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Unsupervised Transfer Aided Lifelong Regression for
Learning New Tasks Without Target Output
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Abstract—As an emerging learning paradigm, lifelong learning
solves multiple consecutive tasks based upon previously accumu-
lated knowledge. When facing with a new task, existing lifelong
learning approaches need both input and desired output data to
construct task models before knowledge transfer can succeed. How-
ever, labeling each task requires extensive labors and time, which
can be prohibitive for real-world lifelong regression problems. To
reduce this burden, we propose to incorporate unsupervised feature
into lifelong regression via coupled dictionary learning, enabling to
learn new tasks without target output data. Specifically, the input
data for each task is encoded as unsupervised feature while both
input and output data are used to construct task predictor. The
unsupervised feature is linked with task predictor through two dic-
tionaries that are coupled by a joint sparse representation. Because
of the learned coupling between the two spaces, the task predictor
for the new coming task can be recovered given only the input data.
We further incorporate active task selection into this framework,
enabling actively choosing tasks to learn in a task-efficient manner.
Three case studies are used to evaluate the effectiveness of our
method, in comparison with existing lifelong learning approaches.
Results show that our method is able to accurately predict new
tasks through unsupervised transfer, eliminating the need to label
tasks before constructing the predictor.

Index Terms—Lifelong regression, unsupervised feature,
coupled dictionary learning, knowledge transfer, active task selec-
tion.

I. INTRODUCTION

TRANSFER learning and multi-task learning methods re-
duce the amount of experience needed to learn individual

tasks by reusing knowledge from other related tasks [1], [2]. This
knowledge transfer significantly improves learning efficiency
and modeling performance, as compared to learning tasks in
isolation following the traditional machine learning paradigm.
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Transfer learning methods transfer knowledge from source tasks
to help learning new task [3], [4], [5], [6], which however fail
to optimize the performance over all the tasks, while multi-task
learning methods jointly learn all the observed tasks by sharing
knowledge [7], [8], [9], [10], [11], but they cannot learn new
unseen task.

To combat both limitations of transfer learning and multi-task
learning, lifelong learning as a new research paradigm, was
proposed to learn consecutive new task based upon previously
built knowledge as well as to automatically update the past
knowledge accumulated from the past encountered tasks upon
the learning of the new task [12]. This technique is particularly
suitable to solve some scenarios with multiple consecutive
tasks over long-time scales [13], [14], [15], [16], [17], such as
applications of sentiment classification, robotic control, natural
language processing and diseases modeling [12]. It is widely
understood that a fundamental principle for better learning
is to incorporate available prior knowledge in the learning
process [18], [19], [20]. Anything learned from a previous
learning task can be regarded as a piece of knowledge, and this
knowledge can be reserved to help future learning. This is the
core idea of lifelong learning. More specifically, lifelong learn-
ing maintains a knowledge base which stores the knowledge
learned in the previous learning tasks. When learning a new task,
the knowledge accumulated provides available prior knowledge
for the current learning task. New knowledge acquired in the
current learning process is then used to update the knowledge
base. For example, a student who has never studied psychology
before wants to study it. This can be regarded as a new task.
The student has the past education of learning philosophy,
literature, and other subjects. Knowledge the student gained in
these past learning tasks are stored in the student’s knowledge
base, i.e., the student’s brain, and these ‘prior’ knowledge can
help the student in learning the new subject psychology. New
knowledge that the student will gain in studying psychology in
turn will enhance the student’s knowledge base. It can be seen
that lifelong learning imitates human learning.

Among lifelong learning community, the efficient lifelong
learning algorithm (ELLA) framework is one of the most pop-
ular approaches [21], [22]. The ELLA factorizes learned task
models into a shared latent dictionary as the knowledge base to
facilitate knowledge transfer as tasks arrive consecutively. When
new task arrives, the ELLA transfers knowledge through the
shared dictionary to learn new model, and refines the dictionary
with the knowledge learned from current task. By updating the
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dictionary over time, newly acquired knowledge is incorporated
into the knowledge base, thereby improving previously learned
models’ performance. The ELLA framework was first created
for regression and classification, and it was later developed for
policy gradient reinforcement learning (PG-ELLA) [23], [24],
[25], [26], [27]. By replacing the task model with policy, the
PG-ELLA enables to learn decision making tasks consecutively,
transferring knowledge to accelerate learning new policy. The
work of [28] further extended ELLA from a single agent to a
network of agents, and proposed the collective lifelong learning
algorithm to enable sharing knowledge in a distributed manner
for multiple agents. Different from ELLA, another typical life-
long learning model is deep neural network, where catastrophic
forgetting is the key issue in its continuous learning process. In-
spired by synaptic consolidation in human brains, elastic weight
consolidation (EWC) was proposed to combat the catastrophic
forgetting problem in deep networks by restricting the change
of important neural network weights of previous tasks when
learning new task [29]. The EWC has been successfully applied
to object detection [30], neural machine translation [31], image
generation [32], and so on.

One notable issue is that lifelong learning in the above
problem setting is a passive process, in which the leaner must
learn every encountering task and it also has no control over
the learning order for tasks. In some situations, the agent may
have a pool of candidate tasks to learn, and it can intelligently
choose the next task to learn in order to maximize the overall
performance. With this goal, the work [33] incorporates active
curriculum selection strategy into ELLA, enabling the learner to
choose tasks in certain order so as to maximize future learning
performance using as few tasks as possible. The authors of [33]
proposed several active task selection mechanisms for selecting
the next best task, and demonstrated that the diversity heuristic
method (ELLA-diver) has superior efficiency to build knowl-
edge library over other methods. Considering a different active
task selection, the work [34] integrates outlier detection into
lifelong learning so as to selectively learn the next task based
on the tasks’ importance. By either choosing tasks in certain
order or selectively choosing important tasks to learn, both these
methods learn in a task-efficient manner, which is particularly
important when dealing with massive tasks.

While above lifelong learning methods demonstrate outstand-
ing performance in many applications, one important prelimi-
nary need is to gather sufficient both input and desired output
data for the new coming task and characterize task relationships.
For lifelong regression problems, desired output is also referred
to as target output. When new task arrives, the learner requires
sufficient training data of both input and target output to identify
task relationships before bootstrapping a model via transfer. This
need for desired output data imposes a serious challenge for
practical lifelong regression problems, as persistent manual data
annotation for every new coming task is time-consuming and
economically costly, and often the leaner is expected to learn
new task rapidly without the delay to wait for labeling task. To
overcome this restriction, one famous early work of [35] incor-
porates high-level task descriptors into lifelong reinforcement
learning (TaDeLL), and use both task descriptors and training
data to model inter-task relationships. The results of [35] show

that using task descriptors improves the performance of learned
policies, and moreover, it enables predicting policy for new task
without training data via zero-shot transfer given only task de-
scriptors. TaDeLL was further extended for regression problem
in [36], where task model can be predicted given only descriptors
for new task. This ‘learning without training data’ seems very
appealing. But the fact is that TaDeLL requires domain-specific
task descriptors that must characterize the underlying dynamics
of data in individual tasks well. For instance, the work [36] used
the engineering system’s basic parameters, such as length, mass,
damping constant, etc., as task descriptors for the engineering
system considered, because these parameters define the system’s
underlying dynamics and have a close relation to the data char-
acteristics. However, for most real-world tasks, seeking such
appropriate and unified descriptors to identify different tasks
requires in-depth cross-domain knowledge, which is generally
impossible to achieve. Moreover, inaccurate task descriptors will
lead to wrong task model and degrade the achievable learning
performance considerably. Hence, TaDell is not generally appli-
cable to many applications.

