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Abstract—In massive multiple-input multiple-output (MIMO) systems,
how to reliably acquire downlink channel state information (CSI) with
low overhead is challenging. In this work, by integrating the generative
pre-trained Transformer (GPT) with federated-tuning, we propose a CSI-
GPT approach to realize efficient downlink CSI acquisition. Specifically,
we first propose a Swin Transformer-based channel acquisition network
(SWTCAN) to acquire downlink CSI, where pilot signals, downlink channel
estimation, and uplink CSI feedback are jointly designed. Furthermore,
to solve the problem of insufficient training data, we propose a varia-
tional auto-encoder-based channel sample generator (VAE-CSG), which
can generate sufficient CSI samples based on a limited number of high-
quality CSI data obtained from the current cell. The CSI dataset generated
from VAE-CSG will be used for pre-training SWTCAN. To fine-tune the
pre-trained SWTCAN for improved performance, we propose an online
federated-tuning method, where only a small amount of SWTCAN param-
eters are unfrozen and updated using over-the-air computation, avoiding
the high communication overhead caused by aggregating the complete CSI
samples from user equipment (UEs) to the BS for centralized fine-tuning.
Simulation results verify the advantages of the proposed SWTCAN and the
communication efficiency of the proposed federated-tuning method.

Index Terms—Channel estimation, CSI feedback, federated learning,
generative AI, massive MIMO, swin transformer.
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I. INTRODUCTION

In massive multiple-input multiple-output (MIMO) systems, accu-
rate downlink channel state information (CSI) is crucial for beamform-
ing and resource allocation. However, in frequency division duplexing
(FDD) systems, accurate estimation and feedback of downlink CSI with
low pilot/feedback overhead is challenging, due to the high-dimensional
CSI caused by the large number of antennas at the base station (BS)
and the non-reciprocity between uplink and downlink channels [1], [2],
[3], [4].

As the channel gains associated with different antennas are corre-
lated, the massive MIMO CSI matrix has the inherent redundancy,
which can be exploited to reduce the CSI acquisition overhead [5],
[6], [7], [8]. Due to its powerful capabilities of feature perception and
extraction, deep learning (DL) has been widely used to process CSI in
massive MIMO systems for various tasks. The authors of [9] proposed a
DL-based joint pilot design and channel estimation scheme, where the
fully connected (FC) layer and the convolutional neural network (CNN)
are used to design the pilot signal and estimate the CSI, respectively.
The authors of [10] made improvements to [9] by designing pilot signals
on different subcarriers differently to further reduce the pilot overhead.
As for CSI feedback, the seminal work [11] proposed an autoencoder
(AE)-based end-to-end (E2E) optimization framework, and the authors
of [12] improved CSI feedback performance by introducing receptive
fields of different sizes for CSI feature extraction. To improve the
deployability of CSI feedback, the authors in [13] proposed a scheme
in which the length of the feedback codeword is variable with the
sparsity of the channels. The authors in [14] proposed a scheme based on
knowledge distillation. Both schemes largely reduce the complexity of
the network that needs to be deployed. In addition, the latest information
about the application of DL in CSI feedback and the comparison can
be obtained from [15].

More recently, as reported in [16], [17], joint design of pilot signals,
downlink CE and CSI feedback using DL can further improve the
downlink CSI acquisition performance. Another approach to improve
the performance is to exploit more advanced neural network (NN)
architectures. The authors of [18] investigated the application of Trans-
fomer architecture in various massive MIMO processing tasks, which
consistently shows advantages over CNN-based algorithms. With the
development of NN architectures, variants of Transformer, e.g., Swin
Transformer, have shown better feature capture capability in image
processing tasks [19], which is another blessing of DL-based massive
MIMO signal processing.

