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System Model
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where the user bit vector b(k) = [b1(k) --- by (k)]?, L is the ISl span, the Gaussian
noise vector n(k) = [ni(k)---na(k)]L with zero mean vector and

the M x LN system matrix

SA O 0
0 SA :
P=H . . 0 ’
0 - 0 SA |
the user unit-length signature sequence matrix S = [s; --- Sy|, the diagonal user

signal amplitude matrix A = diag{A; --- An}, and the M x LM CIR matrix H
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Linear detector for user 7

where w = [wy - --

bi(k) = sgn(y(k)) with y(k)

Linear Detector

= wir(k)

wyr]? is the detector weight vector.

e MMSE solution most widely used, with LMS adaptive implementation.

e There are N, = 25Y combinations of [b (k) bY(k—1) --- bT(k - L+ 1)]*:
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with b7’ the ith element of b (k).
e (k) only takes value from the noise-free signal state set:

r;=PbY), 1<j<N,

/

e The detector y(k) = y (k) + n (k), with = y (k) only takes value from the set:
E— '
yj =wrj, 1<j <Ny

/ . . . .
n (k) is Gaussian with zero mean and variance o2w!w.

k Universit
Pung Electronics and ofn;\:)e::;l:mpton
ElE computer Science
Bl



Communication Group

S Chen

Motivations for Adaptive MBER

e MMSE can be inferior to MBER

Two equal power users with chip
codes (+1,4+1) and (+1,—1)

Transfer function of CIR
H(z)=1+4+0.82"1+0.6272

SNR; =25 dB
BER surface for user 1

MMSE solution: log,,(BER) = —3.88
MBER solutions: log,,(BER) = —5.56
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e | MS-style stochastic gradient adaptation

* Two existing stochastic gradient adaptive MBER algorithms

1. Difference approximation MBER, DMBER, (Trans COM 47 (7), pp.1092-1102,
1999)

Difference approximation for gradient of one-bit error measure, no need for noise
pdf assumption, complexity O(M?), very low convergence rate for small BER

2. Approximate or Adaptive MBER, AMBER, (Globecom’98, pp.3590-3595)

Like signed-error LMS but modified to continue updating weights in vicinity of
decision boundary, very simple with a complexity O(M)

* Our approach, LBER, based on kernel density estimation of BER from training data
Also a complexity O(M), simpler than DMBER but more complex than AMBER
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Theoretical MBER Solution

Define the signed decision variable

ys (k) = sgn(bi(k))y(k) = sgn(bi(k)) (' (k) +n'(k))

with p.d.f.:

1 i (ys — sgu(0))y;)?
py(ys) = NyV2ro,VwTw Zexp ( 202wl'w )

Thus error probability of linear detector:

Pe(w) = Prob{sgn(bi(0)y(k) < 0} = | p,(u)dys = 3 > Qes(w
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where
1 > z? sgn(b(j))y - Sgn(b(j))wTr -
Qy) = —/ exp (——) der and c;j(w) = i ) — L J
) oL 2 i(W) o, VWIw o, VWIw

Gradient

1 wwl —w WI yz- :
VP } : J YNy
m(w) = NyV2mo, ( (WTW > xP < 20'721WTW> (b,

By normalizing w to unit length,

Nb 2
1 Y (5)
VPr(w) = E ex — 2] sen(b?)(wy: — 1.
(W) Nb\/27ranj:1 p( 20%) 5 <7’ ) Ji ‘7)

e Steepest-descent or conjugate gradient algorithm = MBER solution e
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Block-data Based Adaptation

Estimate p,(ys) based on training data {r(k), b;(k)}_, (kernel density estimation):

. — sgn(b;(k))y(k))?
Dy(ys) = ™ \/ﬂpn ZeXp ( 22 wlw )

where the radius parameter p,, is related to the noise standard deviation o,

® hy(ys) = Pe(W) = VPg(w) e
* Gradient algorithm =- estimated MBER solution %

Remark: This is analogous to estimated MMSE solution — sample estimates of
autocorrelation matrix and cross-correlation vector replacing corresponding ensemble
averages
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Stochastic Gradient Adaptation

One-sample estimate of p.d.f. and instantaneous stochastic gradient = LBER
e Re-scaling weight vector (to unit length)

w(k)

w(k) ;=
W= TR wm

e Detector output

y(k) = w' (k)r(k)

e Weight update

_ p RN o N (k) — w
i+ 1) = w(k) +—L—exp (550 ) sn(bu ) () = wiky ()

Step size 1 and width p,, are two algorithm parameters
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Simulation

Example 1 Two equal-power users with (+1,+1,—1,—1) and (+1,—1,—1,+1),
respectively, and the CIR transfer function H(z) = 1.0 + 0.25271 + 0.5273

Data block: 100 samples, SNR; =SNRy = 16.5 dB, block adaptation for user 1:
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SNR; =SNRy; =19 dB
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Stochastic gradient
adaptation for user 1:
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Example 2 Four equal-power users with (+1,+1,+1,+1,—1,—1,—1,—1),
(+1,—-1,+1,-1,-1,+1,—-1,+1), (+1,+1,—-1,—-1,—-1,—-1,+1,41) and (+1,—1,
—1,+1,—1,+1,+1, —1); the CIR transfer function H(z) = 0.4+ 0.7271 + 0.427?

Data block: 1500 samples, SNR; = 16 dB for all ¢, block adaptation for user 1:
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SNR; = 15 dB for all 2
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Conclusions

e MBER solution for linear multiuser detector can be superior over MMSE one
e L MS-style stochastic gradient adaptive MBER algorithms are available

e Our approach: Least Bit Error Rate, LBER

* Kernel density estimate for p.d.f. of detector decision variable is natural and
genericl

* Complexity is linear with detector length

* Appear to have better performance in terms of convergence speed and steady-
state BER misadjustment

1We have extended the LBER to training nonlinear neural network multiuser detectors
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