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Abstract

For the class of equalisers that employs a symbol-decision finite-memory
structure with decision feedback, the optimal solution is known to be the
Bayesian decision feedback equaliser (DFE). The complexity of the op-
timal Bayesian DFE however increases exponentially with the length of
the channel impulse response (CIR). It has been noted that, when the
signal to noise ratio (SNR) tends to infinity, the decision boundary of the
Bayesian DFE is asymptotically piecewise linear and consists of several
hyperplanes. This asymptotic property can be exploited for efficient simu-
lation and implementation of the Bayesian DFE. An importance sampling
(IS) simulation technique is presented based on this asymptotic property
for evaluating the lower-bound bit error rate (BER) of the Bayesian DFE
under the assumption of correct decisions being fed back. A design pro-
cedure is developed, which chooses appropriate bias vectors for the simu-
lation density to ensure asymptotic efficiency of the IS simulation. As the
set of hyperplanes that form the asymptotic Bayesian decision boundary
can easily be found, they can be used to partition the observation space.
The resulting multiple-hyperplane detector can closely approximate the
optimal Bayesian detector, at an advantage of considerably reduced deci-
sion complexity.

1 Introduction

Equalisation technique plays an ever-increasing role in combating distortion and
interference in communication links [1, 2] and high-density data storage systems
[3, 4]. For the class of equalisers based on a symbol-by-symbol decision with



decision feedback, the Bayesian DFE [5, 6, 7] is known to provide the best per-
formance. The complexity of this optimal Bayesian solution, however, increases
exponentially with the CIR length, and this limits its practical usefulness. For
example, due to its complicated structure, performance analysis of the Bayesian
DFE is usually based on conventional Monte Carlo simulation, which is com-
putationally costly even for modest SNR conditions. To obtain a reliable BER
estimate, at least 100 errors should occur during a simulation. Thus, for a BER
level of 1079, at least 10® data samples are needed. Investigating the Bayesian
DFE under BER performance better than 1079 is very difficult if not impossible,
using a conventional Monte Carlo simulation. In order for the Bayesian DFE to
be more widely adopted in practice, it is also necessary and desired to reduce
its implementation complexity without sacrificing performance too much.

Geometrically, the complexity of the Bayesian DFE is a consequence of the need
to form the optimal decision boundary that is a hypersurface in the observation
space [6]. It can be shown that asymptotically, as the SNR tends to infinity,
the Bayesian hypersurface becomes piecewise linear and is made up of a set of
hyperplanes [8]. In practice, at large rather than infinite SNR, the performance
difference between Bayesian decision boundary and a piecewise linear approx-
imation is negligible. Each of these component hyperplanes is determined by
a pair of so-called dominant opposite-class channel states. This asymptotic
property can be utilized for various purposes. For instance, in a previous work
[9], the Bayesian equalisation solution is approximated by only using the set
of the dominant signal state pairs in computation. In this paper, we exploit
this asymptotic property to develop an IS simulation technique for performance
evaluation of the Bayesian DFE and to implement the Bayesian DFE in a com-
putationally very efficient multiple-hyperplane form.

Iltis [8] developed a randomized bias technique for the IS simulation of Bayesian
equalisers without decision feedback. Although it can only guarantee asymp-
totic efficiency, as defined in [10], for certain channels, this IS simulation tech-
nique provides a valuable method in assessing the performance of the Bayesian
equaliser. We extend this IS simulation technique to evaluate the lower-bound
BER of the Bayesian DFE. By viewing decision feedback as a geometric trans-
lation, the Bayesian DFE is “converted” to the Bayesian equalizer in the trans-
lated space [11], with a desired property that opposite-class channel states are
always linearly separable. A design procedure is developed, which determines
the set of hyperplanes that form the asymptotic Bayesian decision boundary and
constructs the convex regions associated with individual states by intersecting
hyperplanes that are reachable from the states concerned. This provides the ap-
propriate bias vectors for the simulation density to ensure asymptotic efficiency.

