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Abstract—The emerging analog matrix computing technology
based on memristive crossbar array (MCA) constitutes a rev-
olutionary new computational paradigm applicable to a wide
range of domains. Despite the proven applicability of MCA for
massive multiple-input multiple-output (MIMO) detection, exist-
ing schemes do not take into account the unique characteristics
of massive MIMO channel matrix. This oversight makes their
computational accuracy highly sensitive to conductance errors
of memristive devices, which is unacceptable for massive MIMO
receivers. In this paper, we propose an MCA-based circuit design
for massive MIMO zero forcing and minimum mean-square
error detectors. Unlike the existing MCA-based detectors, we
decompose the channel matrix into the product of small-scale
and large-scale fading coefficient matrices, thus employing an
MCA-based matrix computing module and amplifier circuits to
process the two matrices separately. We present two conductance
mapping schemes which are crucial but have been overlooked in
all prior studies on MCA-based detector circuits. The proposed
detector circuit exhibits significantly superior performance to the
conventional MCA-based detector circuit, while only incurring
negligible additional power consumption. Our proposed detector
circuit maintains its advantage in energy efficiency over tradi-
tional digital approach by tens to hundreds of times.

Index Terms—Massive MIMO, multi-user detection, receiver
design, analog matrix computing, memristive crossbar array, in-
memory computing.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technol-
ogy, whose core idea is to equip base stations (BSs) with
a very large number of antennas to support multiuser trans-
missions, can significantly improve the network capacity and
spectrum efficiency, and it has become a cornerstone tech-
nology for contemporary and future wireless communication
systems. However, utilizing large number of antennas results
in high complexity of detection algorithms, posing a notable
challenge to the realization of next-generation massive MIMO
receivers that are expected to simultaneously achieve high
performance, ultra-low latency and low energy consumption.
Many detection algorithms have been proposed to reduce
detection latency and energy consumption [1]. However, these
low-complexity algorithms usually suffer from considerable
performance loss, and therefore they do not achieve good
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trade off between high performance and low latency/low
energy consumption. Another effective approach involves ac-
celerating MIMO detection at the hardware level. However,
with the gradual demise of Moore’s law, the enhancement of
computational performance of traditional processors based on
complementary metal oxide semiconductor (CMOS) process
is becoming increasingly challenging, which makes it difficult
for CMOS-based digital processors to keep up with the
demand of next-generation massive MIMO receivers.

On the other avenue, the emerging memristive devices
can be integrated into crossbar arrays for analog matrix
computing. Combined with operational amplifiers (OAs), the
memristive crossbar array (MCA) enables high-dimensional
matrix operations in extremely short time, including matrix-
vector multiplication (MVM) [2], inverse matrix computation
[3] and pseudoinverse matrix computation [4]. As a form of
in-memory computing, the analog matrix computing technol-
ogy offers significant advantages in computational speed and
energy efficiency compared to traditional digital approach.
Given that massive MIMO detectors primarily involve high-
dimensional matrix operations, the MCA enables the realiza-
tion of next-generation massive MIMO receivers with high
performance, ultra-low latency and low energy consumption.

Although MCA has been applied successfully in the realms
such as deep neural networks, machine learning, image pro-
cessing and so on, its application in massive MIMO detection
is still at a nascent stage. The work in [5] applied MCA to
accelerate the MVM operations in discrete fourier transform
and MIMO detection. However, this scheme relied on another
processor to compute inverse matrices and so was a palliative
approach. In the study [6], an MCA-based zero forcing (ZF)
precoder circuit was proposed, whose core concept can be ap-
plied to develop an MCA-based ZF detector. In the studies [7],
[8], two MCA-based detector circuits with similar structures
were proposed, respectively, and both circuits can be used
for the computation of linear detection algorithms, including
ZF, regularized ZF and minimum mean-square error (MMSE)
algorithms. However, the works [6]-[8] did not consider the
disparity in large-scale fading coefficients (LSFCs) associated
with user terminals (UTs) distributed in different locations of
a massive MIMO network. This disparity leads to different
elements of the matrices computed in MCA-based circuits
following probability distributions with distinct variances and
having large matrix condition numbers, which makes the
detection performance susceptible to conductance errors.