The current DL models [9], [10], [11], [12], [16], [17], [18] need a
large amount of high-quality CSI samples for training, which can be
obtained from actual measurements or generated from classical channel
models, e.g., COST 2100 and clustered delay line (CDL) channel [20].
However, it is either difficult or communication-inefficient to obtain a
large number of actual CSI samples in various practical scenarios [21],
and it may degrade the NN performance if the features of training
dataset and test dataset are not consistent. To overcome this issue, the
generative adversarial network (GAN) is employed in [21] to generate
CSI training datasets based on only a small amount of CSI measure-
ments. Another promising solution [22] is to use federated learning
(FL) to avoid collecting high-dimensional actual CSI samples, thereby
reducing the communication overhead considerably. By exploiting
gradient compression and over-the-air computation (AirComp), the
authors of [23] proposed a communication-efficient FL framework
for image classification tasks. The authors further proposed a massive
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Fig. 1. Structure of the proposed SWTCAN.

digital AirComp scheme that are compatible with the current wireless
networks in [24]. To tune a large NN model, e.g., Transformer, in a
communication-efficient manner, the authors of [25] utilized FL to
fine-tune part of the parameters of a pre-trained Transformer model.
The authors of [26], [27], [28] showed the potential of FL-based CE
and/or CSI feedback for massive MIMO systems. They also showed that
users’ data privacy can be protected by using FL. However, whether FL
is more communication-efficient than conventional centralized learning
(CL) that requires the feedback of CSI samples from user equipment
(UEs) to BS remains unexplored.

In this paper, by integrating the generative pre-trained Transformer
(GPT) with federated-tuning, we propose a CSI-GPT approach to
realize efficient downlink CSI acquisition. Our main contributions can
be summarized as follows.
� We propose a Swin Transformer-based channel acquisition net-

work (SWTCAN) as shown in Fig. 1 to acquire downlink CSI with
lower pilot/feedback overhead, where downlink pilot signal, CE
and CSI feedback are jointly designed. Our SWTCAN not only
retains the extraction capability of the conventional Transformer-
based approach [18] but also overcomes its weakness in multi-
scale feature extraction. Consequently, lower pilot and feedback
overhead can be achieved.

� We propose a variational AE-based channel sample generator
(VAE-CSG), which can effectively solve the problem of insuffi-
cient high-quality CSI samples. Since channel features in different
cells vary dramatically, to maximize the potential of SWTCAN,
its training at different BSs should rely on large numbers of
CSI samples of the respective cells. However, the number of
high-quality CSI samples from the current cell is usually limited.
We propose a pre-trained strategy by pre-training VAE-CSG
using a large number of CSI samples that typically have different
features from those of the current cell. Subsequently, we fine-tune
VAE-CSG using a limited number of high-quality CSI samples
from the current cell. The fine-tuned VAE-CSG then generates a
large number of CSI samples for pre-training SWTCAN.

� Finally, to fine-tune the pre-trained SWTCAN for improved
performance, we propose an online federated-tuning method.
Only a small amount of SWTCAN parameters (around 11%) are
unfrozen and updated using AirComp, avoiding the high commu-
nication overhead caused by aggregating the CSI samples from
UEs to the BS for centralized fine-tuning.The simulation results
demonstrate that in typical cases, the proposed federated-tuning

method can reduce uplink communication overhead by up to
34.8% compared to the traditional CL method.

Notation: Boldface lower and upper-case symbols denote column
vectors and matrices, respectively. Superscripts (·)T and (·)H denote
the transpose and conjugate transpose operators, respectively. p(x | y)
is the conditional distribution of x given y. N (x;μ,Σ) means x
following a Gaussian distribution with mean μ and covariance matrix
Σ. ‖A‖F and [A]m,n denote the Frobenius norm and the m-th row
and n-th column element of the matrix A, respectively. ‖x‖p, [x]m,
and |x|c denote the lp norm, the m-th element, and the cardinality of
the vector x, respectively. I is the identity matrix. 0 is a vector with all
the elements being 0.

II. PROPOSED SWIN TRANSFORMER-BASED DOWNLINK CSI
ACQUISITION SCHEME

A. System Model

We assume that the BS deploys a uniform planar array (UPA) with
NBS antennas to serve U single-antenna UEs in an FDD mode. Or-
thogonal frequency division multiplexing (OFDM) with P subcarriers
is considered. To realize the downlink CSI acquisition, the BS first
broadcasts the downlink pilot signal to the UEs, and then each UE
estimates the CSI and feeds it back to the BS. We focus on the CE and
feedback of a single UE, and its received signal yp∈C