A multiple-hyperplane partition technique for equalisation was developed by
Kim and Moon [12, 13]. Their design method determines a set of hyperplanes
which separate clusters of channel states. A combinatorial search and optimiza-
tion process is carried out to find these hyperplanes, which is computationally



very expensive. The convex regions associated with individual channel states
are constructed by appropriately intersecting hyperplanes. The overall decision
region is then formed from these convex regions. The decision complexity and
performance of the multiple-hyperplane detector are controlled during design by
a specified minimum separating distance. Although it is possible to achieve the
asymptotic Bayesian solution by an appropriate choice of the minimum sepa-
rating distance, this is by no means guaranteed as the combinatorial search and
optimization process does not necessarily produce the set of hyperplanes which
form the asymptotic Bayesian decision boundary. We propose a much simpler
alternative design to explicitly realize the asymptotic Bayesian DFE.

2 The Bayesian DFE

We will assume that the channel is real-valued and the received signal sample

is given by:
Nng—1

y(k) = S ags(k— i) + k), (1)
i=0

where n, is the CIR length, a; are the channel taps, the Gaussian white noise
e(k) has zero mean and variance o2, and the transmitted symbol s(k) takes
values from the set {£1}. A DFE uses the observation vector y(k) = [y(k) - --
y(k —m + 1)]7 and the past detected symbol vector 8,(k) = [§(k —d — 1)---
3(k —d —n)]T to produce an estimate 3(k — d) of s(k — d). Without the loss of
generality, the decision delay of d = n, — 1, feedforward order of m = n, and
feedback order of n = n, — 1 are chosen, as this choice is sufficient to guarantee
the linear separability [11]. The received signal vector can be expressed as:

y(k) = Fisg(k) + Fasy(k) + (k) (2)

where sy(k) = [s(k)---s(k — d)]T, sp(k) = [s(k —d —1)---s(k —d — n)]T,
e(k) = [e(k)---e(k —m+1)]T, and the m x (d + 1) and m x n CIR matrices
F, and F, are, respectively,
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Assuming correct past decisions, we have y(k) = Fisg(k) + Fasy(k) + e(k).
Thus the decision feedback translates the original space y(k) into a new space:

r(k) 2 y(k) — Fasy (k). (5)

Let the Ny = 2%+! sequences of s;(k) be sy, 1 < j < N;. The set of the
noiseless channel states in the translated space is defined as

R 2 {r;=Fisp;, 1<j<Ns}, (6)
which can be partitioned into the two subsets conditioned on s(k — d):
RE) 2 [r; e R:s(k—d) = +1}. (7)

We point out that R(+) and R(~) are always linearly separable [11]. The optimal
equalisation solution, however, is defined by the Bayesian decision function [6, 7]:

) = 3 ew (-

r;+)en(+)

— Y e (—Hr(k) —r§—>H2/2og) , (8)
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assuming equiprobable states. The decision boundary of this Bayesian DFE

Dp 2 {r: fp(r) = 0} 9)

is generally a hypersurface and cannot be realized by one hyperplane. Let
we introduce the following definition. A pair of opposite-class states (r(*) €
RE) (=) € R(7)) is said to be dominant if Vr; € R, r; #rH) r; #r(7):

Jlej = roll* > [|r™*) = rof?, (10)

where ro = (r(H + r(’)) /2. We can now describe the asymptotic Bayesian
decision boundary for SNR— oo (or 02 — 0).

Proposition 1 The asymptotic decision boundary Dg of the Bayesian DFE for
large SNR is piecewise linear and made up of a set of L hyperplanes. Each of
these hyperplanes is defined by a pair of dominant opposite-class states (rl(H €

R, rl(f) € R(_)), such that the hyperplane is orthogonal to the line connecting
the pair of dominant states and passes through the midpoint of the line.

Proof: See [8]. As 02 — 0, a necessary condition for a point r € Dp is
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where x denotes an arbitrary vector in the subspace orthogonal to x; and the
sufficient conditions for r € Dy are

e =PI < [le = ri)?, Ve € RO, xy £, (12)
le =2 < fle =2, Ve € RO, vy w7, (13)
e =i P2 = e — )2 (14)

Proposition 1 follows as a direct consequence. The set of all the dominant state

pairs {rl("_),rl(_)}lL:1 can easily be determined using a simple algorithm based
on the conditions (11)—(14) [8, 9].