To solve this problem, in this paper we propose a novel
MCA-based circuit design for massive MIMO linear detectors.
Our main contributions are summarized as follows.

o We propose an MCA-based circuit design for massive
MIMO ZF and MMSE detectors. Differing from the
existing MCA-based detector circuits, our circuit de-
sign decompose the channel matrix into the product of
the LSFC matrix and the small-scale fading coefficient
(SSFC) matrix, and deal with them separately.

o We present two conductance mapping schemes for the
MCA-based detector circuits, based on statistical channel
state information (CSI) and instantaneous CSI, respec-
tively. The conductance mapping scheme is crucial to
MCA-based detector circuits but has been overlooked in
all prior studies.

o« We investigate the impacts of mapping scheme and
conductance errors on detection performance and demon-
strate the performance advantage of the proposed detector
circuit over the conventional MCA-based detector circuit.
We alse demonstrate the significant advantage of the
proposed circuit over traditional digital approach in terms
of energy efficiency.

II. SYSTEM MODEL AND BASIC ALGORITHMS
A. System Model

We consider a massive MIMO system, in which the BS is
equipped with R antennas to support K single-antenna UTs
with R > K. The uplink received signals are given by:

y =Hs+n, €))
where y € CRX! is the received signal vector, § € CE*! is
the transmitted signal vector sent by the UTs, HeC™" is
the channel matrix, and i € C®**! is a complex additive white
Gaussian noise (AWGN) vector with variance O’?L per element,
i.e.,, n~CN(0,02I) with 0 and I denoting the zero vector and
the identity matrix of appropriate dimensions, respectively.

Let \q,---, Ak be the LSFCs between the K UTs and the
BS. The channel matrix H can be expressed as:

H = GA, )
where the diagonal matrix A= diag(\/ AL - VA K) repre-
sents the LSFC matrix and G € C"" is the SSFC matrix.
We consider the typical Rayleigh fading channel model, which
means that the elements of G follow the zero-mean Gaussian
distribution with variance 03 per dimension, namely,

Gij ~CN(0,207),1<i< R, 1<j<K. 3)

The complex-valued system model of (1) can be expressed
in an equivalent real-valued system model of

y = Hs +n, @
where
(3] +-[30]
Skl

in which R(-) and (-) denote the real and imaginary parts of
the corresponding arguments, respectively. In particular, the
real-valued channel matrix H € R2%%2K i given by

H = GA, 5)
where A = dlag(\/x7 7%7 \/Ea 7%) and
G = %(C:;) _%(ﬁ'})
3(G)  R(Q)

The task of a massive MIMO detector is to estimate s from
y given the CSI. And the CSI is assumed to be perfectly
known in this paper .
B. Basic Detection Algorithms
We consider the following two basic linear detection algo-
rithms.
1) ZF Algorithm: The ZF algorithm estimates signals by:
szp = (HTH) 'HTy, ©)
where ()T represents the transpose operator, (-)~! represents
the inverse operator. Upon substituting (5) into (6) we obtain:
. _ -1
szr = A'(GTG) GTy. (7)

2) MMSE Algorithm: The MMSE algorithm estimates sig-
nals by: )
Smmse = (H'H+pI) H'y, 8)

where p = Z—i and pg is the average symbol energy of the
transmitted signals. Upon substituting (5) into (8) we obtain:

. _ -1
Smvse = AT (GTG+P) Gy, )
where P :diag(%,)\—‘;,u- 7ﬁ,)\%,%,... ’ﬁ)

III. PROPOSED MCA-BASED CIRCUIT DESIGN

The proposed detector circuit is illustrated in Fig. 1, which
is a combination of an MCA-based computing module and
2K amplifier circuits. The MCA-based computing module
comprises four 2R x 2K MCAs and two sets of OAs,
the conductances of the feedback memristive devices of the
first set of OAs are all §y, and the conductances of the
feedback memristive devices of the second set of OAs are
51,52, s ,52}(.

Owing to the virtual ground property of OA networks,
the voltages at the inverting-input nodes of the first set of
OAs and the noninverting-input nodes of the second set of
OAs are approximately zeros. Besides, the currents flowing
into the inverting-input nodes of the first set of OAs and
the noninverting-input nodes of the second set of OAs are
approximately zeros owing to the inherent characteristic of
OAs. Let A, B, C and D be the conductance matrices of
the four MCAs, respectively, vy be the output voltages of the
first set of OAs, v, be the output voltages of the second set of
OAs, and i;,, be the input currents. Further denote E = A—B,
F=C-D, and A; = diag(d1,82,- - - , 62 ). According to
Ohm’s law and Kirchhoff’s law, we have

Evy +ij, +6pvy =0 (10)
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Fig. 1. The proposed MCA-based detector circuit.
and
F'v, — A;vy = 0. (11)
Upon substituting (11) into (10) we obtain:
1 .
vo=—(FTE+ A)" Fli,, (12)

where A = diag(éoél, (50(527 s ,50(52[{).