Consequently, to our best knowledge, how to efficiently utilize
large amount of unlabeled data in characterizing and learning
each consecutive task with improved performance is an impor-
tant challenge for the lifelong learning community. This moti-
vates our current work to develop an effective lifelong regression
model that enables to learn new task without target output data,
thus reducing the burden for labeling every coming task. We
explore the use of input data to achieve unsupervised transfer for
learning new task without desired output. Our approach to incor-
porate input information into lifelong regression is general, as it
does not need domain-specific task descriptors that require hu-
man expert. Instead, we encode input data as feature vectors that
identify each task and treat these unsupervised features as side
information to augment task predictor on the individual tasks.
Similar to [35], [36], [37], we use coupled dictionary learning
to link the unsupervised feature space with the task predictor’s
parameter space, where the two spaces are linked through the two
dictionaries that are coupled by the same sparse coding. Because
of the learned coupling between the two spaces, the unsupervised
features act as backup to the task predictor, enabling the learner
to accurately construct predictors for the unseen tasks given only
their unsupervised features. This capacity is very important in
the online setting of lifelong regression process. It enables the
agent to rapidly learn new tasks through unsupervised transfer
from the previously learned tasks, without the need to first label
the future tasks for collecting the target output data. To make
our lifelong model learns in a task-efficient manner, we further
incorporate active task selection into this framework. Three case
studies, 1) school examination score prediction, 2) Parkinson
disease symptom score prediction, and 3) Alzheimer disease
progression modeling, are used to demonstrate the effectiveness
of the proposed scheme, in comparison with existing lifelong
learning approaches. Extensive experiments demonstrate that
our method can accurately predict the new task using only input
data via unsupervised transfer.

Notably, it should be emphasize that our proposed unsuper-
vised transfer aided lifelong learning differs from the unsu-
pervised transfer learning or domain adaptation. The goal of
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TABLE I
COMPARISON OF VARIOUS LEARNING PARADIGMS

unsupervised domain adaptation is to train a single model for
a target domain or task with unlabeled data by transferring
knowledge from a source task in which desired output data is
accessible [38], [39], [40]. These methods usually consider only
a single target task, and they fail to learn in a lifelong setting
where multiple tasks are acquired sequentially over long-time
scales. Unlike the traditional unsupervised domain adaptation
methods that are only restricted to single-source single-target,
the recently emerged multi-target domain adaptation are able
to deal with multiple domains [41], [42], [43], [44]. But they
still fail to learn in a continual manner. Another related learning
paradigm is continual learning [45]. The continual learning aims
to address the catastrophic forgetting problem in which the
model is likely to forget the past learned tasks when encountering
new tasks. Existing continual learning methods use either model
regularization or experience replay to tackle catastrophic forget-
ting [29], [46]. By incorporating continual learning mechanism
into unsupervised domain adaptation, the recent continual do-
main adaptation is most similar to our problem setting. In contin-
ual domain adaptation, the unlabeled or labeled target task data
are received in streaming batches, and the model is continuously
adapted with each batch of target data [47], [48], [49], [50], [51].
Note that the continual domain adaptation aims to learn adap-
tively to deal with domain shift when encountering new unseen
tasks. By contrast, our method enables to learn new task adap-
tively while in the meantime optimize the performance of overall
encountered tasks by updating the accumulated knowledge. A
comparison of various learning paradigms is tabulated in Table I.
Moreover, the continual domain adaptation methods only focus
on object recognition or classification, and they are not applica-
ble for regression learning [47], [48]. Although the existing life-
long learning approaches, such as ELLA [22] and TaDeLL [36]
can be used for regression problem, they fail to learn and predict
new consecutive tasks using solely unannotated data.

It is worth recapping that although TaDell [36] is the most
similar to our method, its capacity of learning without data
heavily depends on finding an appropriate task descriptor. As
aforementioned, seeking such appropriate task descriptors typ-
ically requires in-depth expert knowledge, which are generally
unavailable for most real-world applications. By contrast, our
method is immune to this restriction, and it only requires unla-
beled data that is easily to obtain for new tasks. Our method can
be considered as an improvement over existing lifelong learning
methods with the key idea of unsupervised transfer. Specifically,
this paper provides the following contributions:

1) Based on coupled dictionary learning, we incorporate un-
supervised features into lifelong learning that use a factor-
ized representation of the learned knowledge to facilitate
transfer and improve predictive performance.

2) Most importantly, we show that our proposed method is
able to accurately modeling and predict new consecutive
tasks using solely unannotated data through unsupervised
transfer.

3) The proposed scheme is integrated with active task selec-
tion mechanism, which enables further improving learning
efficiency when encountering massive tasks.

4) We analysis the method theoretically, and use three real-
world datasets to validate its effectiveness.

The rest of this paper is organized as follows. Section II
reviews the background on lifelong learning. Section III presents
the proposed unsupervised transfer aided lifelong regression
framework in detail. Section IV summarizes our proposed algo-
rithm with theoretical analysis. Section V evaluates the proposed
method with three case studies. Section V concludes the paper
with remarks about future works.

II. LIFELONG MACHINE LEARNING

A. Problem Definition

In the lifelong regression setting, the learner faces multi-
ple consecutive regression tasks {Z(1),Z(2), . . . ,Z(Tmax)}, and
must rapidly learn each new task by building upon its previ-
ous knowledge. Each regression task Z(t) = {f (t),x(t), y(t)}
is specified by a function mapping f (t) : x(t) �→ y(t) from the
input space x(t) ∈ Rd onto the output space y(t) ∈ R. At each
time step t, the agent receives a batch of nt labeled training data
(x

(t)
i , y

(t)
i )nt

i=1 for learning task t, where x
(t)
i and y

(t)
i denote

the ith training input sample and the associated desired output
sample, respectively, for task t.

Let T denote the number of tasks that the agent has en-
countered so far. Its goal is to consecutively construct a set
of task models or predictors {f̂ (1), . . . , f̂ (T )} such that each
f̂ (t) approximates f (t) to make accurate prediction on new
data, and new model f̂ (t) can be acquired efficiently when the
agent encountering new task t. Ideally, knowledge learned from
previous tasks {Z(1), . . . ,Z(T−1)} should accelerate training
and improve performance on new task Z(T ).