3 IS simulation method

An excellent introduction to the IS method can be found in [14]. Since the
Bayesian DFE is reduced to the Bayesian equalizer in the translated space, the
IS simulation technique of [8] can be extended to evaluate its lower-bound BER
under the condition of correct bits being fed back, which is given by:

Ns; Ny

11 oy PEi(Blre)
P, = ;;IE( ’(k))p*(ri(k)m)’ (15)

where the indicator function Ir(r(k)) = 1if r(k) causes an error, and Ig(r(k)) =
0 otherwise; p(r;(k)|r;) is the true conditional density given r; € R(*), and
N, = 2% is the number of states in R(*); the sample r;(k) is generated using
the simulation density p*(r;(k)|r;) chosen to be

L,
. l 1 [Iri (k) — vjill?
p*(ri(k)[r;) = ZPMW exp (‘T : (16)
j=1
In (16), L; is the number of the bias vectors ¢;; = —r; + v;; for r; € RH),

pji > 0for 1 <j < L; and Z]Lﬂ pji = 1. An estimate of the IS gain, which
is defined as the ratio of the numbers of trials required for the same estimate
variance using the Monte Carlo and IS methods, is given in [8]. To achieve
asymptotic efficiency, {c;;} must meet certain conditions [10]. We present the
following procedure of constructing p*(r;(k)|r;) to meet these conditions.

Each of the L dominant state pairs {rl(+),rl(_)} defines a hyperplane H;(r) =
wlTr + b; = 0. The weight vector w; and bias b; of the hyperplane are given by:
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Note that the theory of support vector machines [15, 16] has been applied to
determine H; with (rl(+), rl(_)) as its two support vectors, and H; is a canonical

hyperplane having the property H, (rl(+)) =1 and Hl(rl(_)) =-1.

A state r; € R is said to be sufficiently separable by the hyperplane Hy, if H;
can separate r; correctly with |Wl r; + b > 1. Thus, if Wl ( ) + b > 1 for
Z(»+) e R, E ) is sufficiently separable by H; and a separablhty index hl(if)
is set to 1; otherwise hl(j) = 0. Similarly, if !~ € R(-) satisfies w/r! ) + b <
—1, it is sufficiently separable by H; and hl(;) = 1; otherwise hl(;) = 0. The

reachability of H; from r£+) € RM) can be tested by computing
c“:—05( (+)+b)(rl(+)—rl(_)) . (18)
fv,; = r( ) +¢;,; € Dp, H, is said to be reachable from r( ) (er,; is then a bias

vector), and the reachability index is v;; = 1; otherwise 7, ; = 0. The process
produces the following separability and reachability table:

| 7 o B ry
H [ o - w3 e ) o AR )
Hp h(L_1) h(L])V h’(L+1) (7L,1) h(+) (VLN)

In order to construct a convex region RE‘H for r(+) R, we select those

hyperplanes that can sufficiently separate rg ) and that are reachable from r(+)

with the aid of the above table. This yields the following integer set:
A
G =i nlE) =1 and v, =1} (19)

Then RZ(+) is the intersection of all the half-spaces 7—[§+) 2 {r: Hj(r) > 0} with

JjE GEH. In fact, it is not necessary to use every hyperplanes defined in GZ(»H
to construct RE'H. A subset of these hyperplanes will be sufficient, provided
that every opposite-class state in R(~) can sufficiently be separated by at least

one hyperplane in the subset. If such a Gg+)

exists for each r£+), the simulation
density constructed with the bias vectors {c;;}, j € G(H will achieve asymp-

totic efficiency, since all the hyperplanes defined in GE are reachable from rH)
and obviously at least one of {v;;} is the minimum rate point (as defined in
[10]), and the error region £ satisfies

gcrP L | H- (20)
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Table 1: The separability and reachability table for the CIR of a = [—0.8 1.0 —0.5].
The DFE structure is defined by m =3, d =2 and n = 2.

rg_) rg_) ré_) rg_) r§+) réﬂ r§+) rf)
H |1 1 0 1 0 0 1(1) 0
Hy |1 0 1 1 1(1) 1(1) o 1 (1)
H; |1 1 1 1 0 1(1) 0 0
Hy | O 1 0 0 1(1) 0 100 1(1)
Hs | 0 0 1 0 1(1) 1(1) 1(1) 1(1)

with the half-spaces 7-[5._) 2 {r: Hj(r) < 0}.