For the amplifier circuits, let 61,05, -- , 02k be the con-
ductances of the feedback memristive devices, and denote 6
as the conductance of the memristive devices connected to
the output nodes of the second set of OAs. The magnification
of the kth amplifier circuit is 3—2. The output voltages of the
amplifier circuits are:

Vour = —©7 vy, (13)
where © = diag(%, %(2)7 . 95%)_
Upon substituting (12) into (13) we obtain:
Vour = O (FTE + A) Fl. (14)

A memristive device is a two-terminal device whose con-
ductance can be changed by charge or flux through it. Using a
dedicated program [9], [10], the conductance of a memristive
device can be set to any desired value within a specified range.
By mapping y onto i;,,, mapping G onto E and F, setting A
to zeros or mapping P onto A, and mapping A onto ©, the
result of (7) or (9) can be obtained by measuring voyt.

The conventional MCA-based detector circuit does not
decompose the channel matrix into the product of the LSFC
matrix and the SSFC matrix. Obviously, the MCA-based
computing module in Fig. 1 can be employed as a con-
ventional MCA-based detector circuit to compute (6) or (8).
Therefore, in the rest of this paper, we employ this module

to represent the conventional MCA-based detector circuit for
analysis convenience.

IV. CONDUCTANCE MAPPING SCHEMES

The mapped matrix may contain both positive and negative
elements, but the device conductance values must remain pos-
itive. So we map the matrix onto the difference between two
positive conductance matrices, instead of a single conductance
matrix. Let the conductance range of memristive devices be
[Wimin, Wmax]- We define w = wimax — Wmin. The scheme for
mapping a matrix U onto the conductance matrix X — Z is:

w u; i >0
Ty =g, (15)
Wmin, Ui,j <0
and
Ziyj = Tij — QUi (16)

where « is the scaling factor. Any conductance that is beyond
the conductance range will be clipped to the endpoints.

Process variations and device limitations always lead to
conductance errors of memristive devices. The conductance
errors can be modeled as Gaussian random variables with
mean O and variance U,Qn [10], [11]. Therefore, the impact
of conductance errors is equivalent to applying perturbations
with variance 22—; to each element of the mapped matrix.

In this section, we propose two conductance mapping
schemes, one termed the statistical CSI-based (SCB) scheme,
the other termed the instantaneous CSI-based (ICB) scheme.

A. SCB Mapping Scheme

Our SCB scheme selects a fixed scaling factor based on
the statistical CSI. Specifically, to map a matrix U onto
conductance matrices, the SCB scheme calculates the scaling

factor by:
w

 Bou’

where [ is the scaling parameter of the SCB scheme and o, is
the standard deviation of the elements of the mapped matrix.

The proposed detector circuit maps G onto conductance
matrices. For G, o, = 04. The conventional detector circuit
maps H onto conductance matrices. For H,

a a7

(18)

Oy —

B. ICB Mapping Scheme

Our ICB scheme calculates the scaling factor according to:

w
Q= ——a, (19)
max{|u; ;| }
to map U onto conductance matrices. Clearly, with this scaling
factor, no element of U will be clipped. Unlike the SCB
scheme, the ICB scheme requires to recalculate the scaling
factor with each change of instantaneous channel matrix.



C. Discussion

When dealing with a matrix whose elements follow differ-
ent probability distributions, it becomes challenging to select
an appropriate scaling parameter [ for the SCB mapping
scheme. This is because a small scaling parameter leads
to a large scaling factor «, which is likely to result in a
substantial probability of the elements with larger variance
being clipped, while a large scaling parameter brings about
significant perturbations caused by conductance errors, and
the perturbations are particularly severe to the elements with
smaller variance. As for the ICB mapping scheme, its scaling
parameter is usually decided by the elements with larger
variance. Similarly, the perturbations caused by conductance
errors are particularly severe to the elements with smaller
variance. Evidently, the larger the variance disparity among
the different elements of the mapped matrix, the more signif-
icant the aforementioned effects become, and the severer the
perturbations caused by conductance errors.