It can be seen that the lifelong learning is very different
from existing learning frameworks. In the traditional learning
framework, the learner has multiple batches of data generated by
the same underlying process, and therefore the learner may use
the multiple models identified from the previously encountered
multiple data batches to predict the new batch of data, using
for example, selective ensemble regression. Lifelong learning
represents a much more general learning setting. Every task
can represent a different batch of data, characterized by its
own task definition and associated underlying data generation
mechanism. Hence, it is necessary to construct a new task model
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for each coming new task, and the task data can be discarded after
learning of the new model. On the other hand, all the tasks share
some common characteristics or have the shared knowledge,
which can be exploited to facilitate faster and better learning of
the new task. This is the essence of the lifelong learning.

B. Efficient Lifelong Learning Algorithm

The ELLA [22] was developed to operate in this lifelong
learning setting. To be specific, the ELLA learns and maintains
a shared knowledge library L ∈ Rd×k, which forms a basis for
all task models and facilitates knowledge transfer between tasks.
For each task t, the ELLA learns a model f̂ (t)(x) = f̂(x;θ(t))
that is parametrized by a d-dimensional task-specific parameter
vector θ(t). This model parameter is a linear combination of
the columns of L using the sparse coefficients s(t) ∈ Rk as
θ(t) = Ls(t). The dictionary L stores chunks of knowledge that
are shared for all the tasks, and the sparse code s(t) extracts
the relevant pieces of knowledge for a particular task t. Hence,
this model parameter factorization enables effective knowledge
transfer among tasks.

Given the training data (x
(t)
i , y

(t)
i )nt

i=1 for each task t, the
ELLA minimizes the following objective function:

min
L,S

1

T

T∑
t=1

(
J

(
θ(t)

)
+ μ

∥∥s(t)∥∥
1

)
+ λ ‖L‖2F , (1)

where J (θ(t))= 1
nt

∑nt

i=1 J (y(t)i −f̂(x(t)
i ;Ls(t))) with J (•)

being a squared-loss function for regression problem ŷ
(t)
i =

f̂(x
(t)
i ;Ls(t)), S = [s(1) s(2) · · · s(T )] is the matrix consisting

of all the sparse coefficient vectors, and the L1 norm is used
to control the sparsity of s(t) with the regularization parameter
μ, while ‖ • ‖F is the Frobenius norm, which regularizes the
complexity of dictionary L with the regularization parameter
λ. This problem can be solved in a batch learning setting for
off-line multi-task learning framework [52].

To solve it in a lifelong learning setting, the ELLA tasks
a second-order Taylor expansion to approximate the objec-

tive around an estimate θ̂
(t)

= argminθ
1
nt

∑nt

i=1 J (θ(t)) =
1
nt

∑nt

i=1 J (y(t)i − f̂(x
(t)
i ;Ls(t))) of the single-task model pa-

rameters for each task, and updates only the coefficients s(t)

for the current task at each time step. This process reduces the
optimization (1) to the problem of sparse coding the single-task
modeling in the shared dictionary L, and enables solving L
and S efficiently by the following recursive updating rules that
constitute the ELLA:

s(t) = argmin
s

∥∥∥θ̂(t) −Ls
∥∥∥2
Υ(t)

+ μ ‖s‖1 , (2)

A = A+

(
s(t)

(
s(t)

)T
)
⊗Υ(t), (3)

b = b+ vec

[
s(t) ⊗

((
θ̂
(t)
)T

Υ(t)

)]
, (4)

L = L+mat

[(
1

T
A+ λI(kd)

)−1
1

T
b

]
d×k

, (5)

Fig. 1. Illustration of unsupervised transfer aided lifelong regression process.

where ‖v‖2A = vTAv, the elements of L are initialized by ran-

domly taking values from (0, 1), Υ(t) = Υ(θ̂
(t)
) is the Hessian

matrix of the loss J (θ̂(t)
), ⊗ denotes the Kronecker product,

andA ∈ R(kd)×(kd) is initialized to the all zero-elements matrix,
while b ∈ Rkd is initialized to the all zero-elements vector, the
vector stacking operator vec[•] stacks the columns of matrix
one by one to form a vector, I(kd) is the (kd)× (kd) identity
matrix, and the matrix forming operator mat[•]d×k converts a
(dk)-dimensional vector into a (d× k)-dimensional matrix.

Each time when new task t arrives, this method requires
the input-output data (x

(t)
i , y

(t)
i )nt

i=1 to first estimate the model

parameters θ̂
(t)

before updating s(t) and L. However, labeling
data for every upcoming task is time-consuming, and most of the
time we only have unlabeled or input data at the first glance of a
new task. In order to eliminate this need for desired output data,
in this paper, we propose to incorporate unsupervised feature
into the learning process, and hence to enable unsupervised
transfer on new tasks. Specifically, upon learning a few tasks
with complete input-output data, future task models can be
constructed given only input information.

III. UNSUPERVISED TRANSFER AIDED LIFELONG REGRESSION

A. Overview of Proposed Framework

For task t, define its training input data matrix X(t) ∈ Rd×nt

byX(t) = [x
(t)
1 x

(t)
2 · · ·x(t)

nt ] and the corresponding desired out-

put vector y(t) ∈ Rnt as y(t) = [y
(t)
1 y

(t)
2 · · · y(t)nt ]

T. As depicted
in Fig. 1, our proposed framework follows the lifelong learning
setting. During the agent’s lifetime, massive tasks are received
consecutively. As a new task arrives, knowledge accumulated
from the previous tasks is selectively transferred to learn the
new task, and newly acquired knowledge from the current task
is stored in the knowledge base for future use. In order to achieve
unsupervised knowledge transfer on new task, we incorporate
unsupervised feature into lifelong learning via sparse coding
with a coupled dictionary, enabling the unsupervised feature
and task predictor to augment each other. For each task with
complete training data, the task predictor is constructed by input
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and output data, while the unsupervised feature is encoded only
by input data. In order to link two feature spaces, we employ
two dictionaries that act as knowledge repositories for the two
spaces, and they are coupled by a joint sparse representation.
Because of the learned coupling, the predictor for a new task
can be reconstructed given only the unsupervised feature. This
capacity of learning new task predictors without desired output
eliminates the need to labeling new tasks in lifelong regression
process.

The above lifelong learning framework is a passive process,
in which the learner has no control over the order of the tasks
to learn. In some situations, the learner has knowledge of the
next several tasks that it needs to learn. Motivated by [33],
we further extend this framework to active lifelong regression
by incorporating a similar active task selection mechanism.
Hence, our model can choose the next task to learn from a
pool of candidate tasks in order to maximize future learning
performance. In the following, we will present each component
of our algorithm in details.

