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DomainForensics: Exposing Face Forgery Across
Domains via Bi-Directional Adaptation
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Hui Yu , Huiyu Zhou , and Shu Zhang

Abstract— Recent DeepFake detection methods have shown
excellent performance on public datasets but are significantly
degraded on new forgeries. Solving this problem is important,
as new forgeries emerge daily with the continuously evolving
generative techniques. Many efforts have been made for this
issue by seeking the commonly existing traces empirically on data
level. In this paper, we rethink this problem and propose a new
solution from the unsupervised domain adaptation perspective.
Our solution, called DomainForensics, aims to transfer the
forgery knowledge from known forgeries (fully labeled source
domain) to new forgeries (label-free target domain). Unlike recent
efforts, our solution does not focus on data view but on learning
strategies of DeepFake detectors to capture the knowledge of
new forgeries through the alignment of domain discrepancies.
In particular, unlike the general domain adaptation methods
which consider the knowledge transfer in the semantic class
category, thus having limited application, our approach captures
the subtle forgery traces. We describe a new bi-directional
adaptation strategy dedicated to capturing the forgery knowledge
across domains. Specifically, our strategy considers both forward
and backward adaptation, to transfer the forgery knowledge from
the source domain to the target domain in forward adaptation
and then reverse the adaptation from the target domain to the
source domain in backward adaptation. In forward adaptation,
we perform supervised training for the DeepFake detector in the
source domain and jointly employ adversarial feature adaptation
to transfer the ability to detect manipulated faces from known
forgeries to new forgeries. In backward adaptation, we fur-
ther improve the knowledge transfer by coupling adversarial
adaptation with self-distillation on new forgeries. This enables
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the detector to expose new forgery features from unlabeled
data and avoid forgetting the known knowledge of known
forgery. Extensive experiments demonstrate that our method is
surprisingly effective in exposing new forgeries, and can be plug-
and-play on other DeepFake detection architectures.

Index Terms— Digital forensics, DeepFake detection, Domain-
Forensics.

I. INTRODUCTION

THE ever-growing convolutional neural network (CNN)
based generative models [1], [2], [3], [4], [5], [6] have

made face forgery much easier than ever before, allowing
people to manipulate the face’s identity, appearance and
attributes in high realism with little effort. These CNN-based
face forgery techniques, known as DeepFake, have drawn
much attention, as their abuse using can lead to impersonation
videos, economic fraud, biometric attacks, and even national
security problems [7]. Thus, it is urgent and important to
counteract the misuse of DeepFakes.

During the past few years, large number of DeepFake detec-
tion methods [8], [9], [10], [11], [12], [72], [73] have emerged.
Trained on the recently proposed large DeepFake datasets,
such as FaceForensics++ (FF++) [13] and Celeb-DF [14],
these detection methods have shown promising performance.
However, these methods fall into the category that the training
and testing sets are from the same distribution, e.g., the same
type of forgery or the same dataset, which unfortunately
limits their practical applications, as there are always new
types of forgeries emerging continuously and widespreading
to everywhere on various social platforms. These new types
of forgeries are very unlikely to have been included in the
existing datasets, and thus they are unseen to these detectors,
causing significant performance degradation (see Fig. 1 top
part). This circumstance gives rise to a big challenge to
DeepFake detectors, that is, how to detect constantly emerging
new forgeries.

Recently, attempts have been made in the literature to solve
this issue. One typical line of research is to use a variety of
data augmentation to increase the generalization ability [15],
[16], [17], [18]. These methods usually create forged faces
by augmenting the pristine videos to cover the known types
of forgeries as much as possible. Despite of the promis-
ingly improved generalization, the types of augmentation are
limited to known forgeries, thus hindering the performance
when confronting unseen forgeries. Frequency clue is also
used to improve generalization ability [19], [20], [21], [22].
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Fig. 1. Overview of traditional forensics (top) and DomainForensics (bottom).
Traditional forensics achieves excellent performance on known forgeries
but performs poorly on new forgeries. In contrast, DomainForensics can
effectively expose new forgeries by performing the proposed bi-directional
adaption, which can learn the common forgery features across domains using
adversarial training.

However, this clue is easily affected by data processing and
highly correlated with video quality, which cannot perform
consistently across different datasets. A different direction
of research is to apply transfer learning, such as zero- and
few-shot learning [23], [24], [25], to improving generalization
on new forgeries. Since zero-shot learning cannot access the
samples of new forgeries in training, its performance is highly
suppressed. In contrast, few-shot learning methods relax the
restrictions in that they can access a few samples of new
forgeries in training. However, this requires the annotation of
these samples, which may not be easily obtained in practice,
as we may not know whether a face is forged or not, e.g.,
multiple faces are in view but only video-level labels are
provided. Thus, a fundamental question is: can we detect new
forgeries by only accessing target samples without any labels,
while achieving competitive performance?

In this paper, we cast DeepFake detection into a new
formulation as an unsupervised domain adaptation problem,
by transferring the knowledge from the source domain to the
target domain, without using any annotations of target samples
in training. This is very different from the existing strategies
and it offers significant advantages over them. Specifically, for
DeepFake detection, we can treat the known forgeries as the
source domain and new forgeries as the target domain, see
Fig. 1 bottom part. Our goal is to push the DeepFake detector
to learn the common forgery features across different domains
by only using label-free interested video collections. It is worth
noting that this DeepFake detection problem has a significant
discrepancy with the general unsupervised domain adaptation

problem, as we aim to learn the common forgery feature from
the same category of faces (real or fake), which is more
subtle than the semantic features of different categories in
the general unsupervised domain adaptation problem (e.g., cat,
dog, etc.). To this end, we propose a new unsupervised domain
adaptation framework, called DomainForensics, for DeepFake
detection. The key to our DomainForensics is a novel bi-
directional adaptation strategy. This is very different from the
existing DeepFake detection framework which only considers
one direction to learn the knowledge supervised by the source
domain and transfer it to the target domain. However, since
the forgery features are subtle, the one-directional adaptation
will inevitably lose a certain amount of knowledge [26], [27],
[28], thus limiting the achievable performance on the target
domain. To overcome this problem, we design bi-directional
adaptation, which first transfers the knowledge from the source
domain to the target domain, referred to as forward adaptation,
and then reverses the adaptation from the target domain to
the source domain, called backward adaptation. The backward
adaptation stage utilizes the results of the forward adaptation
stage, further explores the knowledge from the target domain,
and transfers it back to the source domain. With the mutual
adaptation, DeepFake detector can fully grab the common
forgery features across domains.