M on the p-th
subcarrier in M successive time slots can be expressed as

yT
p = hT

p X+ nT
p , (1)

where X∈C
NBS×M is the transmit signal in M successive time slots,

hp∈C
NBS is the p-th subcarrier’s channel, and nT

p is complex additive
white Gaussian noise (AWGN) with zero mean and covariance matrix
σ2
nI. By stacking the received signals over all the subcarriers, the

received signal Y=[y1,y2, . . . ,yP ]
T∈C

P×M can be written as

Y = HsX+N, (2)

whereHs = [h1,h2, . . . ,hP ]
T∈C

P×NBS is the frequency-spatial do-
main channel matrix, and N = [n1,n2, . . . ,nP ]

T is the AWGN ma-
trix. Furthermore, we can obtain the frequency-angle domain channel
Ha∈C

P×NBS as [2]
Ha = HsF, (3)

whereF∈C
NBS×NBS a discrete Fourier transform (DFT) matrix. Due to

the angular-domain sparsity, each row of Ha is a sparse vector. Hence,
(2) can be rewritten as

Y = HaF
HX+N = HaX̃+N, (4)

where X̃ = FHX.

B. Pilot Design and CSI Acquisition

The structure of the proposed SWTCAN is shown in Fig. 1. We use
a linear layer without bias to model the pilot design. The received pilot
signal is passed through a linear layer, and its dimension is restored
to be the same as the channel. The core of the compressor consists
of 8 Swin Transformer blocks [29]. These blocks are responsible for
extracting high-dimensional features from the input signal, leveraging
a 96-dimensional embedding space. Each pair of Swin Transformer
blocks starts with LayerNorm, followed by shifted window multi-head
self-attention (SW-MSA) in the first block and window-based multi-
Head self-attention (W-MSA) in the second, both paired with multilayer
perceptron (MLPs) and residual connections. This structure captures
the local and global features of CSI effectively. The features passes
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through a linear layer with an activation function and form a codeword.
The compressed codeword is then quantized into B bits vector q by a
quantization layer. The entire CSI compressor can be expressed as

q = Q (f↓ (Y,θ↓)) ∈ R
B , (5)

where Q(·), f↓(·, ·), and θ↓ denote the quantization function, compres-
sion function and learnable neural network parameters in the compres-
sor, respectively.

The structure of the CSI reconstructor at the BS is similar to that of the
compressor. The received bit vector is transformed by a dequantization
layer and a linear layer to change the feature dimension, which is
then inputted to Swin Transformer blocks. Finally, the features are
up-sampled by a patch expanding layer to reconstruct the downlink
CSI Ĥa at the BS. The entire CSI reconstructor can be expressed as

Ĥa = f↑
(Q−1 (q) ,θ↑

)
, (6)

where f↑(., .), Q−1(·), and θ↑ denote the reconstruction function,
dequantization function and learnable neural network parameters, re-
spectively. By adopting the normalized mean squared error (NMSE)

L1=
‖Ĥa−Ha‖2

F

‖Ha‖2
F

as the loss function, we can perform E2E training on

the proposed SWTCAN.

III. GENERATIVE PRE-TRAINING AND FEDERATED-TUNING

FOR THE PROPOSED SWTCAN

Our proposed CSI-GPT framework integrates the proposed VAE-
CSG to pre-train SWTCAN with a small number of CSI samples from
the current cell. We also adopt a FL-based online fine-tuning to further
improve the performance of pre-trained SWTCAN, which has much
lower communication overhead than the CL scheme. The procedure of
CSI-GPT with federated-tuning is summarized in Algorithm 1.

A. Generative AI-Based Pre-Training

The proposed VAE-based generative network for generating CSI
samples, called VAE-CSG, pre-trains the SWTCAN so that it can
initially learn the generalized CSI features before fine-tuning it, which
helps the model to perform better in the subsequent task and accelerate
the convergence speed. As shown in line 1 of Algorithm 1, the BS
initially pre-trains the VAE-CSG using a large amount of CSI samples
generated by the channel simulator, and these samples typically have a
different channel distribution from the current cell. Then the VAE-CSG
is fine-tuned using a limited number of CSI samples from the current
cell, which are obtained from the uplink CE at a high signal-to-noise
ratio (SNR).1

The VAE-CSG comprises an encoder and a decoder, which are
jointly trained using an E2E method and only the decoder is utilized
for generating CSI samples. Denote the parameters of the encoder
and decoder of VAE-CSG as ψ and ω, respectively. The output of
the encoder, i.e., the latent variable, is denoted as z=fenc(Ha;ψ).
Similarly, the output of the decoder is denoted as fdec(z;ω). The
loss function of the VAE-CSG consists of two parts. The first part
is the reconstruction loss, ‖fdec(z;ω)−Ha‖2

F , which measures the
closeness of the VAE-CSG’s output to the original input. According
to [30], the second part measures the difference between the learned
distribution of latent variable z and the predefined prior distribution

1Although the reciprocity of uplink and downlink channels does not hold in
FDD, they usually have similar distributions and features. However, due to the
limited transmit power of UEs, the uplink SNR is usually low, and high-quality
uplink CSI samples at high SNR are limited.