B. Task Predictor

Ideally, each task has complete training input and output data
(X(t),y(t)) that enables the construction of the task predictor
f̂(X;θ) = XTθ. We construct the task predictor by the reg-
ularized least square (LS) estimator and the model parameter
parameter is thus computed as

θ̂
(t)

=

(
X(t)

(
X(t)

)T

+ βId

)−1
X(t)y(t), (6)

where β is a small positive regularization parameters, e.g., β =
10−6. The Hessian Υ(t) of the squared-loss function J (θ(t))

around the single task solution θ̂
(t)

is given by

Υ(t) =
1

2nt

(
X(t)

(
X(t)

)T

+ βId

)
, (7)

For each task with complete training input and output data, we

first compute the predictor’s parameters θ̂
(t)

and Hessian Υ(t)

before performing knowledge transfer in learning process.

C. Unsupervised Feature

When new task t arrives, it is often easy to obtain unlabeled
or input data X(t) while target output data y(t) are difficult
to acquire quickly. Although input data itself cannot be used
to construct task predictor, it also contains vital information
that identifies each task. Our goal is to use the input data to
supplement the task predictor, treating it as a backup to learn
new task when output data is unavailable.

To incorporate input information into the learning procedure,
the input data matrixX(t) ∈ Rd×nt needs to be transformed into
a d-dimensional feature vector that can link with the predictor’s
parameter vector θ ∈ Rd. In order to link these two spaces,
therefore, we transform the original input data matrix X(t)

into the d-dimensional feature vector φ(X(t)), where φ(•) is
an operator that encodes a matrix as a vector. Express the ith
column ofX(t) asx(t)

i = [x
(t)
1,i x

(t)
2,i · · ·x(t)

d,i]
T. The simplest way

to achieve this encoding is to compute the mean value of each
row of X(t), yielding

φ(X(t)) =
[
x̄
(t)
1 x̄

(t)
2 · · · x̄(t)

d

]T
= x̄(t) ∈ Rd, (8)

where x̄
(t)
j = 1

nt

∑nt

i=1 xj,i, 1 ≤ j ≤ d. Hence, φ(X(t)) is the
unsupervised feature for task t. Our lifelong learner uses this fea-
ture vector to represent each task, treating it as side information
to augment task predictor for individual tasks.

D. Coupled Dictionary Optimization

After obtaining the predictor parameter vector θ̂
(t)

and the
unsupervised feature x̄(t) = φ(X(t)) for each task, the next step
is to link the two feature spaces, so that each can augment the
learning of the other. Motivated by [35], [36], we link the two
feature spaces through the dual dictionaries that are coupled by
a joint sparse representation. The original idea of using coupled
dictionary learning is to link the high-level task descriptions with
the learned model to achieve zero-shot transfer for new tasks.
We use the coupled dictionaries to link the task predictor’s space
with the unsupervised feature’ space, so as to make full use of
input information and achieve learning new task without output
data.

Recall that the lifelong learning approach factorizes the pre-
dictor parameters θ(t) for each task as a sparse linear combina-
tion of a shared dictionary by θ(t) = Ls(t), where each column
of the dictionary L represents a cohesive chunk of knowledge.
In lifelong learning, the dictionary L is refined overtime as the
model learns more tasks. The sparse coefficient vectorsS encode
the task predictors in the shared dictionary, providing an embed-
ding of the tasks based on how their predictors share knowledge.
Similar to this, the unsupervised feature vector x̄(t) can also be
linearly factorized using a shared dictionary K ∈ Rd×k over
the unsupervised feature’s space. Like L, this dictionary K
captures the relationships among the unsupervised features for
multiple tasks, with the coefficients that similarly embed tasks
based on the commonalities in their unsupervised features. In
order to link the two spaces, we enforce the two dictionaries, L
and K, to share the same sparse coefficient vectors S so as to
reconstruct both the predictors and the unsupervised features.
Hence, for task t,

θ(t) = Ls(t), x̄(t) = Ks(t). (9)

Because we enforce the two dictionaries with the same sparse
code s(t), the relevant pieces of information for a task predictor
are coupled with its associated unsupervised feature. To optimize
L and K, we first reformulate the objective (1) for the coupled
dictionaries as

min
L,K,S

1

T

T∑
t=1

(
J

(
θ(t)

)
+ ρ

∥∥x̄(t) −Ks(t)
∥∥2
2
+ μ

∥∥s(t)∥∥
1

)
+ λ

(‖L‖2F + ‖K‖2F
)
, (10)

where the parameter ρ balances the task predictor’s fit to the
unsupervised feature’s fit.
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To solve the optimization (10) in a lifelong setting, we ap-
proximate J (θ(t)) by a second-order Taylor expansion around

the regularized LS parameter estimate θ̂
(t)

given in (6). That is,

we expand J (θ(t)) around θ̂
(t)

for each task as

J
(
θ(t)

)
≈ J

(
θ̂
(t)
)
+ �J

(
θ̂
(t)
)(

θ(t) − θ̂
(t)
)

+
1

2

∥∥∥θ(t) − θ̂
(t)
∥∥∥2
Υ(t)

, (11)

where � denotes the gradient operator. The first term J (θ̂(t)
)

is a constant and can be omitted. Since θ(t) is the minimizer
of the objective J (θ(t)), �J (θ̂(t)

) is zero, and the second
term can also be removed. Thus, the loss function J (θ(t)) is
approximated by the last term of (11), which can be rewritten as

‖θ̂(t) −Ls(t)‖2
Υ(t) , givenθ(t) = Ls(t). With this approximated

J (θ(t)), the optimization (10) is simplified as

min
L,K,S

1

T

T∑
t=1

(∥∥∥θ̂(t) −Ls(t)
∥∥∥2
Υ(t)

+ ρ
∥∥∥x̄(t) −Ks(t)

∥∥∥2
2

+ μ
∥∥∥s(t)∥∥∥

1

)
+ λ

(‖L‖2F + ‖K‖2F
)
. (12)

Further defining

Θ(t) =

[
θ̂
(t)

x̄(t)

]
, H =

[
L

K

]
, Ψ(t) =

[
Υ(t) 0d×d
0d×d ρId

]
, (13)

where 0d×d is the d× d zero matrix, the optimization (12) can
be rewritten in a concise form as

min
H,S

1

T

T∑
t=1

(∥∥∥Θ(t) −Hs(t)
∥∥∥2
Ψ(t)

+ μ
∥∥∥s(t)∥∥∥

1

)
+ λ‖H‖2F.

(14)

This optimization has the identical form to (1), and it can be
solved efficiently in a lifelong setting. Specifically, similar to
the classic ELLA, we can solve the sparse vector s(t) given H
acquired at task (t− 1), and then updateH , i.e.,L andK, given
s(t). Obviously, given s(t), the two dictionaries L and K can
be updated independently.