To verify our idea, we adopt Vision Transformer (ViT)
[29] as our DeepFake detector in the experiment, due to its
successful application on vision tasks. Other architectures,
such as ResNet [30], Xception [31] and EfficientNet [32],
can also be used in our framework, and this will also be
demonstrated. Since the frequency space can reveal the forgery
traces [19], [20], we use color images and corresponding
frequency-transformed maps as the input. In the forward adap-
tation stage, we develop a discriminator that is trained together
with the DeepFake detector in an adversarial manner, where
the discriminator aims to tell which domain the learned feature
is from, and the DeepFake detector aims to extract features
that confuse the discriminator. By doing so, the distribution
of the target domain is pulled close to the source domain.
In the backward adaptation stage, the adaptation is reverted.
Since no labels are provided, we employ self-distillation [27]
to further excavate the knowledge of the target domain, and
then apply the adversarial training to the distilled model,
in order to transfer the knowledge back to the source domain.
Extensive experiments are conducted on FF++ and Celeb-DF
datasets in several cross-domain scenarios, including different
manipulation methods, datasets and types, to demonstrate the
effectiveness of our method.

The contribution of this work is summarized as follows.
1) We propose a new DeepFake detection solution called

DomainForensics to handle continuously emerged new
forgeries. Different from recent efforts, our method
focuses on pushing the detectors to learn the common
forgery features across domains, that is, to transfer
the forgery knowledge from known forgeries to unseen
forgeries, instead of empirically blending faces on the
data level.

2) We propose a new bi-directional adaptation strategy,
which first transfers the forgery knowledge from the
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source domain to the target domain in forward adap-
tation, and then reverses the adaptation from the target
domain to the source domain in backward adaptation.
Since the forgery traces are very subtle, we design the
backward adaptation stage to further refine the results
obtained from the forward adaptation stage with a self-
distillation scheme.

3) Extensive experiments are conducted on FF++ and
Celeb-DF datasets with several cross-domain scenar-
ios, including crossing manipulation methods, crossing
datasets, and crossing generative types, to demonstrate
the effectiveness of our method. We also study the
effects of various adaptation settings, various amounts
of training samples and different components, to provide
thoughtful insights for the following research.

The remainder of this paper is organized as follows.
Section II reviews the recent works on DeepFake detection and
unsupervised domain adaptation. Section III details our pro-
posed DomainForensics, including the problem formulation,
network framework and bi-directional adaptation. Section IV
offers extensive experiments and elaborates on the experimen-
tal results. The paper concludes in Section V.

II. RELATED WORK

In this section, we first present an overview of the existing
deepfake detection approaches. We then provide a brief review
of unsupervised domain adaptation and discuss the differences
between the previous works and our approach.

A. Deepfake Detection

With the advent of large-scale DeepFake datasets, e.g., [13]
and [14], DeepFake detection has made significant progress
in recent years, e.g., [8], [9], [10], [11], [12], [16], [18], [33],
[34], [35], [36], [37], [72], and [73]. One challenging problem
in this task is how to detect constantly emerging new forgeries.
The methods [15], [16], [17], [18], [35], [38], [74] enhance
generalization ability by exploring elaborate augmentations on
pristine videos, with the aim of covering most of the known
forgery types. The limitation of these methods is that the
augmentation diversity is restricted to known forgeries. Hence,
these methods can hardly handle unknown forgeries. Another
vein of methods [10], [19], [20], [21], [22], [39], [40] utilize
frequency features to improve generalization ability. However,
frequency features can easily be disrupted by post-processing
such as compression [41]. Inspired by transfer learning, the
methods [23], [24], [25], [37] employ zero-shot and few-
shot learning to detect new forgeries. Since zero-shot learning
cannot access the samples of new forgeries, its performance
gain is severely limited. The few-shot learning needs a small
portion of samples and corresponding labels of new forgeries.
However, although the video-level label is easily obtained, the
face-level label is extremely difficult to obtain in practice.

B. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) aims to address the
challenge of transferring knowledge from a source domain

to a target domain when labeled data is scarce or com-
pletely absent in the target domain. Ben-David et al. [42]
theoretically revealed that the cross-domain common features
serve as latent representations that encapsulate shared and
domain-common features across diverse domains. The primary
objective is to diminish or eliminate domain-specific variations
while retaining domain-agnostic information. The acquisition
of cross-domain common representation enhances the model’s
reliability to domain shifts by prioritizing task-relevant
information that transcends domain-specific discrepancies.
Consequently, the model achieves improved generalization to
unlabeled target domains, even in the scenarios with limited
available data.

The existing works for addressing UDA can be classified
to two main forms, namely, the discrepancy-based approach
and the adversarial approach. Concretely, discrepancy-based
methods encourage the model to align the domain discrepancy
by minimizing the metrics that can measure the distribution
discrepancy between the source and target domains [43], [44],
[45], [46]. Inspired by the success of generative adversarial
network (GAN) [47], recently developed works employed
extra adversarial discriminator to align the domain discrep-
ancy, as the feature distributions of source and target domains
can be matched by means of confusing the discriminator [48],
[49], [50]. In addition, some state-of-the-art methods build
up the feature extractor based on modern transformer struc-
ture [51], [52], [53], which demonstrates that UDA not only
helps traditional CNNs to improve the generalization but also
is profitable for transformer-based networks. This motivates us
to treat the transformer networks as the cornerstone structure
and further explore effective UDA methods for face forgery
detection.