For the proposed detector circuit, the elements of the
mapped matrix G follow the same distribution. In practical
scenarios, UTs in a cell always have different distances to the
BS, leading to the distinct LSFCs of different UTs. Thus the
elements within different columns of the channel matrix H
follow the probability distributions with different variances.
Clearly, the conventional MCA-based detector circuit exhibits
a significant variance disparity of the elements of its mapped
matrix, which results in severe perturbations caused by con-
ductance errors. This is the reason why we decompose the
channel matrix into the product of the LSFC matrix and the
SSFC matrix, mapping them separately. It also indicates the
superiority of the proposed detector circuit compared to the
conventional MCA-based detector circuit.

V. SIMULATIONS

We consider a multi-user massive MIMO system with
4 UTs and 64 BS antennas, and 64 quadrature amplitude
modulation (QAM) is used in the simulation. The conductance
range of memristive devices is 0.1 ~ 30uS. The SPICE
simulations in this paper are conducted using LTspice®.

A. Computation Time

The computation time is an important performance metric
for MCA-based detector circuits and we measure it in terms
of the convergence time of the circuit. The most critical
influencing factor on convergence time is the gain-bandwidth
product (GBP) of OAs [12]. The transient results of output
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Fig. 2. Transient results of output voltages of (a) the proposed detector circuit,
and (b) the conventional MCA-based detector circuit.
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Fig. 3. BERs of the proposed detector circuit when o, = 0 and adopting
the SCB scheme.
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Fig. 4. BERs of the proposed detector circuit, given oy, = 1%w.

voltages of the proposed and conventional MCA-based de-
tector circuits are illustrated in Fig. 2, where the OAs have
a GBP of 500 MHz. The proposed circuit exhibits almost
identical computation time to that of the conventional MCA-
based detector circuit. The computation time of the proposed
detector circuit is typically about 80ns, and it can be further
reduced by increasing the GBP of OAs.

B. Detection Performance

Simulation results indicate that there is no significant differ-
ence between the detection performances of ZF and MMSE
algorithms in the considered scenario. Therefore we do not
distinguish between the ZF and MMSE in the figures.

In Fig. 3, we compare the bit error rate (BER) perfor-
mances of the proposed detector circuit adopting the SCB
scheme under different scaling parameters, given o, = 0,
using the digital approach as the benchmark. For the SCB
mapping scheme, the larger the scaling parameter, the fewer
elements are clipped, and the lower the BER is, i.e., the closer
the performance of the proposed detector circuit to digital
approach. Specifically, the scaling parameter needs to be at
least 3.0 for the proposed detector circuit to ensure satis-
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factory performance. While the presence of clipped elements
increases the BER of the proposed detector circuit, its impact
is observable only in high signal-to-noise ratio (SNR). In
low SNR, the AWGN remains the primary factor constraining
detection performance. Even in the absence of AWGN, clipped
elements still cause detection errors, and the BER may exhibit
the error floor as the SNR increases.

Fig. 4 depicts the BER performances of the proposed detec-
tor circuit, given o, = 1%w. Simulation results indicate that
a larger value of scaling parameter no longer signifies a lower
BER. This is due to the fact that a larger scaling parameter
implies severer perturbations caused by conductance errors.

To gain further insight into the relationship between the
BER and the scaling parameter 3, we exam the BERs as the
functions of the scaling parameter for the proposed detector
circuit in Fig. 5, given different conductance error levels with
an SNR of 15dB. Simulation results reveal that the BER
of the proposed detector circuit adopting the SCB scheme
first decreases and then increases as the scaling parameter
increases in the presence of conductance errors, because
the primary factor constraining detection performance shifts

108 102

102 1103

Power consumption (mW)
RAPC

—&— power consumption (proposed MCA-based circuit)
power consumption (conventional MCA-based circuit)
—#*— RAPC of the proposed circuit
10! | | | | | | 104
10 20 30 40 50 60
K

Fig. 7. Power consumption results of the proposed and conventional MCA-
based detector circuits, as well as the RAPC results of the proposed circuit,
as the functions of the number of UTs, K.

from the clipped elements to the perturbations caused by
conductance errors as /3 increases. As expected, the higher the
conductance error level, the higher the BER of the detector
circuit, regardless whether the SCB scheme or the ICB scheme
is adopted. When the conductance error level is low, the BER
of the detector circuit adopting the SCB scheme consistently
remains higher than that of the ICB scheme. However, when
the conductance error level is high, the BER of the detector
circuit adopting the ICB scheme is higher than the achievable
minimum BER of the SCB scheme.