When a task arrives, we perform three operations to up-
date our model, namely, compute s(t), update L and up-
date K. Specifically, the sparse vector s(t) is first computed
using the current basis H by solving the following L1-
regularized regression problem, which is an example of the
Lasso:

s(t) = argmin
s

∥∥∥Θ(t) −Hs(t)
∥∥∥2
Ψ(t)

+ μ
∥∥∥s(t)∥∥∥

1
. (15)

After s(t) is obtained, the two dictionaries, L and K, can be
calculated independently by the recursive updating (3) to (5). In
particular, to update the dictionary K, we simply replace Υ(t)

by ρId, θ̂
(t)

by x̄(t) and L by K in (3) to (5). The per-task
updating rules are given in Algorithm 1.

Remark 1 Solving the sparse coding by (15) is basically
learning new task with the previously built knowledge repository
H , that is, knowledge transfer from past learned tasks, while

Algorithm 1: Unsupervised Transfer Aided Lifelong Re-
gression.

1: Parameters: Size of dictionaries k, regularization
parameters μ and λ, balance coefficient ρ.

2: Initialize: Randomly initialize L and K, T = 0.
3: While some task is available do
4: Collect training input-output data {X(t),y(t)} from task

Z(t), set T = T + 1.
5: Construct task predictor, and compute model parameter

θ̂
(t)

and Hessian Υ(t) using (6) and (7), respectively.
6: Encode X(t) into feature vector x̄(t) using (8).
7: Construct matrices Θ(t), H , and Ψ(t) of (13).
8: Solve sparse coding s(t) by Lasso of (15).

9: L← updateL(L, s(t), θ̂
(t)
,Υ(t), λ) by (3)–(5).

10: K ← updateK(K, s(t), φ(X(t)), ρId, λ) by (3)–(5).
11: For: t ∈ {1, . . . , T} do: θ(t) = Ls(t)

12: End while

the adaptation of L and K is to retain knowledge from the
current task and refine the existing knowledge base. These two
operations form the core idea of lifelong learning.

E. Unsupervised Transfer Learning

In a lifelong setting, multiple consecutive tasks arrive rapidly
and it may have insufficient time to labeling every coming task,
and for tasks with only input data, it is unable to construct
predictor. Incorporating unsupervised feature however enables
our approach to construct a predictor for the new task with
only input data. This ability to perform unsupervised transfer is
enabled by the coupled dictionary learning, which allows us to
use unsupervised feature to recover task predictor through cou-
pled dictionaries and sparse coding. The unsupervised transfer
process for learning a new task using solely unlabeled data as
well as the previously learned libraries L and K is shown in
Fig. 2.

Given the input data X(tnew) for a new task, we first encode
X(tnew) as the feature vector x̄(tnew) = φ(X(tnew)), and then
estimate the sparse coding in the latent unsupervised feature
space via Lasso on the learned dictionary K

ŝ(tnew) = argmin
s

∥∥∥x̄(tnew) −Ks
∥∥∥2
2
+ μ ‖s‖1 . (16)

Since this estimated ŝ(tnew) also serves as the sparse coding
for the latent dictionary L, it can be used to recover the task
predictor for the new task tnew as

θ̂
(tnew)

= Lŝ(tnew). (17)

Hence, this new task predictor’s parameter θ̂
(tnew)

is obtained
only through the task’s input data X(tnew). This eliminates the
need to collect output data for model construction. This unsu-
pervised transfer learning procedure is given in Algorithm 2.
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Fig. 2. Illustration of task predictor recovery using solely unlabeled data by
unsupervised transfer.

Algorithm 2: Unsupervised Knowledge Transfer to a New
Task.

1: Inputs: input data for new task X(tnew), learned
libraries L and K.

2: Encode X(tnew) into feature vector x̄(tnew) using (8).
3: Solve sparse coding s(tnew) by Lasso of (16).
4: Recover task predictor by computing its parameter

vector θ̂
(tnew)

using (17).

F. Active Task Selection

To make our method capable of learning in a task-efficient
manner, we further incorporate an active task selection mech-
anism into our approach. The problem is formulated as fol-
lows. The agent has access to training data from a pool of
candidate unlearned tasks {Z(T+1), . . . ,Z(Tpool)}, where T +
1 < Tpool < Tmax. Based on training data for these candidate
tasks, the learner selects the index of the next task to learn
tnext ∈ {T + 1, . . . , Tpool}, which will maximize the learning
performance. Without loss of generality, the value of Tpool is
fixed and set as Tpool =

1
2Tmax in our study.

We employ the diversity heuristic proposed in [33] for se-
lecting the next best task. The basic idea is to encourage the
current learned model or library to capture information of the
widest range of tasks. If the current library does not fit well for
a new task t, it means that the information on task t has not

been captured in the current library. Thus, in order to acquire
information from the widest range of tasks, the next task should
be the one that the current library is doing the worst, that is, the
loss on the training data of this task is maximum. Although we
have the dual dictionaries L and K, we can simply use the main
dictionary L that contains both input and output information, to
calculate the heuristic as

tnext= arg max
t∈{T+1,...,Tpool}

min
s

∥∥∥θ̂(t)−Ls
∥∥∥2
Υ(t)

+ μ ‖s‖1, (18)

where θ̂
(t)

and Υ(t) are calculated by (6) and (7), respectively.
Remark 2 The active task selection mechanism (18) tends to

select tasks that are encoded poorly with the current dictionary
L, and the selected tasks are likely to be significantly different
from the previously learned tasks, thus encouraging the agent
to learn diverse tasks. However, this does not means that after
the active task selection based training of tnext tasks, the model
generalization or test performance is necessarily better than the
model with the non-active task selection based training of tnext
tasks. Whether this is the case depends on the underlying data
generating process. Furthermore, when all the training tasks are
used, the models obtained with and without active task selection
should have the same or similar test performance, because the
both models have seen all the training tasks and the order of all
the training tasks learned should have litter effect on the overall
generalization performance.

IV. ALGORITHM SUMMARY AND ANALYSIS

Our proposed approach has two versions, namely, unsuper-
vised transfer aided lifelong regression (UTLR), in which the
agent has no control over learning order of tasks, and UTLR-
Ac, which is equipped with active task selection mechanism
presented in Section III-E. The proposed framework has two
phases: training phase and evaluation phase. During training
phase, some training tasks serve as the candidate task pool.
Each time the agent actively chooses (UTLR-Ac) or passively
accepts (UTLR) one task from the task pool to learn so as to
incrementally build its libraries L and K. After the agent has
encountered all the training tasks, the two libraries are fixed and
they act as the knowledge base to help learning future unseen
tasks. During evaluation phase, new task arrives sequentially.
With the aid of L and K, the agent performs either model
prediction or unsupervised transfer depending on whether the
new task is labeled or not. For the unlabeled new task, the agent
only uses the input data to recover the task predictor so as to
predict the new data of this task.1

Convergence analysis: In order to prove the convergence of
the proposed framework, we use the theoretical results of [22],
since these results can directly apply to our framework.