Algorithm 1: Proposed CSI-GPT with Federated-Tuning.

1: BS pre-trains VAE-CSG with simulated CSI samples, and
fine-tunes VAE-CSG with limited CSI samples obtained in
current cell to generate more CSI samples.

2: BS pre-trains SWTCAN with data generated by VAE-CSG.
3: Initialize federated-tuning parameters m0 = 0, v0 = 0.
4: for t = 1, 2, . . . , T do
5: BS broadcasts θ̃t to all UEs.
6: for each UE u ∈ S in parallel do
7: Initialize local parameters θ̃

u,0
t = θ̃t.

8: Use SGD for local model updates, according to (9).
9: end for

10: Perform AirComp, according to (10).
11: BS updates the model parameter θ̃t+1, according to (11).
12: end for

p0(z)∼N (z;0, I). Let the learned distribution of z be pψ(z|Ha).
Using Kullback-Leibler (KL) divergence, the second part of the loss
is DKL(pψ(z|Ha)||p0(z)). Hence, the loss function of VAE-CSG is
expressed as

L2(ψ,ω) = ‖fdec(z,ω)−Ha‖2
F

+ l · DKL(pψ(z|Ha)||p0(z)), (7)

where l is a predefined hyper-parameter. The second term in (7)
enhances the diversity and quality of the generated CSI samples by
enforcing the encoder to produce a latent variable that closely matches
the standard Gaussian distribution. We use the data generated by VAE-
CSG to pre-train SWTCAN (line 2 in Algorithm 1). The performance
of pre-trained SWTCAN is suboptimal, since the CSI distributions used
in pre-training and testing in practical deployment are usually different.

B. Federated Learning-Based Online Fine-Tuning

To enhance the performance of the pre-trained SWTCAN, fine-
tuning is necessary. Adopting the CL strategy for fine-tuning would
require the BS to aggregate a large number of CSI samples from
UEs in the current cell, resulting in excessive uplink communication
overhead. The downlink CSI used for fine-tuning can be obtained by
the BS broadcasting the pilot signals, facilitating each UE to estimate
its own downlink CSI based on the pilot signals. To address the high
communication overhead and privacy issue caused by feeding these
CSI samples back to the BS, we utilize the communication-efficient
federated-tuning and AirComp to fine-tune the SWTCAN, while re-
ducing uplink communication costs and overhead.

1) Communication-Efficient Federated-Tuning: Uploading
the entire parameter set θ of SWTCAN for fine-tuning would result
in prohibitive uplink communication overhead. We opt to freeze the
majority parameters of SWTCAN and upload only a minority of the
entire parameters, denoted by θ̃. Hence, in federated-tuning, we solve
the optimization:

minθ̃∈Rd L1(θ̃) =
1
U

∑U

u=1
Lu

1 (θ̃), (8)

where d= |θ̃|c is the dimension of the learnable parameters and Lu
1 (θ̃)

is the NMSE loss function of the u-th UE.
2) AirComp for Efficient Federated-Tuning: To accelerate

federated-tuning convergence and minimize the uplink communication
rounds, we employ the federated AMSGrad with max stabilization
(FedAMS) [31] in conjunction with AirComp. The BS begins by
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initializing the SWTCAN model with pre-trained parameters. These
parameters have been pre-trained using a large dataset of CSI samples
generated by the VAE-CSG. In the t-th communication round, 1 ≤ t
≤ T , the BS broadcasts the learnable model parameter θ̃t to all UEs
(line 5 in Algorithm 1). Due to the heterogeneous user availability, only
a fraction of UEs, denoted as S , participates in the t-th communication

