 = R(+)3 is the interse
tion of the half-spa
es H(+)3 and H(+)4 .The state r(+)4 is separated by the single hyperplane H5 from all the opposite-
lass states, and the 
onvex region R(+)4 for r(+)4 is the half-spa
e H(+)5 de�nedby H5. The overall de
ision region R(+) is the union of R(+)1 , R(+)2 and R(+)4 .9



Table 3: The separability table for the CIR of a = [0:4 0:7 0:4℄T . The DFE stru
tureis de�ned by m = 3, d = 2 and n = 2.r(�)1 r(�)2 r(�)3 r(�)4 r(+)1 r(+)2 r(+)3 r(+)4H1 1 0 0 0 1 1 1 1H2 0 1 1 1 1 0 0 0H3 1 1 1 0 0 1 1 1H4 0 0 0 1 1 1 1 0H5 1 1 1 1 0 0 0 1The resulting 5-hyperplane dete
tor requires 15 multipli
ations and 15 additionsto dete
t a symbol, 
ompared with 32 multipli
ations, 47 additions and 8 exp(�)evaluations required by the full Bayesian DFE. The BERs of this multiple-hyperplane dete
tor are 
ompared with those of the full Bayesian DFE in Fig. 3,under di�erent SNR 
onditions. The BER results were obtained with dete
tedsymbols being fed ba
k. It 
an be seen from Fig. 3 that there exists hardly anyBER performan
e di�eren
e between the two equalisers for this 
hannel.
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Figure 3: Performan
e 
omparison of the multiple-hyperplane dete
tor (AB: points)and the full Bayesian DFE (FB: solid line) with dete
ted symbols being fed ba
k forthe CIR of a = [0:4 0:7 0:4℄T . The DFE stru
ture is de�ned by m = 3, d = 2 andn = 2.5 Con
lusionsAn asymptoti
 property of the optimal Bayesian de
ision boundary has beenutilized for eÆ
ient IS simulation and implementation of the Bayesian DFE. Inthe �rst appli
ation, we have extended the randomized bias te
hnique for IS10



simulation of [8℄ to evaluate the lower-bound BER of the Bayesian DFE. A de-sign pro
edure has been presented for 
onstru
ting the simulation density thatmeets the asymptoti
 eÆ
ien
y 
onditions. Although asymptoti
 eÆ
ien
y ofthe IS simulation for the general 
hannel has not rigorously been proven, we areunable to �nd a 
ounter example suggesting that the asymptoti
 eÆ
ien
y 
on-ditions are not met. The more diÆ
ult problem of how to derive an upper-boundBER of the Bayesian DFE, taking into a

ount error propagation, remains anopen question and is still under investigation. In the se
ond appli
ation, theset of hyperplanes that form the asymptoti
 Bayesian de
ision boundary is usedto partition the observation spa
e. The resulting multiple-hyperplane dete
toris guaranteed to a
hieve asymptoti
ally the optimal Bayesian performan
e andhas a mu
h lower de
ision 
omplexity 
ompared with the full Bayesian DFE.Referen
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