The work [22] has proved that the learned dictionary becomes
increasingly stable, i.e., converged, as more tasks are learned.
This convergence result requires two conditions:

1Code is available at: https://github.com/neuroton42/Unsupervised-Transfer-
Aided-Lifelong-Regression-.git
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1) The tuples (Υ(t), θ̂
(t)
) are drawn from an independent

identical distribution (i.i.d.) with compact support to
bound the norms of L and s(t).

2) For all the tasks up to task t, letLk be the subset of the cur-
rent dictionaryLt, where only the columns corresponding
to the non-zero elements of s(t) are included. Then, all the
eigenvalues of the matrix LT

kΥ
(t)Lk need to be strictly

positive.
The work [22] demonstrates that both these conditions are

met for the lifelong learning framework given in (2) to (5).
We incorporate unsupervised feature into this framework by

augmenting θ̂
(t)

into Θ(t), L into H , and Υ(t) into Ψ(t). Since

θ̂
(t)

and Υ(t) are drawn from an i.i.d., clearly Θ(t) and Ψ(t)

are also drawn from an i.i.d., according to the definition of (13).
Hence condition 1) holds for our method. To verify condition 2),
we note that the eigenvalue of HT

kΨ
(t)Hk are the eigenvalues

of LT
kΥ

(t)Lk and the positive ρ, and hence they are strictly
positive. Therefore, both the two conditions are met for our
proposed method, and the convergence result of [22] can be
applied to our proposed approach.

Computational complexity: We now analyze the online com-
putational complexity of learning new task by our method. The
construction of task predictor by the regularized LS estimator
(6) has a complexity on the order of O(d3). The adaptation
of single dictionary L ∈ Rd×k and sparse coding s(t) ∈ Rk

costs O(k2 d3). Since we incorporate unsupervised feature into
lifelong learning by augmenting L ∈ Rd×k into H ∈ R(2d)×k,
the coupled dictionary adaptation costs O(k2(2 d)3). Thus, the
overall complexity of per-task adaptation is O(d3 + k2(2 d)3),
which is independent of task number.

V. EXPERIMENTS

Three real-world applications, examination score prediction,
Parkinson disease symptom score prediction and Alzheimer
disease progression modeling, are included to demonstrate the
effectiveness of our proposed approach.

A. Experimental Setup

Our two proposed methods, UTLR and UTLR-Ac, are com-
pared with three existing lifelong learning approaches, the
ELLA [22], the ELLA-diver [33], which actively chooses tasks
to learn with diversity heuristic method, and the ELLA-diver++
[33], which is a stochastic version of ELLA-diver. The alterna-
tive lifelong learning approach EWC is also chosen as a bench-
mark for comparison. In the original work [29], the cross-entropy
loss is used for classification problem, and we modify the loss
of EWC to the mean square error in order to apply EWC to
solve regression problems. Additionally, the single-task learning
(STL) that learns multiple tasks independently, is used as the
baseline method. The LS regression is used to construction task
predictor for all the methods. It should be noted that either the
unsupervised domain adaptation or continual domain adaptation
methods are unsuitable to be compared with the proposed life-
long regression method, as they address very different problems.
Also TaDell [36] cannot be used for comparison, because it needs

Fig. 3. Impact of ρ on the model prediction and unsupervised transfer perfor-
mance of the proposed methods for school examination score dataset.

domain-specific task descriptor, which is not available for most
real-world datasets. Basically, our method can be regarded as a
generalized version of TaDell using task input data rather than
domain-specific task descriptor.

For all the lifelong models, the dictionary size k and the
regularization parameters are independently chosen for each
dataset using grid search over the ranges of {1, 2, . . . , 5} for
k and {10−n, n = 0, . . . , 6} for the regularization parameters,
respectively, to achieve their best performance. The previous
works [22], [33], [36] suggested to select the dictionary size
from k ∈ {1, 2, . . . , 10} but the datasets used in these previous
works were most classification problems. We have experimented
with k ∈ {1, 2, . . . , 10} for our three case studies but the results
were not better than with k ∈ {1, 2, . . . , 5}. The analysis on the
sensitivity of the algorithmic parameters can be found in [22],
[52]. For EWC, a two-layer MLP with ReLU non-linearities
in each layer is utilized as the training model. The network
model is trained using stochastic gradient descent with learning
rate 0.0001, and 10 independent experiments with different ran-
dom seeds are conducted for model training. For our proposed
method, ρ is a key parameter that balances the predictor’s fit
to the unsupervised feature’s fit, and we empirically investigate
its impact on the model prediction and unsupervised transfer
performance.

In the experiments, we split the data 50%-50% as the training
and testing datasets for each task. The training set is used to
construct task predictor, while the testing set is for performance
evaluation. Additionally, we divide the set of tasks into two
subsets: one set of training tasks that serve as the pool for active
task selection (for UTLR-Ac, ELLA-diver and ELLA-diver++)
and are used to learn the knowledge library, and one set of
evaluation tasks on which we measure the performance of the
learned library. We set Tpool =

1
2Tmax for all the experiments.

After a model has learned all the training tasks, its knowledge
library is fixed, and we use the learned library to measure the
prediction performance on the testing datasets of evaluation
tasks. For the evaluation of unsupervised transfer, the model has
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TABLE II
PERFORMANCE COMPARISON OF STL, ELLA, ELLA-DIVER, ELLA-DIVER++, EWC AS WELL AS PROPOSED UFLR AND UFLR-AC FOR SCHOOL EXAMINATION

SCORE DATASET

no access to the training set’s output data for each evaluation task,
and it can only use the input data to recover the task predictor
for performance evaluation on the testing set.

The root mean squared error (RMSE) and the mean absolute
error (MAE) are used to evaluate the testing prediction perfor-
mance. In the lifelong learning setting, we are also interested
in the online computational complexity for learning each task.
Hence, the averaged computation time per task (ACTpT) is
utilized to quantify the online computational complexity of a
lifelong model. For all the lifelong models, training tasks are
presented sequentially to the learner, following the correspond-
ing online learning setting. To mitigate the impact of task order
on the algorithms, the training and evaluation task orders are
randomly generated over 10 independent experiments, and we
report the mean and standard deviation (STD) of the RMSE,
MAE and ACTpT over 10 realizations.

B. School Examination Score Prediction

We first evaluate the algorithms on school examination score
dataset which has been widely used in multi-task and lifelong
regression investigation [7], [9], [11], [13], [21], [22]. The
dataset contains examination scores of 15,362 students from
139 secondary schools, and each school is considered as a
regression task. For each task, the goal is to predict scores for
all the students in the school according to their input features.
Each student has 28 features (the task dimension d = 28), in-
cluding student-specific features and school-specific features,
and the corresponding output is the student’s examination score.
The numbers of students for these 139 schools vary from 25 to
251 (the number of samples for each task nt ∼ 25 to 251). From
the total of 139 tasks, we use 69 as the training tasks and the
other 70 as the evaluation tasks.