An example. The IS technique for the Bayesian DFE was simulated using the
3-tap CIR defined by a = [-0.8 1.0 — 0.5]7. The bias vectors were generated
using the procedure described above. As in [8], the bias vectors were selected
with uniform probability in the simulation. For all the cases, 10° iterations were
employed at each SNR, averaging over all the possible states in R(*). Since the
channel had a length of n, = 3, the DFE structure was specified by m = 3,
d = 2 and n = 2. The asymptotic decision boundary consisted of 5 hyperplanes.
Table 1 gives the separability and reachability table for this channel.
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Figure 1: The lower-bound BERs (a) and the IS gain (b) of the Bayesian DFE for
the CIR of a = [-0.8 1.0 — 0.5]” using conventional sampling (CS) and importance

sampling (IS) simulation. The DFE structure is defined by m =3, d =2 and n = 2.

The states rgﬂ and r51+) require the two hyperplanes H, and H4 to separate
them from all the opposite-class states, and Hs and H, are reachable from the

both states. Thus, there are two bias vectors for r§+) and rf), respectively, and

£C Hg_) U 7—[51_). The state rg‘_) is separated from R(~) by the single reachable



hyperplane Hs. Thus, there exists one bias vector for rg‘_) and £ C Hg_). The

state réﬂ is separated from R(~) by the two reachable hyperplanes H; and Hs,

there are two bias vectors for r§+) and £ C Hﬁ‘) U 'Hé_). Asymptotic efficiency
of the IS simulation is therefore guaranteed for this example.

Fig. 1 (a) shows the lower-bound BERs obtained using the IS and conventional
sampling (CS) simulation methods, respectively. It can be seen that the con-
ventional Monte Carlo results for low SNR conditions agreed with those of the
IS simulation. The estimated IS gains, depicted in Fig. 1 (b), indicate that
exponential IS gains were obtained with increasing SNRs. For SNR=20 dB, the
BER of the Bayesian DFE with correct bits being fed back calculated by the
IS technique is 1.2 x 10~ ''. The CS method could not work under the same
SNR condition and, to achieve the same BER, estimation accuracy, it would re-
quire approximately 4.8 x 108 times of the samples needed by the IS simulation
method. As the IS method used 4 x 10° data samples, the CS method would
require approximately 2 x 10" samples to achieve a similar estimation variance.
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Boolean Mapper

Figure 2: Multiple-hyperplane detector for realizing the asymptotic Bayesian DFE.

4 Multiple-hyperplane detector

Since the set of the L hyperplanes that form the asymptotic Bayesian decision
boundary can easily be obtained, they can be used for partitioning the obser-
vation space to form a multiple-hyperplane detector which has a structure as
depicted in Fig. 2. To construct such a detector, there is no need to test whether
a hyperplane Hj is reachable from each state in R(*) and only a separability

table is required. To construct a convex region REH covering rit) e R select

i

hyperplanes which can sufficiently separate rEH from the separability table and
denote N
G = {1 n =1y, (21)
Then RZ(+) is obtained by the intersection of all the 7—[5-4_) with j € C~¥§+)
R = N #Y. (22)
jeat



Table 2: Comparison of decision complexity for the full Bayesian and multiple-
hyperplane detectors. L (usually < 2™%) is the number of hyperplanes, and n, is the
CIR length. The DFE structure is chosen to be m =n,, d =n, —1 and n =n, — 1.