Note that the general UDA task targets transferring the
knowledge of the semantic class category. By contrast, our
approach differs from the aforementioned UDA methods in
that we aim to explore the subtle forgery features in the
face category only. We also find that the existing adaptation
schemes, which only consider the adaptation from the source
domain to the target domain, is unlikely to perform well on our
task. In contrast, our proposed bi-directional adaptation strat-
egy can further explore the knowledge from the unlabeled data
in the target domain, as such mutual adaptation coupled with
knowledge transfer with self-distillation enables the model
to learn common forgery features across known and new
forgeries. To the best of our knowledge, Chen and Tan [54]
is the first work that attempted to solve Deepfake detection
using unsupervised domain adaptation. However, it is a trivial
usage of a naive existing solution without improvement, and
hence the detection performance is not satisfied. By contrast,
our DomainForensics adopts a meticulously designed strategy,
named bi-directional adaptation, which can fully learn the
common forgery features across domains and it is validated
under several practical cross-domain scenarios.

III. DOMAINFORENSICS

To achieve continuously exposing new forgeries, we for-
mulate DeepFake detection into an unsupervised domain
adaptation problem, which transfers the forgery features from

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 04,2024 at 08:38:51 UTC from IEEE Xplore.  Restrictions apply. 



7278 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

known forgeries to new forgeries, without the need of target
labeling. Since the forgery features are very subtle, adapting
the general UDA to our task is difficult. As such, we propose
a new bi-directional adaptation strategy to fully explore the
common forgery features across domains. It is worth noting
that our DomainForensics is plug and play, i.e., it can be
applied to other DeepFake detection architectures.

We start with the problem formulation in Subsection III-A,
and then discuss the advantages of our DomainForensics
over other architectures in Subsection III-B, followed by
a performance comparison with existing UDA schemes in
Subsection III-C. This naturally motivates us to introduce the
new bi-directional adaptation strategy in Subsection III-D and
our network architecture in Subsection III-E.

A. Problem Formulation

Let the sets of known forgeries and new forgeries corre-
sponding to two different domains be denoted as the source
domain Ds and target domain Dt , respectively. The source
domain Ds is fully annotated as Ds =

{(
x s

i , ys
i
)}ns

i=1, where(
x s

i , ys
i
)

is the i-th pair of sample and its corresponding label
(i.e., real or not), and ns is the number of samples. Differently,
the target domain Dt only contains samples without any
annotations, which are given by Dt =

{
x t

i
}nt

i=1, where nt
is the number of samples. Each domain can be divided into
a training set and a testing set as

{
D′

s,D′′
s
}

and
{
D′

t ,D′′
t
}
,

respectively. We employ D′
s and D′

t in the training phase and
perform evaluation on D′′

s and D′′
t in the testing phase. Note

that D′′
s and D′′

t are unseen during training.
Denote a DeepFake detector as H = G ◦F , where G is the

classifier and F is the feature extractor. Given a face image
x , the output logits of DeepFake detector H can be defined
as G(F(x; θF ); θG), where θF and θG are the parameters of
the feature extractor and classifier, respectively. The challenge
under this scenario lies in transferring the forgery knowl-
edge learned from known forgeries Ds to new forgeries Dt ,
in terms of the underlying marginal distribution discrepancy,
i.e., different manipulated approaches. Our goal is to push the
feature extractor to learn the common forgery features across
different domains, without the supervision of target labels, i.e.,
achieving favorable performance on both D′′

s and D′′
t .

B. DomainForensics Versus Existing Architectures

Using data augmentation is the most typical solution
to improve the generalizability of detection methods, e.g.,
FWA [55], Face X-ray [16], SBI [18]. These methods attempt
to synthesize various pseudo-fake faces to cover known
forgery as much as possible. By training on these augmented
samples, the detectors can learn the common forgery features.
In this scenario, the manipulation operations of new forgeries
should be known as a prior, in order to synthesize the
applicable pseudo-fake faces. However, the technical details
of new forgeries may not be accessible in reality, limiting the
application of these existing methods. In our scenario, we do
not require the technical details of new forgeries. Instead,
we can collect a set of videos that contains new forgery faces,
and simply extract all faces in a video without knowing the

Fig. 2. Grad-CAM visualization. We train the models, including DANN [48],
MDD [46] and our DomainForensics, and visualize the activation maps on
FF++ dataset under FS→F2F scenario. These figures show that models
fails to fully capture the common forgery features when only employing
one-directional adaptation.

label (real or fake) of faces. Using these samples, we can
align the detectors to learn the transferable knowledge from
the known forgery to this new forgery.

This scenario is practical and useful. For example, we can
obtain video sets by searching the keywords, e.g., DeepFake,
on video platforms. The obtained videos are likely a mix of
real and fake faces due to the natural deviation of search
engines, i.e., we cannot ensure whether a video that appeared
in search results is real or fake. Even though the search
results are perfectly matched, i.e., the video-level annotation
is correct, the obtained faces can still be mixed, as a video
usually contains multiple faces and we cannot know which
face is real or fake if only video-level annotation is given.
Under this practical circumstance, our method can expose new
forgeries with these unlabeled samples.

C. Comparison With Existing UDA Schemes

To learn domain-common forgery features, we consider
building up a solution from the perspective of UDA. With
the aim of reducing the domain discrepancy, early domain
adaptation methods put eyes on transferring knowledge from
the source domain to the target domain [45], [46], [48].
However, such one-direction adaptation methods are insuf-
ficient in digging out the subtle forgery knowledge from
unlabeled target data. Fig. 2 shows several examples of the
feature activation maps visualized by Grad-CAM [56] using
one-direction adaptation. The first two columns from left to
right show the CAMs of DANN [48] and MDD [46], two
typical domain adaptation methods. The last two columns
are the CAMs of our approach without and with backward
adaptation. It can be seen that the typical one-direction domain
adaptation cannot locate the forgery features very well in
these examples, either paying attention to the background
area or the central local face part. In comparison, the CAMs
of our method trained with backward adaptation scatter all
around the whole face, activating more correct forgery features
than these methods including ours without using backward
adaptation. This illustration demonstrates that using existing
domain adaptation methods for our task is questionable and
inspires us to develop a devoted solution, which we detail in
the following subsection.
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Fig. 3. Illustration of the proposed bi-directional adaptation strategy,
containing forward adaptation and backward adaptation with H′ as the final
DeepFake detector. Note that other architectures can also be used in our
framework.