The impact of ρ on the prediction and unsupervised transfer
performance of our two models is investigated in Fig. 3. When
the value of ρ is large (ρ = 3, 2, 1), the unsupervised feature
plays the dominant role and the task model has less impact
on the algorithm’s performance. Hence the model prediction
performance are similar to the unsupervised transfer perfor-
mance. When ρ = 0.1, the model prediction accuracy improves
while maintaining an acceptable unsupervised transfer accuracy,
which indicates that this value ofρbalances well the task model’s
fit to the unsupervised feature’s fit. When ρ decreases further to

0.01, the model prediction accuracy only decreases slightly but
the unsupervised transfer performance degrades dramatically.
This is because when ρ becomes very small, the unsupervised
feature has little impact on the algorithm, which makes it unable
to recover the task predictor via transfer. Hence, ρ = 0.1 is
appropriate for this case study.

Table II presents the test performance comparison of various
methods, where for the lifelong learning methods, the models
with the best and runner-up performance are emphasized with
boldface black and blue colours, respectively. Note that for
our proposed approach, the model prediction is carried out
by both the task predictor and the unsupervised feature, while
the unsupervised transfer performance is obtained only by the
unsupervised feature. Our approach is the only one that can
carry out this unsupervised feature based prediction. Since EWC
is implemented on PyTorch, it will be unfair to compare its
computation time with other models that are implemented on
Matlab. So we do not present the ACTpT of EWC. However,
since EWC is based on neural networks, its training and testing
are much more time costly than the other methods using linear
base models. Clearly, although the STL imposes the least compu-
tational cost, it has the worst prediction performance compared
with the lifelong models. Both our UFLR and UFLR-Ac attains
the smallest model prediction RMSE and MAE, compared with
the three ELLA-based methods and EWC model. Moreover,
our UFLR imposes the lowest ACTpT among all the lifelong
models. Most significantly, our proposed approach is able to
use input data only to recover the task model, and achieves the
unsupervised transfer performance that is similar to or slightly
better than the ELLA-based methods. This clearly demonstrates
the excellent unsupervised transfer performance of our method.

Clearly, after all the training tasks have been learned,
the performance of an active task selection based lifelong
model should be the same or similar to that of the non-
active task selection based counterpart, and incorporating active
task selection into a lifelong model significantly increases the
algorithm’s complexity. To investigate how task selection im-
pacts on the model’s prediction performance, we conduct the
following experiment. After the lifelong model selects a training
task to update its knowledge library, we measure its test perfor-
mance on all the evaluation tasks using the current library. This
procedure yields a learning curve that depicts the relationship
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TABLE III
PERFORMANCE COMPARISON OF STL, ELLA, ELLA-DIVER, ELLA-DIVER++, EWC AS WELL AS PROPOSED UFLR AND UFLR-AC FOR PARKINSON-MOTOR

DATASET

Fig. 4. Comparison of test RMSE performance versus number of tasks learned
for school examination score dataset.

between the prediction performance and the number of tasks
learned, which is shown in Fig. 4 for the five lifelong model.
The test RMSEs of all the models decrease as the number of
tasks learned increases. This is because the lifelong models
become more knowledgeable as their libraries capture more
knowledge from more tasks. The learning curves of our UFLR
and UFLR-Ac are very similar, and this is also the case for the
ELLA and ELLA-diver. This indicates that active task selection
only has minor impact on the lifelong model’s generalization
performance for this case study. The reason may be that the data
distributions for the tasks of school examination score dataset
are similar. Note that since the training pipeline of EWC is
different from the ELLA-based methods, we do not conduct
this experiment for EWC.

C. Parkinson Disease Symptom Score Prediction

This dataset is composed of a range of biomedical voice
measurements from 42 patients with early-stage Parkinson’s
disease [53], and it has been used to evaluate lifelong mod-
els [13], [34]. The dataset contains 5875 voice recordings from
these 42 patients, with the observations for each patient vary
from nt = 101 to 168. The aim is to predict the Motor and

Total UPDRS scores from the 16 voice measures. The symptom
score prediction using d = 16 biomedical features for a patient
is considered as a regression task and we have 42 tasks in total.
Since the UPDRS scores consist of Motor and Total, we establish
two regression datasets in our experiment: Parkinson-Motor
and Parkinson-Total, each containing 20 training tasks and 21
evaluation tasks. Based on the results of Fig. 5, we set ρ = 0.01
for our method, as this value best trades off the model prediction
and unsupervised transfer.

The test performance of various models for Parkinson-Motor
and Parkinson-Total datasets are compared in Tables III and IV,
respectively. Again, our methods achieves the best prediction
performance with the smallest test RMSE and MAE. Further-
more, our UFLR attains the second-lowest ACTpT and the
lowest ACTpT for the two datasets, respectively. Also our
models can recover the task model using input data only. The
unsupervised transfer performance of our models, although not
as accurate as the model prediction accuracy of ELLA, are better
than that of STL. Fig. 6 depicts the test learning curves as the
functions of the number of tasks learned for various lifelong
models. It can be seen that although our models begin with the
larger test RMSEs than the ELLA-based models, their prediction
errors decreases dramatically after learning more tasks. This is
because our methods have two libraries to initialize, thus having
higher error at the beginning, and as the number of tasks learned
increases, the two libraries can capture more knowledge, leading
to higher prediction accuracy. Observe that the RMSE learning
curve of UFLR-Ac decreases more quickly than that of UFLR.
For Parkinson-Motor and Parkinson-Total datasets, the active
task selection mechanism seems to enable the model to learn
faster.

D. Alzheimer Disease Progression Modeling

This dataset is from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [54]. The ADNI project is a longitudinal
study, which collects various measurements repeatedly over a
6-month or 1-year interval from patients. The first time patients
receiving screening in hospital to obtain magnetic resonance
imaging (MRI) is called baseline, and the time point for the
follow-up visits is denoted by the duration starting from the
baseline. The latest ADNI has up to 120 months’ follow-up
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Fig. 5. Impact of ρ on the model prediction and unsupervised transfer performance of the proposed methods for (a) Parkinson-Motor, and (b) Parkinson-Total.