round. The u-th UE, ∀u∈S , initializes its parameters as θ̃
u,0
t = θ̃t,

and then minimizes its local loss function by conducting K local
training epochs with the local learning rate ηl through its local dataset
(lines 6–9). In the k-th local training epoch, 1 ≤ k ≤ K, learnable

parameters θ̃
u,k

t can be updated by stochastic gradient descent (SGD),
which is expressed as

θ̃
u,k

t = θ̃
u,k−1
t − ηl∇Lu

1 (θ̃
u,k−1
t ), (9)

where ∇ denotes the gradient operator. After K local training epochs,
instead of sending the entire model back to the BS, theu-th UE sends the

model difference Δθ̃
u

t = θ̃
u,K

t −θ̃u,0t to the BS, and the BS receives
the sum of the local model differences from multiple devices based on
AirComp (line 10 in Algorithm 1), which can be expressed as

δt =
1

|S|c
∑

u∈S
Δθ̃

u

t + n+, (10)

where n+∈R
d is the noise in the uplink aggregation process, δt

represents the noisy model difference, which is also treated as a pseudo
gradient to update the model at the BS. According to [31], the BS
updates the learnable parameters θ̃t+1 for the (t+1)-th round (line 11
in Algorithm 1) as

θ̃t+1 = θ̃t + η
mt√
vt

, (11)

where η is the global learning rate, mt is the momentum and vt is the
variance in the t-th round, which are updated by mt=β1mt−1+(1−
β1)δt and vt=max{vt−1+(1−β2)δ

2
t,vt−1} with the hyperparame-

ters β1 and β2.

IV. SIMULATION RESULTS

We use the Sionna library in Python to generate MIMO channel
realizations. The training and test datasets contain the same number of
various types of CDL channels, namely, CDL-A, CDL-B, and CDL-C,
where the CDL channel models are adopted from 3GPP standards [20].
The sizes of the training, validation, and test channel datasets are 6000,
2000, and 2000, respectively. The carrier frequency is 28 GHz, the
number of subcarriers isP =256 and the subcarrier spacing is 240 kHz.
The BS is equipped with the UPA of NBS=16 × 16=256 antennas,
with antenna space λc

2 , where λc is the signal wavelength. The delay
spread is 30 ns, and the downlink SNR is 20 dB.

A. Performance of Proposed SWTCAN

We compare the proposed SWTCAN with the following base-
lines. Baseline 1: The Transformer-based network for CE and CSI
feedback [18], denoted as ‘Transformer CE + Transformer Feed-
back’. Baseline 2: The multiple-measurement-vectors (MMV)-learned
approximate message passing (LAMP) algorithm [32] for CE and
the bit-level CsiNet scheme with an attention mechanism [33] or

Fig. 2. NMSE performance of different schemes versus the feedback overhead
B for CDL-B. (a) ρ = 8. (b) ρ = 16.

a Transformer-based network for CSI feedback, denoted as ‘MMV-
LAMP CE + CsiNet/Transformer Feedback’. Baseline 3: The perfect
downlink channel estimate and the bit-level CsiNet scheme with an
attention mechanism [33] or a Transformer-based network for CSI
feedback, denoted as ‘Perfect CE + CsiNet/Transformer Feedback’.
Baseline 4: The MMV-LAMP algorithm or a Transformer-based net-
work for CE and the perfect CSI feedback to the BS, denoted as
‘MMV-LAMP/Transformer CE + Perfect Feedback’.

Fig. 2 shows the NMSE performance achieved by different schemes
versus the feedback overhead B. Both the training and test datasets
are CDL-B channels. Fig. 2(a) indicates that at a compression ratio
ρ= NBS

M
=8, the main factor influencing the performance is the CSI

feedback scheme. Our SWTCAN demonstrates excellent performance
across all feedback bit numbers B, outperforming the baseline schemes
and approaching the performance of perfect CSI feedback at B=2048.
Fig. 2(b) shows that at a higher ρ=16, the CE algorithm also affects
the final performance. Simulations on CDL-A and CDL-C channels,
not showing due to space limits, also verify the same advantages of our
proposed SWTCAN.