Bayesian DFE Multiple-hyperplane detector
Multiplications (ng +1) x 2Ma ng X L
Additions ng X 2™t 1 ng X L
Others 2" exp(-) logic ANDs < 2na—1
function evaluations a logic OR

Again, a subset of the hyperplanes defined by (21) is enough in the construction
of RE'H, provided that every state in R(~) can sufficiently be separated by at
least one hyperplane in the subset. The overall decision region R(*) associated
with the decision §(k — d) =1 is simply formed as the union of all the REH

N,

The resulting multiple-hyperplane detector is now completely defined. Let a
threshold detector output 3;(r(k)) for a linear discriminant function H;(r(k))

have Boolean logic value 1 or 0 depending on r(k) € ’H§.+) or not. A Boolean
logic value o\t (r(k)) indicating whether r(k) € RZ(+) or not is obtained via a

(2

logic AND operation of {3;(r(k)) : j € CNJZG_)}. A Boolean logic value indicating
whether r(k) € R(H) (that is, 3(k — d) = 1) or not is obtained via a logic OR
operation of {BEH (r(k))} for all i. This detector achieves asymptotically the
optimal Bayesian performance since it realizes exactly the asymptotic Bayesian
decision boundary. Table 2 compares decision complexity for the full Bayesian
DFE and the multiple-hyperplane detector. The multiple-hyperplane detector
generally has much simpler decision complexity than the full Bayesian detector,
since usually L < Ny.

An example. The CIR was given by a = [0.4 0.7 0.4]7. The structure param-
eters of the DFE were set to m = 3, d = 2 and n = 2. The asymptotic decision
boundary consisted of 5 hyperplanes. Table 3 gives the separability table for
this channel. The state r§+) requires the two hyperplanes H; and H»> to be sep-
arated from all the opposite-class states R(~) and, therefore, the convex region
Rgﬂ for r§+) is the intersection of the two half-spaces Hgﬂ and ’HgH. The

states réJr) and r§+) are separated from R(~) by the two hyperplanes Hs and

H,. Thus Rg‘_) = Rg+) is the intersection of the half-spaces 7-[9_) and H51+).
The state rf) is separated by the single hyperplane Hs from all the opposite-
class states, and the convex region RE{H for r51+) is the half-space Héﬂ defined

by Hs. The overall decision region R(*) is the union of Rg“, Rgﬂ and Rf).



Table 3: The separability table for the CIR of a = [0.4 0.7 0.4]7. The DFE structure
is defined by m =3, d =2 and n = 2.

S R S S
Hy 1 0 0 0 1 1 1 1
H> 0 1 1 1 1 0 0 0
H; 1 1 1 0 0 1 1 1
Hy 0 0 0 1 1 1 1 0
Hj 1 1 1 1 0 0 0 1

The resulting 5-hyperplane detector requires 15 multiplications and 15 additions
to detect a symbol, compared with 32 multiplications, 47 additions and 8 exp(+)
evaluations required by the full Bayesian DFE. The BERs of this multiple-
hyperplane detector are compared with those of the full Bayesian DFE in Fig. 3,
under different SNR conditions. The BER results were obtained with detected
symbols being fed back. It can be seen from Fig. 3 that there exists hardly any
BER performance difference between the two equalisers for this channel.

log10(Bit Error Rate)
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Figure 3: Performance comparison of the multiple-hyperplane detector (AB: points)
and the full Bayesian DFE (FB: solid line) with detected symbols being fed back for
the CIR of a = [0.4 0.7 0.4]". The DFE structure is defined by m = 3, d = 2 and
n=2.

5 Conclusions

An asymptotic property of the optimal Bayesian decision boundary has been
utilized for efficient IS simulation and implementation of the Bayesian DFE. In
the first application, we have extended the randomized bias technique for IS

10



simulation of [8] to evaluate the lower-bound BER of the Bayesian DFE. A de-
sign procedure has been presented for constructing the simulation density that
meets the asymptotic efficiency conditions. Although asymptotic efficiency of
the IS simulation for the general channel has not rigorously been proven, we are
unable to find a counter example suggesting that the asymptotic efficiency con-
ditions are not met. The more difficult problem of how to derive an upper-bound
BER of the Bayesian DFE, taking into account error propagation, remains an
open question and is still under investigation. In the second application, the
set of hyperplanes that form the asymptotic Bayesian decision boundary is used
to partition the observation space. The resulting multiple-hyperplane detector
is guaranteed to achieve asymptotically the optimal Bayesian performance and
has a much lower decision complexity compared with the full Bayesian DFE.
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