D. Bi-Directional Adaptation

As aforementioned, to learn domain-common forgery fea-
tures, we consider building up a solution from the perspective
of UDA. Existing general domain adaptation usually considers
one-direction to transfer knowledge from the source domain to
the target domain. However, such an one-direction adaptation
is insufficient in learning transferable knowledge, as it neglects
to learn from unlabeled target data, as demonstrated in the
previous subsection. Thus, we propose a new bi-directional
adaptation strategy, which consists of both forward adapta-
tion and backward adaptation. The forward adaptation stage
aims to transfer the knowledge from the source domain to
the target domain, just as the existing solutions [45], [48],
[49]. However, due to the limitation of such an one-direction
adaptation, a portion of target domain knowledge is lost in
the transfer, thus hindering the performance of the target
domain. To eliminate or mitigate this deficiency, we develop a
backward adaptation stage to fine-tune the DeepFake detector
on the target domain, while retaining the learned knowledge
in the forward adaptation stage. Fig. 3 illustrates the proposed
bi-directional adaptation strategy.

1) Forward Adaptation: In this stage, we aim to learn the
common forgery features by adapting the source domain to the
target domain. Concretely, we design two loss terms. The first
term is a cross-entropy loss Lce, which trains the DeepFake
detector on the fully-annotated source domain:

min
θF ,θG

Lce =E(xs
i ,ys

i )∼Ds

[
− logG

(
F(x s

i ; θF ); θG
)ys

i
]
. (1)

This loss term enables the DeepFake detector to distinguish
classes, i.e., telling apart real and fake faces. To transfer this

knowledge from the source domain to the target domain, the
essence of this stage is to push the feature extractor F to
generate features that cannot be identified from which domain
they come. To achieve this goal, we design an adversarial loss
Ladv as the second loss term, which guides the training of
feature extractor F with a discriminator Q in an adversarial
manner. Denote θQ as the parameters of discriminator Q. This
loss term can be defined as

min
θF

max
θQ

Ladv = Exs
i ∼Ds

[
logQ

(
F(x s

i ; θF ); θQ
)]

+ Ex t
i ∼Dt

[
log

(
1 −Q

(
F(x t

i ; θF ); θQ
))]

.

(2)

The discriminator Q outputs binary labels, i.e., Q(·; θQ) ∈

{0, 1}, where 0 denotes target domain and 1 denotes source
domain. The overall loss of this stage is written as

L f as = α1 · Lce + α2 · Ladv, (3)

where α1 and α2 are the weight factors. The training of
this stage is an adversarial min-max game between feature
extractor F and discriminator Q. To update F , we fix the
parameters of Q, and vice versa. Note that in the optimization
of Ladv , we do not need any class labels from both domains.

2) Backward Adaptation: The existing adaptation methods
usually only consider the one-direction forward adaptation
and their performance are limited on our task due to the
loss of knowledge in transferring. The key to overcome this
limitation is to mine effective forgery features more specific
to the target domain. Concretely, we reverse the adaptation by
training the DeepFake detector on the target domain and then
transferring the knowledge from the target domain back to the
source domain. The major challenge here is that no labels are
provided in the target domain, and thus we cannot refine the
DeepFake detector in the form of cross-entropy loss Lce that
is used in the forward adaptation stage.

To address this difficulty, we adopt self-distillation in our
framework to further explore the specific representations of
the target domain. Inspired by SIMCLRv2 [27], we employ
a teacher-student network model as the training structure.
Specifically, during the training process, we adopt the feature
extractor F with the parameters θF and the classifier G with
the parameters θG used in the forward adaptation stage as the
teacher model. We then create a new feature extractor F ′ with
the parameters θF ′ , which has the same model structure as
F and whose parameters θF ′ are initialized with the same
parameters as F . F ′ is combined with the classifier G to
make up the student model. It can be seen that the teacher
and student models use the same model structure.

Concretely, the self-distillation loss Lsd is defined as

min
θF ,θF ′ ,θG

Lsd = −

∑
x t

i ∈Dt

(∑
k

P
(
k|x t

i ; τ
)

logP ′
(
k|x t

i ; τ
))

. (4)

Here P and P ′ are the distillation probabilities of the teacher
model and student model, respectively. In particular,

P(k|xi ; τ) =
exp

(
G(F(xi ; θF ); θG)k/τ

)∑
k′ exp

(
G(F(xi ; θF ); θG)k′

/τ
) , (5)

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 04,2024 at 08:38:51 UTC from IEEE Xplore.  Restrictions apply. 



7280 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Algorithm 1 Training Procedure of Bi-Directional Adaptation
Input: Source domain D′

s ; Target domain D′
t ; Initial feature

extractor F with parameters θF ; Initial classifier G with
parameters θG ; Initial distilled feature extractor F ′ with
parameters θF ′ ; Initial discriminator Q with parameters
θQ; Number of forward adaptation epochs T1; Number of
backward adaptation epochs T2
// Forward adaptation stage
while t ≤ T1 do ▷ t = 0

// Fix Q
min

θF ,θG
α1 · Lce + α1 · Ladv

// Fix F ,G
max
θQ

Ladv

end while
// Backward adaptation stage
while t ≤ T2 do ▷ t = 0

// Fix Q
min

θF ,θF ′ ,θG
α3 · Lsd + α4 · Ladv

// Fix F ,F ′,G
max
θQ

Ladv

// Update F
θF = θF ′

end while
Output: F ′,G

where k is the class index and τ is a scalar temperature
parameter. P ′(k|xi ; τ) is obtained by replacing F with F ′

in (5). The Eq.(4) is designed to distill the knowledge from
the teacher model learned in the target domain into the
student model. By using self-distillation, the student model can
enhance the features of the teacher model, thus capturing more
effective knowledge regarding the target domain in comparison
to the teacher model. We then utilize Ladv as described in the
forward adaptation stage on the same discriminator Q and the
distilled feature extractor F ′. The overall loss of this stage is
the combination of these two loss terms as

Lbas = α3 · Lsd + α4 · Ladv, (6)

where α3 and α4 are weight factors. We optimize this loss
adversarially as in the forward adaptation stage. At the end of
each training epoch, we update the teacher model by copying
the parameters of the student model to the teacher model:

θF = θF ′ . (7)

This backward adaptation strategy provides more accurate
guidance from the teacher model, thus promoting the student
model to learn more knowledge. Both the self-distillation loss
Lsd and adversarial loss Ladv do not need any class labels
from both domains.