After investigating the impacts of conductance mapping
scheme and conductance errors on detection performance,
we demonstrate the performance advantage of the proposed
detector circuit over the conventional MCA-based detector
circuit. We consider a massive MIMO cell with randomly
distributed UTs. The radius of the cell is 150m, the uplink
carrier frequency is 2 GHz and the bandwidth is 25 MHz. The
transmitting power of a UT is 20dBm. Fig. 6 compares the
BER results of the proposed and conventional MCA-based
detector circuits as the functions of the scaling parameter,
given ¢, = 0.5%w. The results demonstrate that compared
to the conventional MCA-based detector circuit, the proposed
detector circuit consistently exhibits a significantly lower
BER, for both the ICB scheme and SCB scheme.

C. Power Consumption, Computing Performance and Energy
Efficiency

In this experiment, we consider the OA whose static power
dissipation is 12 W and GBP is 500MHz [13]. We use
current-based digital-to-analog converters (DACs) of [14] to
provide input currents for the MCA-based detector circuits.
The analog-to-digital converters (ADCs) of [15] are used to
measure the output voltages.

The proposed circuit incorporates additional 2K amplifier
circuits compared to the conventional MCA-based detector
circuit. Fig. 7 depicts the power consumption results of the
proposed and conventional MCA-based detector circuits as
the functions of the number of UTs, K. Meanwhile, Fig. 7



102 oy 102

A
ot
—v
£ 0 =
10 10
o
51 o
g £
=) >
Q
£ 100 100 5
2 2
2 — . “5
g —6— proposed circuit (computing performance) Z
E“ . — B —conventional circuit (computing performance) , g
S 10 _|—*—GPU (computing performance) _; 107 @
T —%— proposed circuit (energy efficiency)
conventional circuit (energy efficiency)
—#— GPU (energy efficiency)
1 0.2 L L L L L L 1 0-2
10 20 30 40 50 60
K
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and conventional MCA-based detector circuits as the functions of the number
of UTs, K, using the commercial GPU NVIDIA QUADRO GVI100 as the
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depicts the relative additional power consumption (RAPC) of
the proposed circuit compared to the conventional MCA-based
detector circuit. The RAPC of the proposed circuit is less than
0.6%, which means the additional amplifier circuits of the
proposed circuit do not result in significant additional power
consumption.

We use the ratio of the number of equivalent floating-point
operations (FLOPs) to the computation time of an MCA-
based detector circuit as a metric to gauge its computing
performance, in which a FLOP is assumed to be either a real
multiplication or a real summation. Besides, we use the ratio
of the equivalent FLOP number of an MCA-based detector
circuit to the energy consumed during its computation time
as a metric to gauge its energy efficiency. The two metrics
are measured in tera-FLOPs per second (TOPS) and TOPS/W,
respectively.

Fig. 8 depicts the computing performance and energy effi-
ciency results of the proposed and conventional MCA-based
detector circuits, using the commercial graphic processing
unit (GPU) NVIDIA QUADRO GV100 [16] as the benchmark.
There is no significant difference in computing performance
and energy efficiency between the proposed and conventional
MCA-based detector circuits. The higher the number of UTs,
the higher the dimensions of computed matrices, but the
higher the computing performance and the energy efficiency
of the MCA-based detector circuits. The MCA-based detector
circuits exhibit computing performance advantages over the
commercial GPU only when K is relatively large, but their
energy efficiency surpasses the GPU by several orders of
magnitude.

VI. CONCLUSIONS

We have proposed a novel MCA-based circuit design for
massive MIMO ZF and MMSE detectors. The proposed
detector circuit employs an MCA-based matrix computing
module and OA-based amplifier circuits to separately deal
with the SSFC matrix and the LSFC matrix, significantly

reducing the perturbations caused by conductance errors. We
have presented two conductance mapping schemes for the
MCA-based detector circuits, one termed the SCB scheme and
the other termed the ICB scheme. We have investigated the
impacts of mapping scheme and conductance errors on detec-
tion performance of the proposed detector circuit and have
demonstrated the significant performance advantage of our
proposed detector circuit over the conventional MCA-based
detector circuit. Although the proposed circuit incorporates
additional amplifier circuits compared to the conventional
MCA-based detector circuit, the additional amplifier circuits
do not result in observable additional power consumption. The
energy efficiency of the proposed circuit is tens to hundreds of
times that of the commercial GPU NVIDIA QUADRO GV100.
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