In addition, we have analyzed the complexity of the proposed al-
gorithm and the baselines. The complexity of the proposed SWTCAN
mainly comes from W-MSA or SW-MSA layers, i.e., O(LPNBSC

2+
LW 2PNBSC) ≈ 1.4 × 107,where L is the number of layers in NN,
C is the number of channels of CSI, and W is the size of windows.
The complexity of Transformer mainly comes from self-attention lay-
ers, i.e., O(LP 2dmodel) ≈ 1.5 × 108, where dmodel is the dimension
of linear embedding in Transformer. The complexity of the MMV-
LAMP algorithm mainly comes from matrix multiplication opera-
tions, i.e., O(GMPN 2

BSI) ≈ 1.1 × 1010, where G is the oversampling
factor in redundant dictionary, I is the number of iterations. The
complexity of CsiNet mainly comes from convolutional layers, i.e.,
O(PNBSN

2
co

∑L
i=1 ni−1ni) ≈ 2.4 × 106, where Nco is the size of the

convolutional filters, ni−1 and ni are the numbers of input and output
feature maps of the i-th convolutional layer. The values of the above
parameters can be obtained from the open source code. It is evident that
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TABLE I
PRE-TRAINING TEST NMSE (DB) PERFORMANCE COMPARISON OF DIFFERENT

PRE-TRAINING SCHEMES UNDER THE CDL-B CHANNEL

the proposed SWTCAN exhibits lower complexity than the baselines
while maintaining good performance.

B. Performance of Proposed Generative Pre-Training

We evaluate the performance of generative pre-training on SWTCAN
at ρ=8 and B=512, 1024 and 2048 bits with the value of l in (7) set
to 0.00025. We assume that the BS has 6000 CDL-A CSI samples,
which are obtained from the channel model generator. But the true CSI
distribution in the BS’s cell follows a different CDL-B distribution. The
BS only has 120 high-quality CDL-B samples, which are obtained from
the uplink CE. We compare the proposed scheme and three benchmark
schemes for ablation study. Scheme A: We pre-train SWTCAN with
6000 CDL-A samples. Scheme B: We pre-train SWTCAN with 120
CDL-B samples. Scheme C: We pre-train SWTCAN with 6000 CDL-A
samples, fine-tune it with 120 CDL-B samples. Scheme D: We train
VAE-CSG with 120 CDL-B samples, and then use it to generate 6000
CSI samples to pre-train SWTCAN. By contrast, in the Proposed
scheme, we pre-train VAE-CSG with 6000 CDL-A samples, fine-tune
it with 120 CDL-B samples, and finally generate 6000 CSI samples
to pre-train SWTCAN. These four pre-training schemes are tested on
2000 CDL-B samples, and the pre-training test NMSEs are compared
in Table I. It can be seen that the proposed VAE-CSG outperforms the
other three benchmark schemes, demonstrating its effectiveness. Based
on the proposed pre-training strategy, the performance of SWTCAN at
ρ=8 and B=2048 bits reaches the NMSE of -9.3678 dB, which is
still a bit short of −15.7 dB shown in Fig. 2(a). Therefore, we use
federated-tuning to further improve the performance.

C. Performance of Proposed Federated-Tuning Method

In this ablation study, there areU=600 UEs, each havingNs
FL = 10

actual CSI samples. During each communication round of federated-
tuning, 10% of UEs, i.e., 60 UEs, are involved, and each UE conducts
K=2 local training epochs with the local training rate ηl=0.001 to
facilitate online fine-tuning of SWTCAN at ρ=8 and B=2048 bits.
The hyperparameters in (11) are set to η=1, β1 =0.9, and β2 =0.99
. We freeze the parameters of the SWTCAN except for the last two
layers 2 in the decoder. SNR is set to 20 dB for both downlink CE
and uplink AirComp. For federated-tuning, computation (updating the
trainable parameters θ̃) is done in the UE, and the model updates of
multiple UEs are transmitted using AirComp3. For CL, the BS collects
CSI samples via orthogonal transmission, and then updates the whole
model parameters θ. Note that |θ̃|c=3617280, |θ|c=32623524, hence
|θ̃|c ≈ 0.11|θ|c.

2Our study showed that freezing the last two layers of all Swin Transformer
Blocks (with 3,617,280 unfrozen parameters) resulted in a final performance
of −10.722 dB after 25 global epochs. Freezing only the last layer (2,509,299
unfrozen parameters) led to a performance of −10.299 dB, while freezing half
of the last layer (2,471,667 unfrozen parameters) achieved −10.202 dB. The
chosen freezing scheme strikes a balance between communication efficiency
and performance, which is verified in the simulations.