3) Training and Inference: The training procedure of our
framework is summarized in Algorithm 1. In inference, we use
feature extractor F ′ and classifier G as our DeepFake detector
H′

= G ◦ F ′.

Fig. 4. Network architecture for DeepFake detector.

E. Network Framework

Fig. 4 depicts the network architecture for our DeepFake
detector. We design a ViT-based network as our feature extrac-
tor F due to its strong power on vision tasks. Specifically,
our feature extractor has two branches, a visual branch and
a frequency branch. For the visual branch, we split the face
image into 196 patches. These patches are flattened and linear
transformed to patch embeddings, which are then equipped
with position embeddings as the tokens for a ViT [29] architec-
ture to extract visual features. The ViT in this branch contains
l transformer layers, each of which is composed by a multi-
headed self-attention (MSA) layer and a MLP layer [57]. For
the frequency branch, we first convert the face image from
RGB color space to YCbCr color space and then apply DCT
transformation to each component with a 8 × 8 block [10].
The transformed frequency maps are concatenated together
and sent into a convolution block. We then flatten the feature
maps from the convolution block into 196 vectors, which are
used as the input to another ViT architecture for frequency
feature extraction. This ViT architecture contains m trans-
former layers. The visual features and frequency features are
concatenated together as the forgery features for DeepFake
detection. The classifier G has a simple structure with only
two linear layers, which takes the forgery features as input and
outputs the logit of prediction. It is worth emphasizing that
our method is independent of the network architecture, and
can be integrated into other mainstream architectures. We use
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the architecture of Fig. 4 in our experiments as it can achieve
the best performance, which will be confirmed by Table IX in
Ablation Study.

IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: We evaluate our approach on three pub-
lic deepfake detection datasets, which are FF++ [13],
Celeb-DF [14], StyleGAN [58], DFDCP, and FFIW.

FF++ is a widely used dataset in deepfake detection.
It includes 1, 000 original videos from YouTube, covering a
wide range of subjects and scenarios, and consists of four
different manipulation techniques: Deepfakes (DF), Face2Face
(F2F), FaceSwap (FS), and NeuralTextures (NT), each repre-
senting a distinct form of facial manipulation. All these videos
have three compression versions, raw, high quality (HQ) and
low quality (LQ). From these original videos, 720 videos,
140 videos and 140 videos are used for training, validating
and testing, respectively. For each manipulation technique,
we employ the same partition as the original videos for
training, validating, and testing. We focus on the frame-level
deepfake detection and perform evaluation on both HQ and LQ
data. As our approach does not rely on extra augmentation
operations, we only crop faces from each frame during the
preprocessing stage. Concretely, we randomly extract 8 frames
for each video clip and crop out the face with 1.3× of the
detection box obtained by RetinaFace [59].

Celeb-DF was proposed more recently, which provides a
diverse set of challenges, such as pose, lighting conditions,
facial expressions and camera quality, commonly encoun-
tered in real-world scenarios. It also offers different levels
of manipulation difficulty, ranging from subtle and realistic
manipulations to more obvious and noticeable ones. This
dataset contains 590 original videos and 5, 639 DeepFake
videos. We respectively use 5, 710 and 518 videos for training
and testing. To construct the training data, we randomly extract
32 frames from real videos and 4 frames from fake videos for
data balance. As for the testing set, we extract 16 frames from
real and fake videos. The face is cropped out using the same
way as for FF++.

StyleGAN [58] trains a generative adversairal network
on Flickr-Faces-HQ dataset (FFHQ), which consists of
70, 000 real face images, to synthesize high-quality fake faces.
The synthesizing process focuses on human faces and offers
various high-quality synthetic faces by disentangling style and
content information in latent space to control the process of
face generation. We randomly select 2, 500 original images
from FFHQ and 2, 500 synthetic images from the generated
dataset, where 2, 000 original images and 2, 000 synthetic
images are for training and the remaining images are for
testing.

DFDCP [71] is a preview dataset for deepfakes detection
challenge consisting of 5, 000 videos with two facial modifica-
tion algorithms, considering diversity in several axes (gender,
skin-tone, age, etc.).

FFIW-10K [67] is a large-scale dataset, which comprises
10, 000 pristine videos and 10, 000 high-quality forgery videos

for training. Another 250 real videos and 250 manipulated
videos are also provided for testing. Different from the afore-
mentioned datasets, this dataset contains multiple forgery faces
in a single video.

2) Domain Adaptation Scenarios: Since a new forgery
can either be generated by a new manipulation method or
come from an unseen data distribution, we design three
adaptation scenarios, which are Cross-manipulation-methods,
Cross-manipulation-datasets and Cross-manipulation-types,
respectively. Cross-manipulation-methods is the case of
crossing different manipulation methods in the same type
(e.g., faceswap). Cross-manipulation-datasets represents the
adaptation from one dataset to another different one. Cross-
manipulation-types is to adapt one type of forgery to a different
type. This scenario is more challenging, as different types have
significant discrepancies in the manipulation methods, datasets
and forged areas, e.g., faceswap faces to GAN-synthesized
faces.

To make a fair comparison with the previous works [16],
[35], each domain adaptation scenario is trained on the training
set and tested on the testing set. Take the Cross-manipulation-
methods scenario on FF++ dataset as an example. In training,
we use the training set of source and target manipulation
methods. In inference, we evaluate the trained model on the
testing set of source and target manipulation methods. This
configuration also applies to the other two scenarios.

3) Implementation Details: Following the design in Vit-
Base [29], the feature extractor contains 12 (i.e., l = 12)
transformer blocks, while we use 4 (i.e., m = 12) transformer
blocks in frequency branch. The input images are resized
to (224, 224). The weights of loss terms are set to α1 =

α2 = α3 = α4 = 1. The training batch size is set to 32 in
forward adaptation and 24 in backward adaptation, as the
teacher model occupy extra GPU memory. In the forward
adaptation stage, we employ SGD as the optimizer, where
the learning rate, momentum, and weight decay are set to
0.001, 0.9, and 0.0005, respectively. We stop the training of
forward adaptation after 20 epochs. For backward adaptation,
we set the learning rate to 0.0001 and the number of training
epochs to 10. The temperature is set to τ = 0.5. All
experiments are conducted using Pytorch [60] on two Nvidia
GTX 2080Ti GPUs.