TABLE IV
PERFORMANCE COMPARISON OF STL, ELLA, ELLA-DIVER, ELLA-DIVER++, EWC AS WELL AS PROPOSED UFLR AND UFLR-AC FOR PARKINSON-TOTAL

DATASET

Fig. 6. Comparison of test RMSE performance versus number of tasks learned for (a) Parkinson-Motor, and (b) Parkinson-Total.
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TABLE V
PERFORMANCE COMPARISON OF STL, ELLA, ELLA-DIVER, ELLA-DIVER++, EWC AS WELL AS PROPOSED UFLR AND UFLR-AC FOR ALZHEIMER-ADAS

DATASET

Fig. 7. Impact of ρ on the model prediction and unsupervised transfer perfor-
mance of the proposed methods for Alzheimer-ADAS dataset.

data available for some patients, which are divided as baseline
(M00), 6th month (M06), 12th month (M12), 24th month (M24),
36th month (M36), 48th month (M48), 60th month (M60),
72th month (M72), 84th month (M84), 96th month (M96), 108th
month (M108) and 120th month (M120). The aim is to predict
patients’ cognitive scores at multiple time points using their MRI
features. Hence, the cognitive score prediction at one time point
is considered as a regression task, and we have 12 tasks in total.
The number of samples for each task varies from nt = 69 to
1074, and the dimension of features is d = 314. Alzheimer dis-
ease progression prediction is a very popular multi-task regres-
sion problem [55], [56], [57], [58], [59]. Because the patient’s
data can be received at consecutive time points over a long-time
scale, for the first time we consider it as a lifelong regression
problem and use this dataset to evaluate lifelong models. In this
study, we have two cognitive measurements, including Mini
Mental State Examination (MMSE) and Alzheimer’s Disease
Assessment Scale Cognitive Subscale (ADAS-cog). Hence we
establish two regression datasets in our experiment: Alzheimer-
ADAS and Alzheimer-MMSE. Each dataset contains 6 training
tasks and 6 evaluation tasks.

The impact of ρ on the model prediction and unsupervised
transfer performance of our methods for Alzheimer-ADAS

dataset is shown in Fig. 7. For Alzheimer-MMSE, the results are
similar and therefore they are omitted. Unlike the previous two
case studies, the unsupervised feature plays a more important
role than the task model in this case. This may be because the
dimension of input in this case is much larger. According to
Fig. 7, we set ρ = 5 for our models to achieve the best model
prediction and unsupervised transfer accuracy.

The test performance comparison of various models for
Alzheimer-ADAS and Alzheimer-MMSE datasets are presented
in Tables V and VI, respectively. It can be seen that EWC
attains the second best prediction accuracy. Again, our methods
achieve the best prediction accuracy, and our UFLR imposes
the lowest ACTpT. More significantly, the unsupervised transfer
accuracies of our models are similar to their model prediction
accuracies. This makes sense because in this case prediction
is mainly contributed by unsupervised feature, and the unsu-
pervised transfer accuracy should be comparable to the model
prediction. The test RMSE learning curves as the functions of
the number of tasks learned are depicted in Fig. 8 for various
lifelong models. Observe that the test RMSEs of our methods
decrease much more rapidly as more tasks are learned compared
with the ELLA-based methods, which again demonstrates the
superior learning capability of our models. Also observe that the
active task selection does not seem to help to speed up learning.
This is may be because of very limited number of training tasks.

E. Discussion of the Algorithm

Three real-world regression datasets from different appli-
cation scenarios demonstrate the superiority of the proposed
unsupervised transfer aided lifelong regression framework. Our
proposed method not only consistently attains the best modeling
accuracy compared with existing lifelong regression methods,
but also provides important capacity of learning and prediction
of new tasks with only input data. Note that the best existing un-
supervised transfer aided strategy TaDell [36] can not be applied
to our real-world regression benchmarks datasets. TaDell relies
on the zero-shot transfer based on the so-called task descriptors.
For it to work, these domain-specific task descriptors, which
must characterize the underlying dynamics of data in individual
tasks well, need to be hand crafted first. For simple engineering
systems, some basic system parameters, such as length, mass,
damping constant, etc., may be used as task descriptors because
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TABLE VI
PERFORMANCE COMPARISON OF STL, ELLA, ELLA-DIVER, ELLA-DIVER++, EWC AS WELL AS PROPOSED UFLR AND UFLR-AC FOR ALZHEIMER-MMSE

DATASET

Fig. 8. Comparison of test RMSE performance versus number of tasks learned for (a) Alzheimer-ADAS, and (b) Alzheimer-MMSE.

they define the system’s underlying dynamics and have a close
relation to the data characteristics. However, for most real-world
tasks, seeking such appropriate and unified descriptors to iden-
tify different tasks requires in-depth cross-domain knowledge,
which is generally impossible to achieve. By contrast, our pro-
posed method learns new task and performs the unsupervised
knowledge transfer with only input data, which is generally
applicable to many applications. In terms of computational
efficiency, the experimental results have demonstrated that our
method has lower online time cost than the efficient ELLA.
Most importantly, the computation cost is independent with the
number of tasks, which is clearly affordable when massive tasks
are received over long-time scales.

This work mainly focus on lifelong regression problem, hence
we only use regression datasets to evaluate our algorithm. To
our best knowledge, most existing lifelong/continual learning
algorithms, such as the works of [47], [48], [49], [50], [51], only
focus on object recolonization or classification, and they are
not applicable to regression learning. By contrast, our proposed
UFLR algorithm is specifically designed for regression problem,
which fills a gap in the field. It is also worth mentioning that our
method has a similar flexible structure with ELLA, and it can also
be extended to address classification problem. In this case, we

can compare the proposed framework with more state-of-the-
art lifelong learning algorithms on classification benchmarks.
However, we emphasize again that this research is devoted
specifically for lifelong regression problems with consecutive
unlabeled tasks, and for such challenging application area, our
proposed framework shows considerable advantages over the
existing state-of-the-art, as evidenced by the experimental re-
sults.

VI. CONCLUSION AND FUTURE WORKS

This paper has proposed an effective lifelong regression
framework capable of learning new consecutive tasks without
desired output data. Specifically, during training phase, the input
data for each task are encoded as feature vectors while both
the input and output data are used to construct a single-task
predictor using LS estimator. The unsupervised features and
task predictor’s parameters are factorized into two dictionaries
that are coupled by a joint sparse coding. The leaner can also
actively choose next training task to learn based on how poorly
the current dictionary encodes the selected tasks. When new
task arrives, the learner can perform either model prediction or
unsupervised transfer depending on whether the task’s data are
labeled or not. Even if the new task is not labeled, the learner
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can still recover the task predictor using unsupervised features
via knowledge transfer. This novel capability has ensured that
our proposed lifelong regression framework has better gener-
alization performance over the existing state-of-the-art lifelong
regression models., which has been validated with applications
to three real-world lifelong regression problems.

Defining an appropriate unsupervised feature for unlabeled
task remains an open question. In our proposed framework,
we simply use the mean values of input data as the feature
vectors. In future, we will explore alternative more advanced
features provided by various unsupervised learning methods
to further improve the unsupervised transfer accuracy. Another
interesting future direction is to extend this lifelong regression
framework to nonlinear regression, since many real-life tasks are
very complex and have strong nonlinearities. Hence, nonlinear
models, such as neural networks, can potentially be used in
the proposed scheme to replace linear regression. Note that our
method has a flexible model structure, and it can also be extended
to address classification problem by replacing the base linear
regression predictor with simple classifier. This future extension
enables our framework to be applicable to wider range of lifelong
learning scenarios where labeling new tasks is challenging.
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