3Note that the uplink communication overhead can be further reduced using
gradient compression methods [23]. Due to space limitation, this point is not
discussed in this paper, which will be investigated in future.

TABLE II
CHARACTERIZATION OF COMMUNICATION OVERHEAD, COMPUTATION COST

AND COMPUTATION SPEED OF FEDERATED-TUNING AND CL SCHEMES

Fig. 3. Performance comparison of federated-tuning and CL schemes versus
the uplink communication overhead.

Table II characterizes the communication overhead, computation
cost and computation speed of the federated-tuning (one global epoch)
and the CL scheme (one CSI sample). For federated-tuning, com-
munication overhead during each global epoch is denoted as |θ̃|c,
representing the number of trainable parameters of SWTCAN. While,
the communication overhead of CL is calculated as 2PNBS for each
CSI sample. The computation cost is measured in FLOPs using the
torch-summary tool, where ζUE and ζBS represent the computation
cost in federated-tuning and CL, respectively. Computation speed, in
FLOPs/s, is indicated by κBS and κUE for the BS and UE, respectively,
where their ratio γ = κBS

κUE
reflects the computational power difference

between the BS and UEs.
For a fair comparison, later we will compare the NMSE performance

of the two schemes, given the same communication resources and the
same computation time. Here, we first calculate how many CSI samples
the BS can collect in CL, given a fixed communication resource.
Specifically, consider T0 global epochs of federated-tuning, within the
communication overhead is T0|θ̃|c. Using the same communication

resources, the BS in CL can collect Ns
CL=

T0 |θ̃|c
2PNBS

CSI samples for
central training. Furthermore, we calculate how many training epochs
CL can have, given a fixed computation time. In particular, given the
number of global epochs T0, the computation cost ζUE, the number of
local CSI samples Ns

FL, the number of local training epochs K, and the
computation speed κUE, the computation time of federated-tuning can

be calculated as τ=
T0N

s
FL

KζUE

κUE
. Within the same computation time

τ in CL, given the computation cost ζBS, the number of CSI samples
collected in the BS Ns

CL, and the computation speed in the BS κBS,
we can obtain the number of training epochs of CL as KCL=

τκBS
Ns

CL
ζBS

.

Although the BS is typically computationally more powerful than a
UE, i.e., γ > 1, our proposed federated-tuning method still shows
advantages due to the collaboration of multiple UEs.

Fig. 3 compares the NMSE of the proposed federated-tuning with
that of the CL scheme versus uplink communication overhead. It can
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be seen that our federated-tuning method exhibits superior NMSE
performance compared to the CL scheme under the same computation
time and the same uplink communication overhead. Specifically, to
achieve an equivalent NMSE performance in the same computation
time, compared to the CL scheme with γ=16 (this situation is pos-
sible, e.g., a Nvidia 3090Ti graphics card with a computing power of
41.6 TFLOPs on the BS and an iPad Air with a computing power of
2.6 TFLOPs on the M1 chip of the UE), our proposed algorithm reduces
uplink communication overhead by up to 34.8%. For the CL scheme,
as the ratio of computational speed γ increases, the number of training
epochs that BS can conduct also increase given the same computation
time, resulting in improved performance.

V. CONCLUSION

We have proposed a Swin Transformer-based CSI acquisition net-
work called SWTCAN to jointly design the pilot, CSI compression and
CSI reconstruction. In order to solve the training data scarcity problem
as the actual CSI samples are difficult to measure, we have designed
the VAE-CSG to generate CSI samples for pre-training SWTCAN. The
combination of VAE-CSG and SWTCAN constitutes the downlink CSI
acquisition network based on a generative pre-trained Transformer at
the BS. To further enhance the performance of the pre-trained SWT-
CAN, we have utilized the communication-efficient federated-tuning
and AirComp to fine-tune the SWTCAN, while substantially reducing
uplink communication overhead. Simulations have demonstrated that
our proposed SWTCAN has better performance compared to the state-
of-the-art schemes, and have verified the communication efficiency
of the proposed federated-tuning method. However, DL methods still
impose high complexity and memory requirements on UEs and the
implementation of AirComp introduces practical issues that require
future efforts.
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