B. Results of Cross-Manipulation-Methods

We investigate two settings in this scenario: one-to-one
adaptation (O2O) and one-to-many adaptation (O2M). O2O
uses one method as source and another one as target, while
O2M uses one method as source and many other methods as
target, which is more practical, as the collected target videos
may have many new forgeries. All the experiments in this part
are conducted on FF++ dataset and evaluated using the area
under curve (AUC) metric.

1) Performance of O2O and O2M: In O2O, we select one of
the four manipulation methods (DF, F2F, NT, FS) as the source
domain and select a different method as the target domain. The
top part of Table I shows the performance of our method under
this O2O setting on the HQ set. Gray and yellow coloured
values denote the performance on the source domain and
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TABLE I
THE PERFORMANCE OF OUR PROPOSED METHOD UNDER TWO

CROSS-MANIPULATION SCENARIOS ON FF++. THE TOP
PART IS THE RESULTS OF O2O AND THE BOTTOM

PART IS THE RESULTS OF O2M

target domain, respectively. “Baseline” denotes training the
proposed architecture on source domain and directly testing
on other domains without bi-directional adaptation. The results
reveal that our method performs favourably on both source and
target domains, achieving the AUC metric 95%+ on most
of the source and target adaptation pairs. This demonstrates
the effectiveness of our method. We also observe that the
performance with NT → FS is limited on the source. This
is probably due to the large gap between NT and FS, and thus
part of the knowledge in the source domain is lost.

In O2M, we select one manipulation method as source
domain and use the other three methods as target domain. The
performance achieved by our method are shown in the bottom
part of Table I. We can observe that our method performs well
on all the manipulation methods, which demonstrates that our
method can learn the common forgery features even if the
target domain is mixed with different manipulations.

Compared to the O2O scenario, O2M is more practical,
as the daily emerged videos likely contain various manipu-
lation methods. However, the foundation of O2M is O2O,
as it still attempts to find the common knowledge among
these various manipulation methods. Thus the O2O setting is
also important, as it serves as the basis for the improvement
of O2M.

2) Comparison With State-of-the-Arts: We compare our
method with several state-of-the-art methods, including the
augmentation-based methods (Face X-ray [16], SBI [18]),
frequency-based methods (SRM [21], FDFL [10]), transfer-
based methods (FOT [23], DDT [24], FEAT [54]), and other
methods (Xception [13], MATT [61], LTW [34], RECCE [62],
SOLA-sup [63], FTCN [64], TALL-Swin [73]). Note that
TALL-Swin has no reports corresponding to this scenario.

Thus we reproduce its results following its default settings.
This method is trained using all videos in FF++.

We would like to clarify that the experiment configurations
between our method and these other methods are different,
as these methods tackle this task under different scenarios.
Specifically, these data-level methods first obtain and empir-
ically analyze the new forgery videos, and then summarize
a common forgery knowledge as a prior, e.g., the blending
boundary and frequency clues. By contrast, the prior knowl-
edge for us is the collected videos without labels. Even though
the experiment configurations are not the same, the results can
also reflect the effectiveness of our method in exposing new
forgeries.

Table II compares the performance of our method with those
of the existing methods under the O2O scenario on both HQ
and LQ levels, where the results of our method are marked
by gray colour. For the existing methods, we use the score of
each method reported in its original paper. As SBI [18] was
only evaluated on raw quality images, we retrain it using the
code provided in [18] on HQ and LQ for a fair comparison.

For the HQ level, it can be seen from the top part of Table II
that our method outperforms the augmentation-based methods,
Face X-ray and SBI, by a large margin. Since these two
methods require prior knowledge of manipulation, they can
hardly handle the forgery that has notable differences from the
prior knowledge. The frequency-based method SRM performs
well on several cases, notably, FS → F2F and NT → F2F.
But its performances are highly degraded in many more cases
compared to our method. For example, in DF → FS, our
method is nearly 100% better than SRM, and in FS → DF,
our method is 44% better than SRM, while in DF → F2F,
our method is 30% better than SRM, and in F2F → DF, our
method is 20% better than SRM. Similar observations can be
drawn by comparing our method with SOLA-sup. Based on the
available data from [64], the performance of our method are
slightly better than those of FTCN. When compared to TALL-
Swin, we observe our method achieves better generalization
performances than TALL-Swin. It can also be seen that our
method significantly outperforms LTW, Xception, FOT, DDT
and FEAT. Moreover, in the more challenging LQ level, our
method significantly outperforms all the five benchmarks,
as can be seen from the bottom part of Table II.

Fig. 5 shows the t-SNE [65] visualizations of feature distri-
bution for two O2O cross-manipulations (FS → F2F, FS →

NT) without and with adaptation using our method on both
source and target domain. For the target domain, it can be seen
that the features of real and fake faces separate well using our
method, in contrast to the mixed features without our method
(see (a,b) and (c,d)). For the source domain, we can observe
that their feature distributions are still discriminative (see (e,f)
and (g,h)). Fig. 6 shows several examples of Grad-CAM [56]
(the left six columns), which reveals that our method catches
more discriminative features on face regions for both real and
fake faces.

3) Comparison With Existing UDA Methods: As our
approach draws inspiration from UDA to enhance the gen-
eralization ability when facing unseen DeepFake techniques,
we also perform a further comparison with the recently
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TABLE II
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ARTS UNDER O2O CROSS-MANIPULATION SCENARIO AT HQ LEVEL (TOP) AND LQ LEVEL

(BOTTOM) IN FF++. THE BOLD NUMBER DENOTES THE BEST PERFORMANCE AND THE UNDERLINED ONE DENOTES THE SECOND BEST

Fig. 5. T-SNE [65] visualization on FF++ (HQ).

developed domain adaptation methods, SSRT [53], MDD [46]
and DANN [48]. Specifically, we retrain their models on
FF++ HQ and LQ scenarios by using their published codes.
The experimental results are summarized in Table III, which
demonstrate that our method outperforms these three domain
adaptation methods in recognizing faces with unseen forgeries.
SSRT [53] is a counterpart method that also employs a
powerful vision transformer as the backbone network. It can
be seen that SSRT occasionally fails to transfer knowledge
in some scenarios, e.g., DF→NT and FS→F2F, while our
bi-directional network achieves more stable and superior

performance than SSRT almost in all adaptation tasks. DANN
and MDD respectively represent an adversarial-based method
and a discrepancy-based method. We observe that DANN
achieves more generalized performance than MDD but our
approach surpasses both DANN and MDD by a large margin.
The reason mainly lies in that the proposed bi-directional adap-
tation strategy enables the model to fully grab the common
forgery features across domains. Overall, the results suggest
that our approach effectively encourages the detector to learn
common forgery features, leading to improved generalization
ability.
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Fig. 6. Grad-CAM [56] visualization without and with adaptation using our method.

TABLE III
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ARTS DOMAIN ADAPTATION METHODS. THE BOLD NUMBER DENOTES THE BEST PERFORMANCE

C. Results of Cross-Manipulation-Datasets

In this experiment, we use FF++ as source domain and
Celeb-DF as target domain. Table IV compares our method
with the state-of-the-art methods, F3-Net [19], MATT [61],
RECCE [62], Two-branch [66], LTW [34], DSP-FWA [15],
MTD-Net [36], Xception [13], CFFs [37], DAM [67],
SOLA-sup [63], SPSL [20], LiSiam [38], SLADD [35], Lip-
Forensics [68], HFI-Net [39], FTCN [64], AltFreezing [72],
TALL [73], F2Trans [40], and PCL+I2G [17]. It can be seen
from Table IV that our method achieves 90.22% at HQ and
81.39% at LQ, respectively, outperforming most other methods
by a large margin. Note that PCL+I2G [17] synthesizes
forged faces with raw quality data since the uncompressed
data can provide more distinct features than the compression
ones. Our method outperforms TALL-ViT [73], which uses
spatio-temporal modeling for learning local and global contex-
tual deepfake patterns, when employing a vision transformer
as the backbone network. Additionally, it achieves comparable
performance with TALL-Swin. This demonstrates that our
method is capable of transferring the forgery knowledge from
one dataset to another. The last two columns of Fig. 6 depict
the examples of Grad-CAM from FF++ to Celeb-DF, which
shows that our method concentrates more on forgery regions
than the case without using our method.

For a comprehensive study, we then conduct a more chal-
lenging scenario, which uses the FF++ as the source domain
and the DFDCP [71] or FFIW [67] as the target domain.

The results are presented in Table V. We observe that our
method achieves better performance than others on the DFDCP
dataset, mainly because our method can learn common forgery
features among different manipulated methods. However, SBI
surpasses our method on the FFIW dataset. This is because
this dataset contains many side faces, while the faces in FF++

dataset are usually frontal. This discrepancy largely increases
the domain gap, which may disturb our model in learning
common forgery features. Since SBI is designed to create a
variety of faces for data augmentation, which likely includes
such distorted faces in training, resulting in better performance
than us.

D. Results of Cross-Manipulation-Types

In this part, we investigate the feasibility of our method
to adapt faceswap faces to GAN-synthesized faces. Faceswap
replaces the central region of face and retains other regions
unchanged, while GAN synthesizes the whole face image.
We use each of faceswap methods in FF++ [13] as source
and adapt it to the StyleGAN dataset [58]. Table VI shows the
performance of our method in comparison to the three bench-
mark methods, MATT [61], RECCE [62] and SBI [18], under
this setting. For fair comparison, we use the codes provided
in [18], [61], and [62] for SBI, MATT and RECCE under their
defaulting settings. Observe that these three methods perform
poorly, and in most cases their performance are below 50%.
This is because these methods are designed to detect faceswap
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TABLE IV
PERFORMANCE COMPARISON OF OUR METHOD WITH STATE-OF-THE-

ARTS UNDER CROSS-DATASETS SCENARIO FROM FF++ TO
CELEB-DF. TRAINING SET FF++ INDICATES FF++ WITH

FOUR MANIPULATION METHODS (DF,F2F,NT,FS) AS
SOURCE, AND FF++(DF) MEANS FF++ WITH

ONLY ONE MANIPULATION METHOD
DF AS THE TRAINING SET

TABLE V
PERFORMANCE COMPARISON OF OUR METHOD WITH

STATE-OF-THE-ARTS UNDER CROSS-DATASETS
SCENARIO FROM FF++ TO DFDCP AND FFIW

TABLE VI
PERFORMANCE COMPARISON OF OUR METHOD WITH
STATE-OF-THE-ARTS UNDER CROSS-FACESWAP&GAN

SCENARIO FROM FF++ TO STYLEGAN

DeepFakes, e.g., finding the blending artifacts, and they cannot
handle StyleGAN synthesized faces. In contrast, our method

TABLE VII
EFFECT OF VARIOUS ADAPTATION SETTINGS

outperforms these methods by a large margin, on average
37%, 34% and 24% better at HQ level, and 117%, 20%
and 10% better at LQ level, than MATT, RECCE and SBI,
respectively. This is because our method focuses on learning
the common forgery knowledge in the central regions of both
faceswap and GAN DeepFakes, instead of simply exposing
the faceswap-specific forgery features.

E. Ablation Study

We also conduct comprehensive ablation experiments to
fully analyze the proposed method. More specifically, the
ablation study 1) validates the efficacy of proposed approach;
2) demonstrates the proposed method is data-efficient and can
work with various backbone networks; and 3) shows that our
method can also benefit other augmentation-based face forgery
detection methods to improve their generalization ability.

1) Various Adaptation Settings: To provide more insights,
we further investigate the proposed bi-directional adaptation
strategy on the LQ set of FF++. We use the DeepFake
detector trained on the source domain without adaptation as the
baseline. GRL [69] and MMD [44] are two classical domain
adaptation methods. GRL uses the gradient reversal layer and
MMD attempts to reduce the distance of the probability distri-
butions between source and target domains. GRL is exactly the
domain adaptation method adopted in FEAT [54]. We denote
the forward adaptation method in our method as FA. In the top
part of Table VII, we evaluate these three domain adaptation
methods. It can be seen that adding GRL, MMD or FA can
improve the performance in the target domain, and using our
FA attains the highest performance gain.

Then we take a further step to analyze the effect of backward
adaptation in the bottom part of Table VII, where SD means
that the self-distillation is used in backward adaptation, while
Ent. represents that self-distillation is replaced with entropy
minimization of samples, which is inspired by the method
of [70]. We observe that only adding SD can notably improve
the performance on the target domain, but its performance on
the source domain is compromised, especially in NT → FS,
with 77.53% of +SD v.s. 87.61% of Baseline. This is because
self-distillation is effective on the target domain, but over-
looks the adaptation learned in forward adaptation. It can
also be seen that replacing SD with Ent. is a bad idea,
as this strategy degrades the detection performance in both
domains. By adding both our forward adaptation and backward
adaptation components to the baseline, our method can reach a
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Fig. 7. Performance of using various amounts of training samples.

TABLE VIII
EFFECT OF FREQUENCY MODULE

good balance of the detection performance in both source and
target domains. This clearly demonstrates that the proposed
bi-directional adaptation is highly effective.

2) Various Amounts of Training Samples: This part investi-
gates the data efficiency of the proposed method. We randomly
select a proportion or percentage of the samples in target
domain for training to simulate data-constrained scenarios.
Fig. 7 depicts the performance of our method for the adapta-
tion pairs of DF → F2F, DF → NT, and F2F → FS on the
LQ set of FF++ using the percentage of the target samples
ranging from 20% to 100%. As expected, increasing the
percentage generally improves achievable performance. More
importantly, noting the baseline+FA performance of 86.49 for
DF → F2F from Table VII, it can be seen that our method can
still considerably enhance the performance to over 90 even if
only 20% of target samples are used. This indicates that our
method can be utilized in the more restricted cases where the
available target samples are insufficient.

3) Effect of Frequency Module: The number of channels
(C) and depth (D) of DCT blocks are two important factors
for extracting frequency features. The C and D values used in
our method are 768 and 4. We now investigate the achievable
performance of our method using various C and D values on
the LQ set of FF++. As can be seen from Table VIII, given
depth D = 4, increasing channels from C = 192, 384 to
768 improves the achievable performance on both source and
target domains. Likewise, with channels fixed to C = 768,
increasing depth from D = 2, 3 to 4 improves the achievable
performance on both domains. The results of Table VIII also
validate that our choice of C = 768 and D = 4 is appropriate.

4) Various Feature Extractors: As mentioned in the intro-
duction section, the proposed framework is independent of the
architecture. Table IX shows the performance of applying our
framework on ResNet-50 [30], Xception [31], EfficientNet-B0
[32], EfficientNet-B4 [32], ViT-small [29] and ViT-base [29]
on the LQ set of FF++. It can be seen that for each base net-
work, our method significantly improves the performance on

TABLE IX
PERFORMANCE OF USING VARIOUS FEATURE EXTRACTORS

TABLE X
PERFORMANCE OF ADDING OUR METHOD ON SBI

the target domain while maintaining a favorable performance
on the source domain. This demonstrates that our proposed
method is generically applicable.

5) Added on State-of-the-Art DeepFake Detection: This
part investigates the effectiveness of our method to improve
recently developed advanced detection methods. We use
SBI [18] as an example. Specifically, we retrain SBI with
HQ and LQ faces in FF++, and compare it with our method
added on SBI. In this experiment, the source domain consists
of fake faces blended by SBI and pristine faces. The target
domain is each manipulation method. Thus, four new adapta-
tion sub-tasks named SBI→ DF, SBI→ F2F, SBI→ NT, and
SBI→ FS are formed. The results shown in Table X reveal
that with our method added on, SBI notably improves the
performance both at HQ and LQ levels. This indicates that our
method can be easily integrated into other detection methods
to enhance their generalization ability.

6) Temperature τ : We conduct experiments to investigate
the influence of temperature in Eq. 4. As seen in Table XI,
we observe that the model training with a large τ (e.g. > 0.5)
achieves stable performance. However, when τ is set less than
0.5, the result will get unstable.

7) Teacher Model Updating Strategy: To validate the
effectiveness of updating strategy, we conduct addition exper-
iment using exponential moving average (EMA) updating
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TABLE XI
EFFECT OF TEMPERATURE τ

TABLE XII
EFFECT OF TEACHER MODEL UPDATING STRATEGY

TABLE XIII
CROSS-DATASET GENERALIZATION COMPARISON

strategy [77] on two sub-tasks (e.g. FS→NT and DF→F2F).
The results are presented in Table XII. Our method achieves
better performances than exponential moving average on
both two sub-tasks. We conjecture this is because the direct
assignment makes the knowledge transferred from teacher
model to student model faster, which thereby conveys more
comprehensive knowledge than EMA strategy.

8) Results on Unseen Dataset: We further conduct an
experiment to evaluate the generalization performance on
unseen dataset, where we make a comparison on two adapta-
tion settings named FF++(HQ) → CelebDF and FF++(HQ)
→ DFDCP. As shown in Table XIII, We observe that our
method can also achieve comparable generalization perfor-
mance on Celeb-DF when the target domain is DFDCP.

V. CONCLUSION

This paper has proposed a new framework to detect new
forgeries across different domains, called DomainForensics.
Different from the recent methods, which empirically seeks
the common traces on data view, our method aims to transfer
the forgery knowledge from known forgeries (fully labeled
source domain) to new forgeries (label-free target domain).
Since the general domain adaptation methods are not com-
petent to capture the forgery features, we have designed a
new bi-directional adaptation strategy that considers both the
forward adaptation and backward adaptation. Specifically, the
forward adaptation transfers the knowledge from the source
to the target domain, and the backward adaptation reverses
the adaptation from the target to the source domain. With
this backward adaptation, the detector can be further enhanced
to learn new forgery features from unlabeled data and avoid
forgetting the known knowledge of known forgery. Extensive
experiments have been conducted on three datasets with the
comparison to several existing state-of-the-art counterparts.
The results obtained have demonstrated that our method is
effective in exposing new forgeries, and it can be integrated
into various architectures to improve their generalization
ability.
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